Please wait a minute...
中国腐蚀与防护学报  2020, Vol. 40 Issue (4): 373-380    DOI: 10.11902/1005.4537.2019.109
  研究报告 本期目录 | 过刊浏览 |
环氧树脂/重结晶碳化硅复合材料的抗腐蚀性能
付海波, 刘晓茹, 孙媛, 曹大力()
沈阳化工大学材料科学与工程学院 沈阳 110142
Corrosion Resistance of Epoxy Resin/recrystallized Silicon Carbide Composite
FU Haibo, LIU Xiaoru, SUN Yuan, CAO Dali()
College of Materials Science and Engineering, Shenyang University of Chemical Technology, Shenyang 110142, China
全文: PDF(3447 KB)   HTML
摘要: 

以E44型环氧树脂 (EP) 为填充材料,制备了环氧树脂填充重结晶碳化硅 (EP/RSiC) 复合材料。通过对表面形貌、动态电位极化曲线、电化学阻抗图谱、腐蚀速率进行分析,研究了EP/RSiC在静态室温条件下2 mol/L H2SO4溶液和4 mol/L NaOH溶液中的腐蚀行为。结果表明:EP/RSiC复合材料结构致密,具有较低的腐蚀电流密度和较高的自腐蚀电位,抗腐蚀性良好。EP/RSiC复合材料的腐蚀由SiC的活性溶解造成,因此EP/RSiC复合材料更容易受到碱性溶液的腐蚀,并且其腐蚀行为受电荷传递控制;EP/RSiC复合材料的腐蚀速率随EP填充量的增加而减少。15% (体积分数) EP/RSiC的抗腐蚀性最佳,在2 mol/L H2SO4溶液中的腐蚀速率为152 mg/(dm2·d),在4 mol/L NaOH溶液中的腐蚀速率为310 mg/(dm2·d),与RSiC相比其腐蚀保护效率分别达到90.5%和93.7%。

关键词 重结晶碳化硅环氧树脂复合材料腐蚀电化学    
Abstract

Resin-filled recrystallized silicon carbide (EP/RSiC) composites with good corrosion resistance were prepared by using E44 epoxy resin as the filling material. The corrosion behavior of EP/RSiC composites in 2 mol/L H2SO4 solution and 4 mol/L NaOH solution at room temperature was studied by means of weight loss measurement, potentiodynamic polarization curves measurement, electrochemical impedance spectroscopy as well as corrosion morphology characterization. The results demonstrated that the EP/RSiC composites had a dense structure, low corrosion current density and high free-corrosion potential, and good corrosion resistance. Electrochemical tests suggested that the corrosion of EP/RSiC composites was caused by the active dissolution of silicon carbide. Therefore, EP/RSiC composites were more susceptible to corrosion by alkaline solutions, and their corrosion behavior was controlled by charge transfer. The corrosion rate decreased as the amount of epoxy resin filler increased, among others, the EP/RSiC with 15% (volume fraction) epoxy resin had the best corrosion resistance, namely its corrosion rate was 152 mg/(dm2·d) in 2 mol/L H2SO4 solution, while 310 mg/(dm2·d) in 4 mol/L NaOH solution respectively. Which demonstrates that the EP/RSiC with 15% epoxy resin exhibits a corrosion protection efficiency about 90.5% regarding to the plain RSiC without the addition of epoxy resin.

Key wordsrecrystallized silicon carbide    epoxy resin    composite    corrosion    electrochemistry
收稿日期: 2019-07-18     
ZTFLH:  TB37  
基金资助:共伴生有色金属资源加压湿法冶金技术国家重点实验室基金(yy2016007)
通讯作者: 曹大力     E-mail: caodali2008@126.com
Corresponding author: CAO Dali     E-mail: caodali2008@126.com
作者简介: 付海波,男,1996年生,硕士生

引用本文:

付海波, 刘晓茹, 孙媛, 曹大力. 环氧树脂/重结晶碳化硅复合材料的抗腐蚀性能[J]. 中国腐蚀与防护学报, 2020, 40(4): 373-380.
Haibo FU, Xiaoru LIU, Yuan SUN, Dali CAO. Corrosion Resistance of Epoxy Resin/recrystallized Silicon Carbide Composite. Journal of Chinese Society for Corrosion and protection, 2020, 40(4): 373-380.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2019.109      或      https://www.jcscp.org/CN/Y2020/V40/I4/373

