Please wait a minute...
中国腐蚀与防护学报  2012, Vol. 32 Issue (3): 189-194    
  综合评审 本期目录 | 过刊浏览 |
不锈钢在海洋环境中的环境敏感断裂研究进展
董希青1,2,黄彦良1
1. 中国科学院海洋研究所 山东省腐蚀科学重点实验室 青岛 266071
2. 中国科学院研究生院 北京 100049
RESEARCH PROGRESS FOR STRESS CORROSION CRACKING OF STAINLESS STEEL UNDER MARINE ENVIRONMENT
DONG Xiqing1,2, HUANG Yanliang1
1. Key Laboratory of Corrosion Science of Shandong Institute of Oceanology, Chinese Academy of Sciences,Qingdao 266071
2. Graduate University of Chinese Academy of Sciences, Beijing 100049
全文: PDF(486 KB)  
摘要: 介绍了几种不锈钢应力腐蚀开裂的机理,综述了研究应力腐蚀开裂和氢脆的方法,同时提出了不锈钢环境敏感断裂的控制方法。
关键词 应力腐蚀开裂不锈钢氢致开裂    
Abstract:Stainless steel materials are widely used in coastal infrastructure. These infrastructure is apt to corrode under severe marine environment. Several common mechanisms for stress corrosion cracking are introduced in this paper, as well as some main methods usually used to investigate the phenomenon of stress corrosion cracking and hydrogen embrittlement. Meanwhile, feasible method to control the stress corrosion cracking of stainless steel was proposed.
Key wordsstress corrosion cracking    stainless steel    hydrogen embrittlement
收稿日期: 2011-04-07     
ZTFLH: 

TG172.5

 
基金资助:

国家自然科学基金项目(40876048)、中澳科技合作特别基金项目(41011120050)和Australia-China Special Fund forS&T Cooperation grant CH090106资助

通讯作者: 黄彦良     E-mail: hyl@ms.qdio.ac.cn
Corresponding author: HUANG Yanliang     E-mail: hyl@ms.qdio.ac.cn
作者简介: 董希青,男,1982年生,博士生,研究方向为不锈钢的应力腐蚀开裂

引用本文:

董希青,黄彦良. 不锈钢在海洋环境中的环境敏感断裂研究进展[J]. 中国腐蚀与防护学报, 2012, 32(3): 189-194.
DONG Xi-Jing, HUANG Pan-Liang. RESEARCH PROGRESS FOR STRESS CORROSION CRACKING OF STAINLESS STEEL UNDER MARINE ENVIRONMENT. J Chin Soc Corr Pro, 2012, 32(3): 189-194.

链接本文:

