Please wait a minute...
中国腐蚀与防护学报  2019, Vol. 39 Issue (5): 404-410    DOI: 10.11902/1005.4537.2019.174
  综合评述 本期目录 | 过刊浏览 |
机械摩擦磨损与电化学腐蚀在特殊环境中的作用机制
陈嘉晨,王忠维,乔利杰,岩雨()
北京科技大学 新材料技术研究院腐蚀与防护中心 北京材料基因工程高精尖创新中心 北京 100083
Interaction between Friction-wear and Corrosion in Special Environment
CHEN Jiachen,WANG Zhongwei,QIAO Lijie,YAN Yu()
Beijing Advanced Innovation Center for Materials Genome Engineering, Corrosion and Protection Center, Institute of Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China
全文: PDF(804 KB)   HTML
摘要: 

生物磨蚀是机械摩擦磨损与电化学腐蚀在生物环境中的耦合作用。由于材料或部件的服役环境中存在着生物大分子和细胞组织,因此生物磨蚀比一般的磨蚀机理更加复杂。生物磨蚀影响最明显的两个应用是人工关节植入体和人工牙种植体。本文综述了目前关于磨蚀的研究进展,并着重总结了生物磨蚀机理的研究和生物磨蚀对材料界面和表面的影响。对于磨蚀来说,摩擦磨损与腐蚀的交互作用是研究的核心,这两个分量不能孤立的进行研究。并且对于生物磨蚀、蛋白质的吸附、磨蚀对蛋白质的影响以及摩擦膜的生成机理等,都有待深入系统的研究。本文在对生物磨蚀总结的基础上,提出该领域未来的发展方向和前景。

关键词 摩擦磨损腐蚀人工关节纳米晶生物膜    
Abstract

The interaction of mechanical friction-wear and electrochemical corrosion in biological environments is named as bio-tribocorrosion. Due to large bio molecules in the surrounding environment, the adsorption of such molecules has great influence on the tribocorrosion behaviour of implant materials. In terms of the influence of bio-tribocorrosion, both the artificial joint implants and dental implants encounters obviously issues of bio-tribocorrosion. In this paper, we summarized the current status of research on bio-tribocorrosion with the emphasis on the mechanisms of relevant processes and the effect of bio-tribocorrosion on the surface microstructure of implants. It is noted that to choose proper testing methods is a very important matter for assessing the bio-tribocorrosion process. Besides, the future trend and directions of research in this area are also put forward.

Key wordstribology    corrosion    artificial joint    nanocrystalline    biofilm
收稿日期: 2019-09-29     
ZTFLH:  TQ174  
基金资助:国家自然科学基金(U1660104)
通讯作者: 岩雨     E-mail: yanyu@ustb.edu.cn
Corresponding author: Yu YAN     E-mail: yanyu@ustb.edu.cn
作者简介: 陈嘉晨,男,1995年生,博士生

引用本文:

陈嘉晨,王忠维,乔利杰,岩雨. 机械摩擦磨损与电化学腐蚀在特殊环境中的作用机制[J]. 中国腐蚀与防护学报, 2019, 39(5): 404-410.
Jiachen CHEN, Zhongwei WANG, Lijie QIAO, Yu YAN. Interaction between Friction-wear and Corrosion in Special Environment. Journal of Chinese Society for Corrosion and protection, 2019, 39(5): 404-410.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2019.174      或      https://www.jcscp.org/CN/Y2019/V39/I5/404

图1  磨蚀反应中可能与腐蚀发生交互作用的因素
Contact stateRelated reaction
Contact load and form

1. Contact pressure (surface and subsurface) and contact area

2. Elastic or elastic-plastic or complete plastic reactions on surfaces and subsurfaces

3. Surface deformation (elastic or permanent deformation)

Relative motion under loading conditions (causing wear in corrosive environments)