图1  E44-环氧树脂和EP/RSiC复合材料的红外光谱图
图2  RSiC、E44-环氧树脂和EP/RSiC复合材料的XRD谱
图3  腐蚀前后的RSiC和EP/RSiC的SEM像
图4  RSiC和EP/RSiC在2 mol/L H2SO4溶液和4 mol/L NaOH溶液中的极化曲线
SolutionSampleEcorrVIcorrμA·cm2η
2 mol/L H2SO4RSiC-0.83117452.6---
8%EP/RSiC-0.7166681.082.1%
10%EP/RSiC-0.3742150.388.9%
15%EP/RSiC-0.3136342.990.5%
4 mol/L NaOHRSiC-0.3161378.3---
8%EP/RSiC0.101216.4091.8%
10%EP/RSiC0.124355.9292.4%
15%EP/RSiC0.158714.9693.7%
表1  由极化曲线得到的电化学参数
图5  RSiC和EP/RSiC在2 mol/L H2SO4溶液中的Nyquist和Bode图
图6  RSiC和 EP/RSiC在4 mol/L NaOH溶液中的Nyquist和Bode图
图7  RSiC和EP/RSiC分别在2 mol/L H2SO4和4 mol/L NaOH溶液中EIS拟合的等效电路
SolutionSampleRs / Ω·cm2Rt / kΩ·cm2CPEtRf / kΩ·cm2CPEf
Ω-1·cm-2·SnnΩ-1·cm-2·Snn
2 mol/L H2SO4RSiC93.20.99273.000.998---------
8%EP/RSiC71.0126.0010.000.9980.929.850.995
10%EP/RSiC71.3148.009.910.9950.929.910.995
15%EP/RSiC72.0152.009.850.9950.9210.000.998
4 mol/L NaOHRSiC25.52.79423.000.759---------
8%EP/RSiC54.97.6229.200.998---------
10%EP/RSiC54.412.7013.100.995---------
15%EP/RSiC63.513.7010.900.996---------
表2  由EIS拟合得到的电化学参数
图8  RSiC和EP/RSiC分别在2 mol/L H2SO4溶液和4 mol/L NaOH溶液中的腐蚀速率
[1] Cheng W. The study on anticorrosive coatings on graphene-based steel surfaces [J]. Low Temp. Archit. Technol., 2018, 40(5): 5
[1] (程为. 石墨烯基钢材表面防腐涂层的研究 [J]. 低温建筑技术, 2018, 40(5): 5)
[2] Wu G H. Development challenge and opportunity of metal matrix composites [J]. Acta Mater. Compos. Sin., 2014, 31: 1228
[2] (武高辉. 金属基复合材料发展的挑战与机遇 [J]. 复合材料学报, 2014, 31: 1228)
[3] Yan Z Q, Xiong X, Xiao P, et al. Preparation of SiC coatings on surface of C/SiC composites by the chemical vapor deposition and their oxidation resistance behavior [J]. J. Chin. Ceram. Soc., 2008, 36: 1098
[3] (闰志巧, 熊翔, 肖鹏等. C/SiC复合材料表面化学气相沉积涂覆SiC涂层及其抗氧化性能 [J]. 硅酸盐学报, 2008, 36: 1098)
[4] Lu Y J, Wang Y M, Wu L E, et al. Oxidation behavior of carbon nanoparticles/silicon carbide composite ceramics [J]. J. Chin. Ceram. Soc., 2013, 41: 1431
[4] (陆有军, 王燕民, 吴澜尔等. 纳米碳颗粒/碳化硅陶瓷基复合材料的氧化行为 [J]. 硅酸盐学报, 2013, 41: 1431)
[5] Boehme O, Spetz A L, Lundstroem I, et al. ChemInform Abstract: Nanoparticles as the active element of high-temperature metal-insulator-silicon carbide gas sensors [J]. Adv. Mater., 2001, 13: 597
doi: 10.1002/(ISSN)1521-4095
[6] Guo W M, Xiao H N, Wen X, et al. A new design for preparation of high performance recrystallized silicon carbide [J]. Ceram. Int., 2012, 38: 2475
doi: 10.1016/j.ceramint.2011.11.016
[7] Herrmann M, Schilm J, Michael G. Corrosion behaviour of different technical ceramics in acids, basic solutions and under hydrothermal conditions [J]. Key Eng. Mater., 2004, 264-268: 877