https://www.jcscp.org/CN/      或      https://www.jcscp.org/CN/Y2012/V32/I3/189

[1] Stachle R W. Stress corrosion cracking of the Fe-Cr-Ni alloy system [A]. The Theory of Stress Corrosion Cracking in Alloys[C]. Ericeira Portugal, 1971: 223
[2] Zuo J Y. Stress Corrosion Cracking[M]. Xi'an:Xi'an Jiaotong University Press, 1985
    (左景伊. 应力腐蚀破裂[M].西安: 西安交通大学出版社, 1985)
[3] John W Oldfield, Brain T. Ambient temperature stress corrosion cracking of austenitic stainless steel in swimming pools[J]. Mater. Perform., 1990, 29(12): 57-58
[4] Robert M K. Marine atmospheric stress corrosion cracking of austenitic stainless steels[J]. Mater. Perform., 1990, 29(12): 60-62
[5] Gnanamoorthy J B. Stress corrosion cracking of unsensitized stainless steels in ambient-temperature coastal atmosphere[J]. Mater. Perform., 1990, 29(12): 63-65
[6] Dillon C P. Imponderables in chloride stress corrosion cracking of stainless steels[J]. Mater.Perform., 1990, 29(12): 66-67
[7] Torchio S. Stress corrosion cracking of type AISI 304 stainless steel at room temperature; influence of chloride content and acidity[J]. Corros. Sci., 1980, 25(4): 555-561
[8] Sunada S, Kariba M, Majima K, et al. Influence of concentration of H2SO4 and NaCl on stress corrosion cracking in H2SO4-NaCl solutions[J]. J. Jpn. Inst. Met.,2005, 69(10): 899-906
[9] Nishimura R, Maeda Y. SCC evaluation of type 304 and 316 austenitic stainless steels in acidic chloride solutions using the slow strain rate technique[J]. Corros. Sci., 2004, 46(3): 769-785
[10] Pan C, Chu W Y, Li Z B, et al. Hydrogen embrittlement induced by atomic hydrogen and hydrogen-induced martensites in type 304L stainless steel[J]. Mater. Sci. Eng., 2003, A351(1-2): 293-298
[11] Nishimura R, Maeda Y. Metal dissolution and maximum stress during SCC process of ferritic (type 430) and austenitic (type 304 and type 316) stainless steels in acidic chloride solutions under constant applied stress[J]. Corros. Sci., 2004,46(3): 755-768
[12] Chu W Y, Qiao L J, Gao K W. Investigation of stress corrosion cracking under anodic dissolution control[J]. Chin. Sci.Bull., 2001, 46(9):717-722
[13] Niu L, Cao C N, Lin H C, et al. Inhibitive effect of benzotriazole on the stress corrosion cracking of 18Cr-9Ni-Ti stainless steel in acidic chloride solution[J]. Corros. Sci.,1998, 40(7): 1109-1117
[14] Fang Z, Wu Y, Zhu R, et al. Stress corrosion cracking of austenitic type-304 stainless steel in solutions of hydrochloric-acid plus sodium-chloride at ambient temperature[J].Corrosion, 1994, 50(11): 873-878
[15] Cao C N, Yang Q G, Lv M, et al. Inhibitor for SCC of AISI 321 in acidic chloride solution[J]. J. Chin. Soc. Corros. Prot.,1992, 12(2): 109-115
     (曹楚南, 杨乾刚, 吕明等.321不锈钢在酸性氯离子溶液中SCC缓蚀剂研究[J]. 中国腐蚀与防护学报,1992, 12(2): 109-115)
[16] Xiao J M. Metallography Problems of Stainless Steel[M].Beijing:Metallurgy Industry Press, 2006
     (肖纪美.不锈钢的金属学问题[M]. 北京: 冶金工业出版社, 2006)
[17] Chen H, Gao K W, Chu W Y, et al. Stress corrosion cracking enhancing martensite transformation of type 304 stainless steel[J]. Acta Metall. Sin., 2002, 38(8): 857-860
     (陈浩,高克玮, 褚武扬等. 304不锈钢应力腐蚀促进马氏体相变[J]金属学报, 2002,38(8): 557-860)
[18] Qiao L J, Xiao J M, Chu W Y, et al. Concentration distribution of hydrogen at crack tip of austenitic stainless steel after stress corrosion and hydrogen charging[J]. J. Chin. Soc.Corros. Prot., 1989, 9(3): 235-239
