Please wait a minute...
中国腐蚀与防护学报  2020, Vol. 40 Issue (4): 367-372    DOI: 10.11902/1005.4537.2019.089
  研究报告 本期目录 | 过刊浏览 |
纳米Al2O3改性SiBCN陶瓷高温粘接剂的制备与性能研究
王海卫1, 常森2,3(), 栾新刚3, 宋雪梅2, 王稹2, 李彦樟2, 陈建利2, 张计荣2, 韩明2, 丘丹圭2
1.中核霞浦核电有限公司 霞浦 355100
2.中国辐射防护研究院 太原 030006
3.西北工业大学 超高温结构复合材料重点实验室 西安 710072
Preparation and Properties of Ceramics Composed of Nano-Al2O3 and Polysiloxane-polyborosilicate-TiB2 Modified Polysilborazane as High Temperature Adhesive for SiC Based Ceramics
WANG Haiwei1, CHANG Sen2,3(), LUAN Xin'gang3, SONG Xuemei2, WANG Zhen2, LI Yanzhang2, CHEN Jianli2, ZHANG Jirong2, HAN Ming2, QIU Dangui2
1. CNNP Xiapu Nuclear Power Co. Ltd. , Xiapu 355100, China
2. China Institute for Radiation Protection, Taiyuan 030006, China
3. Science and Technology on Thermo Structural Composite Materials Laboratory, Northwestern Polytechnical University, Xi'an 710072, China
全文: PDF(4959 KB)   HTML
摘要: 

为了进一步提高PSO-PBSZ-TiB2改性PSNB胶粘剂 (标记为PPPT) 的热稳定性和粘接强度,通过添加纳米Al2O3制备出了新的复合胶粘剂 (标记为PPPTA),研究了其与SiC陶瓷片的粘接性能。采用SEM和XRD等测试方法,分析了改性粘接剂的微观结构和物相组成,研究了裂解温度和纳米Al2O3对SiBCN陶瓷的微观结构和粘接强度的影响,揭示了纳米Al2O3对SiBCN陶瓷的强韧化机理。结果表明,在120 ℃空气中固化2 h,然后在1000 ℃空气中裂解2 h后,PPPT和PPPTA室温粘接强度最高分别达到11.23和15.91 MPa,在800 ℃空气中的高温剪切强度分别达到10.4和12.1 MPa。分析表明,添加纳米Al2O3可同时有效抑制粘接层的体积收缩和玻璃相在高温时的挥发,从而显著提高粘接强度。

关键词 聚硅硼氮烷纳米Al2O3玻璃相高温粘接强度    
Abstract

In order to improve the thermal stability and adhesion strength of PSO (polysiloxane)-PBSZ (polyborosilicate)-TiB2 modified PSNB (polysilborazane) (labeled as PPPT), PSNB was modified by Al2O3-PSO-PBSZ-TiB2 (denoted as PPPTA), and it was used for joining SiC ceramic discs. The microstructure and phase composition of the modified adhesive were analyzed by SEM and XRD. The effect of pyrolysis temperature and addition amount of nano-Al2O3 on the microstructure and adhesion strength for the bonding pair of SiBCN ceramics were investigated. The strengthening and toughening mechanism of nano-Al2O3 to the bonding SiBCN ceramics was revealed. After curing in air at 120 ℃ for 2 h and then pyrolysis in air at 1000 ℃ for 2 h, the room temperature adhesion strength of PPPT and PPPTA is up to 11.23 and 15.91 MPa, respectively, and more importantly, the high temperature (in air at 800 ℃) shear strength reaches 10.4 and 12.1 MPa, respectively. The analysis shows that nano-Al2O3 can effectively suppress the volume shrinkage of the adhesive layer and inhibit the volatilization of the glass phase at high temperature, thereby significantly improving the adhesion strength.