doi: 10.4028/www.scientific.net/KEM.264-268
[8] Zhang L, Mao X, Chen G, et al. Chemical corrosion of liquid-phase sintered SiC in NaOH aqueous solution [J]. Corros. Eng. Sci. Technol., 2016, 51: 621
doi: 10.1080/1478422X.2016.1173420
[9] Zhu M, Wang R, Chen C, et al. Electrochemical study on the corrosion behavior of Ti3SiC2 in 3.5%NaCl solution [J]. RSC Adv., 2017, 7: 12534
doi: 10.1039/C6RA26239B
[10] Gao P Z, Zhang X L, Huang S T, et al. Influence of infiltration temperatures on microstructure and properties of MoSi2(Cr5Si3)-RSiC composites [J]. J. Chin. Ceram. Soc., 2014, 42: 1105
[10] (高朋召, 张小亮, 黄诗婷等. 熔渗温度对MoSi2(Cr5Si3)-RSiC复合材料显微结构和性能的影响 [J]. 硅酸盐学报, 2014, 42: 1105)
[11] Weidenmann K A, Rixecker G, Aldinger F. Liquid phase sintered silicon carbide (LPS-SiC) ceramics having remarkably high oxidation resistance in wet air [J]. J. Eur. Ceram. Soc., 2006, 26: 2453
doi: 10.1016/j.jeurceramsoc.2005.05.015
[12] Kim W J, Hwang H S, Park J Y. Corrosion behavior of reaction-bonded silicon carbide ceramics in high-temperature water [J]. J. Mater. Sci. Lett., 2002, 21: 733
doi: 10.1023/A:1015797324658
[13] Cook S G, Little J A, King J E. Corrosion of silicon carbide ceramics using conventional and electrochemical methods [J]. Br. Corros. J., 1994, 29: 183
doi: 10.1179/000705994798267692
[14] Gu J W, Zhang Q Y, Dang J, et al. Preparation and mechanical properties researches of silane coupling reagent modified β-silicon carbide filled epoxy-composites [J]. Polym. Bull., 2009, 62: 689
doi: 10.1007/s00289-009-0045-z
[15] Jia S, Yao Z J, Zhang S S, et al. Anticorrosion performance of silane modified nano-TiO2-Zn-Al/waterborne epoxy coatings [J]. Acta Mater. Comp. Sin., 2018, 35(9): 2405
[15] (贾涉, 姚正军, 张莎莎等. 硅烷改性纳米TiO2-Zn-Al/水性环氧涂层的防腐性能 [J]. 复合材料学报, 2018, 35(9): 2405)
[16] Hu C B, Li Y, Kong Y Z, et al. Preparation and anticorrosion performance of poly (o-chloroaniline) -nano SiC/epoxy resin composite [J]. Acta Mater. Compos. Sin., 2017, 34: 1167
[16] (胡传波, 厉英, 孔亚州等. 聚邻氯苯胺-纳米SiC/环氧树脂复合材料的制备与防腐性能 [J]. 复合材料学报, 2017, 34: 1167)
[17] Li W L, Lin J, Yan M F, et al. Separation and characterization of Bisphenol-a epoxy resin paint [J]. Chem. World, 2002, 43: 574
[17] (李万利, 林建, 颜明发等. 双酚A型环氧树脂涂料的分离及表征 [J]. 化学世界, 2002, 43: 574)
[18] He Y J. Preparation of polyaniline/nano-ZnO composites via a novel pickering emulsion route [J]. Powder Technol., 2004, 147: 59
doi: 10.1016/j.powtec.2004.09.038