     (乔利杰, 肖纪美, 褚武扬等.奥氏体不锈钢应力腐蚀和氢致开裂裂尖区的氢浓度分布[J].中国腐蚀与防护学报, 1989, 9(3): 235-239)
[19] Kaesche H. Metallic Corrosion[M]. Beijing: Chemical Industry Press, 1980
     (克舍. 金属腐蚀[M]. 北京: 化学工业出版社, 1980)
[20] Hoar T P, Hines J G. The corrosion potential of stainless steels during stress corrosion[J]. J. Iron. Steel Int., 1954,177: 248-249
[21] Chu W Y, Xiao J M, Li S Q. Mechanism of hydrogen induced cracking in steels[J]. Acta Metall. Sin., 1981, 17(1): 10-17
     (褚武扬, 肖纪美, 李世琼. 钢中氢致裂纹机构研究[J]. 金属学报, 1981, 17(1): 10-17)
[22] Smith G C, Bernstein I M, Thompson A W. Hydrogen in Metal[A]. Metals Park[C]. Ohio, 1974: 485
[23] Chen L, Xu Y B, Yin W Q. Unhealed porosities and crystalline steps in flakes[J]. Acta Metall. Sin., 1978, 14(3):253-256
     (陈廉, 徐永波, 尹万全.钢中白点断口的显微空隙与台阶花样[J]. 金属学报, 1978, 14(3), 253-256)
[24] Uhlig H H, Sava J. The effect of heat treatment on stress corrosion cracking of iron and mild steel[J]. Trans. ASM, 1963, 56:361-376
[25] Yoshino K, McMahon C J. The cooperative relation between temper embrittlement and hydrogen embrittlement in a high strength steel[J]. Metall. Trans., 1974, 5: 363
[26] Oriani R A. Stress Corrosion Cracking and Hydrogen Embrittlement of Iron Base Alloys[A]. International Conference on Stress Corrosion Cracking and Hydrogen Embrittlement of Iron Base Alloys[C]. Houston, TX, 1977, 351
[27] Chu W Y, Li S Q, Xiao J M. Stress corrosion of high strength steels in water medium[J]. Acta Metall. Sin., 1980, 16(2):179-189
     (褚武扬, 李世琼, 肖纪美.高强度钢水介质应力腐蚀研究[J]. 金属学报, 1980, 16(2): 179-189)
[28] Chu W Y, Hsiao C M, Li Z J. Mechanism of SCC of steel in H2S[J]. Corrosion, 1980, 36: 475-480
[29] Chu W Y, Liu T W, Hsiao C M. Mechanism of SCC of low alloy steels[J]. Corrosion, 1981, 37: 320-322
[30] Chu W Y, Wang H L, Ma R T, et al. Mechanism of slow crack growth and stress corrosion cracking in austenitic stainless steel[J]. Acta Metall. Sin., 1985, 21(1): 86-94
     (褚武扬,王核力, 马若涛等. 奥氏体不锈钢应力腐蚀和氢致开裂的机理[J]. 金属学报,1985, 21(1): 86-94)
[31] McEvily A J, Bond A P. On the initiation and growth of stress corrosion cracks in tarnished brass[J]. J. Electrochem. Soc.,1965, 112(2): 131-138
[32] Nielsen N A. The Role of Corrosion Products in Crack Propagation in Austenitic Stainless Steel. Electron Microscopic Studies[A]. Physical Metallurgy of Stress Corrosion Fracture[C]. New York, 1959: 341
[33] Pourbaix M. Significance of protection potential in pitting and intergranular corrosion[J]. Corrosion, 1970, 26: 431.
[34] Parkins R N. Slow Strain Rate Testing-25Years Experience[A]. Slow Strain Rate Testing for the Evaluation of Environmentally Induced Cracking: Research and Engineering Applications[C]. Philadephia,1993: 7-21
[35] Parkins R N. Development of Slow Strain Rate Testing and its Implications[A]. Stress Corrosion Cracking: Slow Strain Rate Technique[C]. Philadephia, 1979: 5-25
[36] Payer J H, Berry W E, Boyd W K. Evaluation of Slow Strain-Rate Stress Corrosion Tests Results[A]. Stress Corrosion Cracking: Slow Strain Rate Technique[C]. Philadephia, 1979: 61-77
[37] Schofied M J, Bradshaw R, Cottis R A. Stress corrosion cracking of duplex stainless steel weldments in sour conditions[J].Mater. Perform., 1996, 35(4): 65-70
[38] Meyn D A, Pao P S. Slow Strain Rate Testing of Precracked Titanium Alloys in Salt Water and Inert Environment[A]. Slow Strain Rate Testing for the Evaluation of Environmentally Induced Cracking:Research and Engineering Applications[C]. Philadephia, 1993: 158-169