1. Depassivation of passivated surfaces

2. Corrosion potential (mixed potential of wear and non-wear area)

3. Causing phase transition on the surface or near the surface

4. Repassivation kinetics

5. Local mass transfer acceleration

6. Increase in contact temperature

7. Increase in roughness and corresponding area

8. Change of surface composition

9. Formation of a mechanical mixing layer, which may contain debris

10. Wear area and the non-wear area constitute a couple pair

11. Cause surface hardening

12. Affects the shear strength of rough/rough surface joints and causes adhesion

Changing load in dynamic contact

1. Self-corrosion potential

2. Local current density

3. Area of active anode and anode site position[4]

4. Surface recovery time

5. Change the wear mechanism or wear rate

Frictionr- corrosion

1. Effect of friction

2. Local environmental pH

3. Total surface loss (mechanical and electrochemical)

Wear debrisResulting metal abrasives corrode in the environment causing secondary release of ions
表1  腐蚀/表面上的影响因素
图2  钴铬钼合金在小牛关节滑液中的开路电位和摩擦系数随时间的变化曲线
1 FischerA, MischlerS. Tribocorrosion: Fundamentals, materials and applications [J]. J. Phys. D:Appl. Phys., 2006, 39(15): 1832
2 CelisJ P, PonthiauxP. Tribocorrosion [J]. Wear, 2006, 261(9): 937
3 WoodR. Tribocorrosion of coatings: A review [J]. J. Phys. D:Appl. Phys., 2007, 40(18): 5502
4 KokY N, AkidR, HovsepianP E. Tribocorrosion testing of stainless steel (SS) and PVD coated SS using a modified scanning reference electrode technique [J]. Wear, 2005, 259(7): 1472
5 MadsenB W. ASTM G119-93. Annual book of ASTM standards [S]. 1994, 3507
6 VignalV, MaryN, PonthiauxP, et al. Influence of friction on the local mechanical and electrochemical behaviour of duplex stainless steels [J]. Wear, 2006, 261(9): 947
7 CelisJ P, PonthiauxP, WengerF. Tribo-corrosion of materials: Interplay between chemical, electrochemical, and mechanical reactivity of surfaces [J]. Wear, 2006, 261(9): 939
8 MatsumuraM. Erosion-corrosion of metallic materials in slurries [J]. Corros. Rev., 1994, 12(3): 321
9 GlaeserW, WrightI G. Mechanically Assisted Degradation [M]. Washington D.C.: ASM Handbook., 1986, 9: 136
10 MalkaR, Ne?i?S, GulinoD A. Erosion-corrosion and synergistic effects in disturbed liquid-particle flow [J]. Wear, 2007, 262(7): 791
11 StackM M, El BadiaT M A. Mapping erosion-corrosion of WC/Co-Cr based composite coatings: Particle velocity and applied potential effects [J]. Surf. Coat. Technol., 2006, 201(3): 1335
12 WoodR J K. Erosion-corrosion synergism for multi-phase flowline materials [J]. La Houille Blanche, 1992, 7/8: 605
13 WoodR J K. Erosion-corrosion interactions and their effect on marine and offshore materials [J]. Wear, 2006, 261(9): 1012
14 WoodR J K. Erosion-corrosion Comprehensive Structural Integrity [M]. Oxford: Elsevier, 2007
15 WoodR J K. Challenges of living with erosion-corrosion [A]. Proceedings of the 2nd International Symposium on Advanced Materials for Fluid Machinery [C]. London:2004: 113