[19] Andrews A, Herrmann M, Sephton M, et al. Electrochemical corrosion of solid and liquid phase sintered silicon carbide in acidic and alkaline environments [J]. J. Eur. Ceram. Soc., 2007, 27: 2127
doi: 10.1016/j.jeurceramsoc.2006.07.011
[20] Sui L L, Liu F, Chen X R, et al. Preparation and corrosion resistance of nano SiO2-graphene oxide/epoxy composite coating [J]. Acta Mater. Compos. Sin., 2018, 35: 1716
[20] (随林林, 刘芳, 陈晓蕊等. 纳米SiO2-氧化石墨烯/环氧涂层的制备及其防腐蚀性能 [J]. 复合材料学报, 2018, 35: 1716)
[21] Cao C N. Principles of Electrochemistry of Corrosion [M]. 3rd Ed. Beijing: Chemical Industry Press, 2008: 176
[21] (曹楚南. 腐蚀电化学原理 [M]. 第3版. 北京: 化学工业出版社, 2008: 176)
[22] Kocijan A, Merl D K, Jenko M. The corrosion behaviour of austenitic and duplex stainless steels in artificial saliva with the addition of fluoride [J]. Corros. Sci., 2011, 53: 776
[23] Khaled K F. Application of electrochemical frequency modulation for monitoring corrosion and corrosion inhibition of iron by some indole derivatives in molar hydrochloric acid [J]. Mater. Chem. Phys., 2008, 112: 290
[1] 戴婷, 顾艳红, 高辉, 刘凯龙, 谢小辉, 焦向东. 水下摩擦螺柱焊接头在饱和CO2中的电化学性能[J]. 中国腐蚀与防护学报, 2021, 41(1): 87-95.
[2] 董续成, 管方, 徐利婷, 段继周, 侯保荣. 海洋环境硫酸盐还原菌对金属材料腐蚀机理的研究进展[J]. 中国腐蚀与防护学报, 2021, 41(1): 1-12.
[3] 唐荣茂, 朱亦晨, 刘光明, 刘永强, 刘欣, 裴锋. Q235钢/导电混凝土在3种典型土壤环境中腐蚀的灰色关联度分析[J]. 中国腐蚀与防护学报, 2021, 41(1): 110-116.
[4] 韩月桐, 张鹏超, 史杰夫, 李婷, 孙俊才. 质子交换膜燃料电池中TA1双极板的表面改性研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 125-130.
[5] 张雨轩, 陈翠颖, 刘宏伟, 李伟华. 铝合金霉菌腐蚀研究进展[J]. 中国腐蚀与防护学报, 2021, 41(1): 13-21.
[6] 冉斗, 孟惠民, 刘星, 李全德, 巩秀芳, 倪荣, 姜英, 龚显龙, 戴君, 隆彬. pH对14Cr12Ni3WMoV不锈钢在含氯溶液中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2021, 41(1): 51-59.
[7] 白云龙, 沈国良, 覃清钰, 韦博鑫, 于长坤, 许进, 孙成. 硫脲基咪唑啉季铵盐缓蚀剂对X80管线钢腐蚀的影响[J]. 中国腐蚀与防护学报, 2021, 41(1): 60-70.
[8] 左勇, 曹明鹏, 申淼, 杨新梅. MgCl2-NaCl-KCl熔盐体系中金属Mg对316H不锈钢的缓蚀性能研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 80-86.
[9] 王欣彤, 陈旭, 韩镇泽, 李承媛, 王岐山. 硫酸盐还原菌作用下2205双相不锈钢在3.5%NaCl溶液中应力腐蚀开裂行为研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 43-50.
[10] 史昆玉, 吴伟进, 张毅, 万毅, 于传浩. TC4表面沉积Nb涂层在模拟体液环境下的电化学性能研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 71-79.
[11] 郑黎, 王美婷, 于宝义. 镁合金表面冷喷涂技术研究进展[J]. 中国腐蚀与防护学报, 2021, 41(1): 22-28.
[12] 于宏飞, 邵博, 张悦, 杨延格. 2A12铝合金锆基转化膜的制备及性能研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 101-109.
[13] 孙海静, 覃明, 李琳. 深海低溶解氧环境下Al-Zn-In-Mg-Ti牺牲阳极性能研究[J]. 中国腐蚀与防护学报, 2020, 40(6): 508-516.
[14] 贾世超, 高佳祺, 郭浩, 王超, 陈杨杨, 李旗, 田一梅. 再生水水质因素对铸铁管道的腐蚀研究[J]. 中国腐蚀与防护学报, 2020, 40(6): 569-576.
[15] 赵鹏雄, 武玮, 淡勇. 空间分辨技术在金属腐蚀原位监测中的应用[J]. 中国腐蚀与防护学报, 2020, 40(6): 495-507.