[39] Erilsson H, Berhandsson S. Applicability of duplex stainless steels in sour environments[J]. Corrosion, 1991, 47(9):719-727
[40] Beavers J A, Koch G H. Limitations of Slow Strain Rate Testing Technique[A]. Slow Strain Rate Testing for the Evaluation of Environmentally Induced Cracking: Research and Engineering Applications[C]. Philadephia, 1993: 22-39
[41] Kane R D, Wilhelm S M. Status of Standardization Activities on Slow Strain Rate Testing Techniques[A]. Slow Strain Rate Testing for the Evaluation of Environmentally Induced Cracking:Research and Engineering Applications[C]. Philadephia, 1993: 40-47
[42] Zhang X Y, Du Y L. Relationship between susceptibility to embrittlement and hydrogen permeation current for UNS G10190 steel in 5% NaCl solution containing H2S[J]. Br. Corros. J., 1998,33(4): 292-296
[43] Ahluwalia, Harklrat S. Problems Associated With Slow Strain Rate Quality Assurance Testing of Nickel-Base Corrosion Resistant Alloy Tubulars in Hydrogen Sulfide Environments[A]. Slow Strain Rate Testing for the Evaluation of Environmentally Induced Cracking: Research and Engineering Applications[C]. Philadephia,1993: 225-239
[44]Ikeda A, Ueda M, Okamoto H. Role of Slow Strain Rate Testing on Evaluation of Corrosion Resistant Alloys for Hostile Hot Sour Gas Production[A]. Slow Strain Rate Testing for the Evaluation of Environmentally Induced Cracking: Research and Engineering Applications[C]. Philadelphia, 1993: 240-262
[45] Muizhnek I A. Accelerated corrosion cracking tests of steels in active-passive loading[J]. Soviet Mater. Sci., 1990,26(2): 168-171
[46] Payer J H, Berry W E, Parkins R N. Application of Slow Strain-Rate Technique to Stress Corrosion Cracking of Piping Steel[A]. Stress Corrosion Cracking: Slow Strain Rate Technique[C].Philadelphia, 1979: 222-234
[47] Kushida T, Koichi N, Asahi H, et al. Effects of Metallurgical Factors and Test Conditions on Near Neutral pH SCC of Pipeline Steels[A]. Corrosion/2001[C]. Houston, TX, NACE, 2001
[48] Zheng W L, Yu Q. Environment Sensitive Fracture of Steel[M]. Beijing: Chemical Industry Press, 1988
     (郑文龙,于青. 钢的环境敏感断裂[M]. 北京: 化学工业出版社, 1988)
[49] Devnathan M, Stachurski Z. A technique for the evaluation of hydrogen embrittlement characteristics of electroplating baths[J]. J. Electrochem. Soc., 1963, 110(8): 886
[50] Kushida T. Hydrogen entry into steel by atmospheric corrosion[J]. ISIJ Int., 2003, 43(4): 470-474
[51] Yoshiko T, Atsushi N, Tooru T. Effect of Wet and Dry Corrosion Cycles on Hydrogen Entry into Iron[A]. Proceedings of Japan-China Joint Seminar on Marine Corrosion[C]. Tokyo, 2002:183-186
[52] Nishimura R, Shiraishi D, Maeda Y. Hydrogen permeation and corrosion behavior of high strength steel MCM 430 in cyclic wet-dry SO2 environment[J]. Corros. Sci., 2004, 46(1): 225-243
[53] Huang Y L, Zhu Y Y. Hydrogen ion reduction in the process of iron rusting[J]. Corros. Sci., 2005, 47(6): 1545-1554
[54] Tooru T, Huang Y L, Rostom M A, et al. Hydrogen entry into steel during atmospheric corrosion process[J]. Corros. Sci.,2005, 47(10): 2431-2440
[55] Zheng C B, Huang Y L, Yu Q, et al. Hydrogen permeation behavior and corrosion monitoring of steel in cyclic wet-dry atmospheric environment[J]. Mater. Corros., 2007, 58(9): 716-720
 