16 CelisJ P, PonthiauxP, WengerF. Tribo-corrosion of materials: Interplay between chemical, electrochemical, and mechanical reactivity of surfaces [J]. Wear, 2006, 261(9): 939
17 LandoltD. Electrochemical and materials aspects of tribocorrosion systems [J]. J. Phys. D:Appl. Phys., 2006, 39(15): 3121
18 WoodR J K, PugetY, TretheweyK R, et al. The performance of marine coatings and pipe materials under fluid-borne sand erosion [J]. Wear, 1998, 209: 16
19 WoodR J K, HuttonS P. The synergistic effect of erosion and corrosion: Trends in published results [J]. Wear, 1990, 140(2): 387
20 StackM M, ZhouS, NewmanR C. Identification of transitions in erosion-corrosion regimes in aqueous environments [J]. Wear, 1995, 186: 523
21 NaerheimY, KendigM W. The influence of electrochemical potential on wear [J]. Wear, 1985, 104(2): 139
22 StempM, MischlerS, LandoltD. The effect of mechanical and electrochemical parameters on the tribo-corrosion rate of stainless steel in sulphuric acid [J]. Wear, 2003, 255: 466
23 MischlerS, SpiegelA, LandoltD. The role of passive oxide films on the degradation of steel in tribocorrosion systems [J]. Wear, 1999, 225:1078
24 PonthiauxP, WengerF, DreesD, et al. Electrochemical techniques for studying tribocorrosion processes [J]. Wear, 2004, 256(5): 459
25 GarcíaI, DreesD, CelisJ P. Corrosion-wear of passivating materials in sliding contacts based on a concept of active wear track area [J]. Wear, 2001, 249(5): 452
26 GoldbergJ R, GilbertJ L. Electrochemical response of CoCrMo to high-speed fracture of its metal oxide using an electrochemical scratch test method [J]. J. Biomed. Mater. Res., 1997, 37(3)A421
27 MischlerS, DebaudS, LandoltD. Wear‐accelerated corrosion of passive metals in tribocorrosion systems [J]. J. Electrochem. Soc., 1998, 145(3): 750
28 JiangJ, StackM M, NevilleA. Modelling the tribo-corrosion interaction in aqueous sliding conditions [J]. Tribol. Int., 2002, 35(10): 669
29 JiangJ, StackM M. Modelling sliding wear: From dry to wet environments [J]. Wear, 2006, 261(9): 954
30 BozziniB, RicottiM E, BoniardiM, et al. Evaluation of erosion–corrosion in multiphase flow via CFD and experimental analysis [J]. Wear, 2003, 255(1): 237
31 BüscherR, T?gerG, DudzinskiW, et al. Subsurface microstructure of metal‐on‐metal hip joints and its relationship to wear particle generation [J]. J. Biomed. Mater. Res., 2005, 72(1)B206
32 ZhangH W, HeiZ K, LiuG, et al. Formation of nanostructured surface layer on AISI 304 stainless steel by means of surface mechanical attrition treatment [J]. Acta Mater., 2003, 51(7): 1871
33 TaoN R, WangZ B, TongW P, et al. An investigation of surface nanocrystallization mechanism in Fe induced by surface mechanical attrition treatment [J]. Acta Mater., 2002, 50(18): 4603
34 LuK, LuJ. Nanostructured surface layer on metallic materials induced by surface mechanical attrition treatment [J]. Mater. Sci. Eng., 2004, A375: 38>