Key wordspolyborosilazane    nano-Al2O3    glass    high temperature strength
收稿日期: 2019-06-21     
ZTFLH:  TQ174  
基金资助:国家重点研发计划(2017YFB0703200);西北工业大学凝固技术国家重点实验室项目(135-QP-2015);中央高校自主创新项目(3102017zy058)
通讯作者: 常森     E-mail: changsen0869@163.com
Corresponding author: CHANG Sen     E-mail: changsen0869@163.com
作者简介: 王海卫,男,1977年生,高级工程师

引用本文:

王海卫, 常森, 栾新刚, 宋雪梅, 王稹, 李彦樟, 陈建利, 张计荣, 韩明, 丘丹圭. 纳米Al2O3改性SiBCN陶瓷高温粘接剂的制备与性能研究[J]. 中国腐蚀与防护学报, 2020, 40(4): 367-372.
Haiwei WANG, Sen CHANG, Xin'gang LUAN, Xuemei SONG, Zhen WANG, Yanzhang LI, Jianli CHEN, Jirong ZHANG, Ming HAN, Dangui QIU. Preparation and Properties of Ceramics Composed of Nano-Al2O3 and Polysiloxane-polyborosilicate-TiB2 Modified Polysilborazane as High Temperature Adhesive for SiC Based Ceramics. Journal of Chinese Society for Corrosion and protection, 2020, 40(4): 367-372.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2019.089      或      https://www.jcscp.org/CN/Y2020/V40/I4/367