[1] 冉斗, 孟惠民, 刘星, 李全德, 巩秀芳, 倪荣, 姜英, 龚显龙, 戴君, 隆彬. pH对14Cr12Ni3WMoV不锈钢在含氯溶液中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2021, 41(1): 51-59.
[2] 左勇, 曹明鹏, 申淼, 杨新梅. MgCl2-NaCl-KCl熔盐体系中金属Mg对316H不锈钢的缓蚀性能研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 80-86.
[3] 王欣彤, 陈旭, 韩镇泽, 李承媛, 王岐山. 硫酸盐还原菌作用下2205双相不锈钢在3.5%NaCl溶液中应力腐蚀开裂行为研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 43-50.
[4] 张浩, 杜楠, 周文杰, 王帅星, 赵晴. 模拟海水溶液中Fe3+对不锈钢点蚀的影响[J]. 中国腐蚀与防护学报, 2020, 40(6): 517-522.
[5] 马鸣蔚, 赵志浩, 荆思文, 于文峰, 谷义恩, 王旭, 吴明. 17-4 PH不锈钢在含SRB的模拟海水中的应力腐蚀开裂行为研究[J]. 中国腐蚀与防护学报, 2020, 40(6): 523-528.
[6] 赵柏杰, 范益, 李镇镇, 张博威, 程学群. 不同类型接触面对316L不锈钢缝隙腐蚀的影响[J]. 中国腐蚀与防护学报, 2020, 40(4): 332-341.
[7] 朱丽霞, 贾海东, 罗金恒, 李丽锋, 金剑, 武刚, 胥聪敏. 外加电位对X80管线钢在轮南土壤模拟溶液中应力腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2020, 40(4): 325-331.
[8] 张震, 吴欣强, 谭季波. 电化学噪声原位监测应力腐蚀开裂的研究现状与进展[J]. 中国腐蚀与防护学报, 2020, 40(3): 223-229.
[9] 胡玉婷, 董鹏飞, 蒋立, 肖葵, 董超芳, 吴俊升, 李晓刚. 海洋大气环境下TC4钛合金与316L不锈钢铆接件腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(2): 167-174.
[10] 秦越强, 左勇, 申淼. FLiNaK-CrF3/CrF2氧化还原缓冲熔盐体系对316L不锈钢耐蚀性能的影响[J]. 中国腐蚀与防护学报, 2020, 40(2): 182-190.
[11] 何壮,王兴平,刘子涵,盛耀权,米梦芯,陈琳,张岩,李宇春. 316L和HR-2不锈钢在盐酸液膜环境中的钝化与点蚀[J]. 中国腐蚀与防护学报, 2020, 40(1): 17-24.
[12] 武栋才,韩培德. 中温时效处理对SAF2304双相不锈钢耐蚀性的影响[J]. 中国腐蚀与防护学报, 2020, 40(1): 51-56.
[13] 陈旭,马炯,李鑫,吴明,宋博. 温度与SRB协同作用下X70钢在海泥模拟溶液中应力腐蚀行为研究[J]. 中国腐蚀与防护学报, 2019, 39(6): 477-483.
[14] 骆鸿,高书君,肖葵,董超芳,李晓刚. 磁控溅射工艺对CrN薄膜及其腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2019, 39(5): 423-430.
[15] 付安庆,赵密锋,李成政,白艳,朱文军,马磊,熊茂县,谢俊峰,雷晓维,吕乃欣. 激光表面熔凝对超级13Cr不锈钢组织与性能的影响研究[J]. 中国腐蚀与防护学报, 2019, 39(5): 446-452.