35 BidivilleA, FaveroM, StadelmannP, et al. Effect of surface chemistry on the mechanical response of metals in sliding tribocorrosion systems [J]. Wear, 2007, 263: 207
36 LiuX C, ZhangH W, LuK. Strain-induced ultrahard and ultrastable nanolaminated structure in nickel [J]. Science, 2013, 342: 337
37 ChenJ, LuL, LuK. Hardness and strain rate sensitivity of nanocrystalline Cu [J]. Scr. Mater., 2006, 54(11): 1913
38 YanY, NevilleA, DowsonD. Biotribocorrosion-an appraisal of the time dependence of wear and corrosion interactions: I. The role of corrosion [J]. J. Phys. DAppl. Phys., 2006, 39(15): 3200
39 WangZ, YanY, SuY, et al. Effect of proteins on the surface microstructure evolution of a CoCrMo alloy in bio-tribocorrosion processes [J]. Colloid. Surf. B-Biointerfaces, 2016, 145: 176
40 LiaoY, PourzalR, WimmerM A, et al. Graphitic tribological layers in metal-on-metal hip replacements [J]. Science, 2011, 334(6063): 1687
41 YanY, NevilleA, DowsonD. Tribo-corrosion properties of cobalt-based medical implant alloys in simulated biological environments [J]. Wear, 2007, 263(7): 1105
42 YanY, DowsonD, NevilleA. In-situ electrochemical study of interaction of tribology and corrosion in artificial hip prosthesis simulators [J]. J. Mech. Behav. Biomed. Mater., 2013, 18: 191
43 ZengP, RanaA , ThompsonR,et al. Subsurface characterization of wear on mechanically polished and electro-polished biomedical grade CoCrMo [J]. Wear, 2015, 332/333: 650
[1] 郑黎, 王美婷, 于宝义. 镁合金表面冷喷涂技术研究进展[J]. 中国腐蚀与防护学报, 2021, 41(1): 22-28.
[2] 于宏飞, 邵博, 张悦, 杨延格. 2A12铝合金锆基转化膜的制备及性能研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 101-109.
[3] 董续成, 管方, 徐利婷, 段继周, 侯保荣. 海洋环境硫酸盐还原菌对金属材料腐蚀机理的研究进展[J]. 中国腐蚀与防护学报, 2021, 41(1): 1-12.
[4] 唐荣茂, 朱亦晨, 刘光明, 刘永强, 刘欣, 裴锋. Q235钢/导电混凝土在3种典型土壤环境中腐蚀的灰色关联度分析[J]. 中国腐蚀与防护学报, 2021, 41(1): 110-116.
[5] 韩月桐, 张鹏超, 史杰夫, 李婷, 孙俊才. 质子交换膜燃料电池中TA1双极板的表面改性研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 125-130.
[6] 张雨轩, 陈翠颖, 刘宏伟, 李伟华. 铝合金霉菌腐蚀研究进展[J]. 中国腐蚀与防护学报, 2021, 41(1): 13-21.
[7] 冉斗, 孟惠民, 刘星, 李全德, 巩秀芳, 倪荣, 姜英, 龚显龙, 戴君, 隆彬. pH对14Cr12Ni3WMoV不锈钢在含氯溶液中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2021, 41(1): 51-59.
[8] 左勇, 曹明鹏, 申淼, 杨新梅. MgCl2-NaCl-KCl熔盐体系中金属Mg对316H不锈钢的缓蚀性能研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 80-86.
[9] 王欣彤, 陈旭, 韩镇泽, 李承媛, 王岐山. 硫酸盐还原菌作用下2205双相不锈钢在3.5%NaCl溶液中应力腐蚀开裂行为研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 43-50.
[10] 史昆玉, 吴伟进, 张毅, 万毅, 于传浩. TC4表面沉积Nb涂层在模拟体液环境下的电化学性能研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 71-79.
[11] 贾世超, 高佳祺, 郭浩, 王超, 陈杨杨, 李旗, 田一梅. 再生水水质因素对铸铁管道的腐蚀研究[J]. 中国腐蚀与防护学报, 2020, 40(6): 569-576.
[12] 赵鹏雄, 武玮, 淡勇. 空间分辨技术在金属腐蚀原位监测中的应用[J]. 中国腐蚀与防护学报, 2020, 40(6): 495-507.
[13] 马鸣蔚, 赵志浩, 荆思文, 于文峰, 谷义恩, 王旭, 吴明. 17-4 PH不锈钢在含SRB的模拟海水中的应力腐蚀开裂行为研究[J]. 中国腐蚀与防护学报, 2020, 40(6): 523-528.
[14] 岳亮亮, 马保吉. 超声表面滚压对AZ31B镁合金腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2020, 40(6): 560-568.
[15] 艾芳芳, 陈义庆, 钟彬, 李琳, 高鹏, 伞宏宇, 苏显栋. T95油井管在酸性油气田环境中的应力腐蚀开裂行为及机制[J]. 中国腐蚀与防护学报, 2020, 40(5): 469-473.