图1  PSNB,PSO和PBSZ的分子式[18]
图2  PPPT和PPPTA在室温和800 ℃下的粘接强度
图3  PPPT和PPPTA粘接试样在1000 ℃空气中裂解2 h后的截面形貌
图4  PPPT和PPPTA粘接试样分别在1000和1200 ℃空气中裂解2 h后接头的室温断口形貌
图5  PPPT和PPPTA粘接试样分别在1000和1200 ℃空气中裂解2 h后接头在800 ℃空气中的断口形貌
图6  PPPT和PPPTA在1000和1200 ℃空气中裂解2 h后的XRD谱
图7  纳米Al2O3增强SiBCN陶瓷的示意图
[1] Chai W, Deng Q F, Wang Y Y, et al. Application status of SiC ceramics [J]. Light Ind. Mach., 2012, 30(4): 117
[1] (柴威, 邓乾发, 王羽寅等. 碳化硅陶瓷的应用现状 [J]. 轻工机械, 2012, 30(4): 117)
[2] She J H, Jiang D L. Development and application of silicon carbide cerandcs [J]. Ceram. Eng., 1998, 32(3): 3
[2] (佘继红, 江东亮. 碳化硅陶瓷的发展与应用 [J]. 陶瓷工程, 1998, 32(3): 3)
[3] Li Y, Huang F P, Liang Z H. The application and performance for SiC-ceramics [J]. Ceramics, 2007, (5): 36
[3] (李缨, 黄凤萍, 梁振海. 碳化硅陶瓷的性能与应用 [J]. 陶瓷, 2007, (5): 36)
[4] Chen M H, Xu J. Application of SiC ceramics to manufacture of spacecraft combustion chamber [J]. J. Nanjing Univ. Aeronaut. Astronaut., 2000, 32(2): 132
[4] (陈明和, 徐洁. SiC陶瓷在航天器高温结构件研制中的应用 [J]. 南京航空航天大学学报, 2000, 32(2): 132)
[5] He B L, Sun J. Progress and application of carbon fibers reinforced silicon carbide ceramic matrix composites [J]. Bull. Chin. Ceram. Soc., 2009, 28: 1197
[5] (何柏林, 孙佳. 碳纤维增强碳化硅陶瓷基复合材料的研究进展及应用 [J]. 硅酸盐通报, 2009, 28: 1197)
[6] Chen Y X, Wang R C, Wang X F, et al. Research and development of porous silicon carbide ceramics [J]. Chin. J. Nonferrous Met., 2015, 25: 2146
[6] (陈以心, 王日初, 王小锋等. 多孔SiC陶瓷的研究进展 [J]. 中国有色金属学报, 2015, 25: 2146)
[7] Zhang L T, Cheng L F, Xu Y D. Progress in research work of new CMC-SiC [J]. Aeronaut. Manuf. Technol., 2003, (1): 24
[7] (张立同, 成来飞, 徐永东. 新型碳化硅陶瓷基复合材料的研究进展 [J]. 航空制造技术, 2003, (1): 24)
[8] Wang X. The research between iron fibre-oxide and properties relationship in composite material [D]. Wuhan: Wuhan University of Technology, 2008
[8] (汪侠. 复合材料中铁纤维的氧化与性能的关系研究 [D]. 武汉: 武汉理工大学, 2008)
[9] Zhang J D. Joining of ZrO2/Al2O3 ceramics by SiC oxidizing method [D]. Tianjing: Tianjin University, 2007
[9] (张君娣. ZrO2-Al2O3陶瓷的SiC氧化法连接 [D]. 天津: 天津大学, 2007)
[10] Qin X M. Brazing process and mechanism of ZrB2-SiC composite ceramic using Zr-Ni-based filler [D]. Harbin: Harbin Institute of Technology, 2016
[10] (秦晓蒙. Zr-Ni基钎料钎焊ZrB2-SiC复合陶瓷的连接工艺及机理研究 [D]. 哈尔滨: 哈尔滨工业大学, 2016)
[11] Han M. Study on the connection of ceramic membrane tube with metal material [D]. Guiyang: Guizhou University, 2008
[11] (韩敏. 陶瓷膜管与金属材料连接的研究 [D]. 贵阳: 贵州大学, 2008)
[12] Zhao Y N. Study on microwave joining of ZTM ceramics/fiber braids and its elastic behaviour [D]. Tianjin: Tianjin University, 2012
[12] (赵英娜. ZTM陶瓷/纤维编织体微波连接及其弹性行为研究 [D]. 天津: 天津大学, 2012)
[13] Colombo P, Mera G, Riedel R, et al. Polymer‐derived ceramics: 40 years of research and innovation in advanced ceramics [J]. J. Am. Ceram. Soc., 2010, 93: 1805
[14] Yajima S, Okamura K, Shishido T, et al. Joining of SiC to SiC using polyborosiloxane [J]. Am. Ceram. Soc. Bull., 1981, 60: 253
[15] Pippel E, Woltersdorf J, Colombo P. Structure and composition of interlayers in joints between SiC bodies [J]. J. Eur. Ceram. Soc., 1997, 17: 1259
[16] Colombo P, Sglavo V, Pippel E. Joining of reaction-bonded silicon carbide using a preceramic polymer [J]. J. Mater. Sci., 1998, 33: 2405
[17] Luan X G, Wang J Q, Zou Y, et al. A novel high temperature adhesive for bonding Al2O3 ceramic [J]. Mater. Sci. Eng., 2016, A651: 517
[18] Luan X G, Chang S, Riedel R, et al. An air stable high temperature adhesive from modified SiBCN precursor synthesized via polymer-derived-ceramic route [J]. Ceram. Int., 2018, 44: 8476
[19] Luan X G, Chang S, Riedel R, et al. The improvement in thermal and mechanical properties of TiB2 modified adhesive through the polymer-derived-ceramic route [J]. Ceram. Int., 2018, 44:19505
[20] Luan X G, Chang S, Yu R, et al. Effect of PSO and TiB2 content on the high temperature adhesion strength of SiBCNO ceramic [J]. Ceram. Int., 2018, 45: 9515
[21] Ren Z Y. Research on preparation and performances of modified high-temperature adhesive [D]. Beijing: Beijing University of Chemical Technology, 2015
[21] (任张毓. 改性耐高温粘接剂的制备与性能研究 [D]. 北京: 北京化工大学, 2015)
[22] Rao Z L. Preparation and performance of ceramizable heat-resistant and ablation-resistance organic silicon adhesive [D]. Wuhan: Wuhan University of Technology, 2014
[22] (饶志龙. 耐高温抗烧蚀可陶瓷化有机硅胶粘剂的制备与性能研究 [D]. 武汉: 武汉理工大学, 2014)
[1] 彭成章,朱玲玲. 热处理对Ni-P/纳米Al2O3复合镀层组织及耐腐蚀性能的影响[J]. 中国腐蚀与防护学报, 2011, 31(3): 179-183.