Please wait a minute...
中国腐蚀与防护学报  2012, Vol. 32 Issue (3): 195-202    
  研究报告 本期目录 | 过刊浏览 |
包铝的7075和2024合金在海洋大气环境中的点蚀演化机制
孙霜青1,赵予兵2,郑弃非3,李德富3
1. 中国石油大学(华东)理学院  山东省高校新能源物理与材料科学重点实验室 东营 257061
2. 中国石油天然气股份有限公司炼化工程建设项目部 北京 100028
3. 北京有色金属研究总院 北京 100088
EVOLUTION MECHANISM OF PITTING OF Al CLAD 7075 AND 2024 ALUMINIUM ALLOY IN COASTAL ENVIRONMENT
SUN Shuangqing1, ZHAO Yubing2, ZHENG Qifei3, LI Defu3
1. Key Laboratory of New Energy Physics & Materials Science in University of Shandong, Faculty of Science, China University of Petroleum, Dongying, Shandong 257061
2. Department of Petroleum Refining Engineering Construction, PetroChina, Beijing 100028
3. General Research Institute for Nonferrous Metals, Beijing 100088
全文: PDF(4530 KB)  
摘要: 通过带包铝层的7075和2024合金在海洋大气环境中长期现场暴露和室内加速模拟试验,用扫描电镜(SEM)、能谱仪(EDS)、电化学测试系统和扫描Kelvin探针等研究了高强铝合金包铝层中点蚀演化机制。结果表明,在海洋大气环境中暴露20a后,带包铝7075和2024的点蚀都未穿透表面包铝层;在腐蚀严重的部位,蚀坑底部仍然保留10$\mu$m厚的内层包铝。内层包铝含有Al,Zn和Mg元素,外层包铝含有Al和Zn元素。少量Mg元素的存在使得内层包铝在25℃的0.6 mol/LNaCl溶液中腐蚀电位和空气中Kelvin电位都相对外层包铝较正,内层包铝具有较高的耐蚀性。在现场暴露和室内加速模拟试验中,点蚀坑在包铝层中倾向于沿横向扩展而不是向纵深方向发展,最终形成宽而浅的平底状点蚀坑。
关键词 高强铝合金大气腐蚀海洋大气环境点蚀演化    
Abstract:Evolution mechanism of pitting of Al clad 7075 and 2024 aluminium alloy in coastal environment was investigated by long-term field testing and laboratory-accelerated test. Corrosion morphologies, elemental distribution and corrosion potential were observed and analyzed by SEM, EDS and electrochemical analysis system. The result of EDS spectrum showed that the outer cladding layer only revealed the presence of Al and Zn, while the inner cladding layer still showed certain Mg content besides Al and Zn. A small quantity of Mg enhanced corrosion resistance of the inner cladding layer, which results that the cladding has not been penetrated by pitting after 20 years exposure in coastal environment. Moreover, the shape of those pits in coastal environment was wide and shallow in field testing and laboratory-accelerated test.
Key wordshigh-strength aluminum    atmospheric corrosion    coastal environment    pitting corrosion
收稿日期: 2011-11-07     
ZTFLH: 

TG172.3

 
基金资助:

中央高校基本科研业务费专项资金(27R1110050A)资助

通讯作者: 孙霜青     E-mail: sqsu@yahoo.cn
Corresponding author: SUN Shuangqing     E-mail: sqsu@yahoo.cn
作者简介: 孙霜青,男,1981年生,博士,讲师,研究方向为材料的腐蚀与防护

引用本文:

孙霜青,赵予兵,郑弃非,李德富. 包铝的7075和2024合金在海洋大气环境中的点蚀演化机制[J]. 中国腐蚀与防护学报, 2012, 32(3): 195-202.
XUN Shuang-Jing, ZHENG Qi-Feizhengqifei, LI De-Fu. EVOLUTION MECHANISM OF PITTING OF Al CLAD 7075 AND 2024 ALUMINIUM ALLOY IN COASTAL ENVIRONMENT. J Chin Soc Corr Pro, 2012, 32(3): 195-202.

链接本文:

https://www.jcscp.org/CN/      或      https://www.jcscp.org/CN/Y2012/V32/I3/195

[1] Cavaliere P, Nobile R, Panella F W, et al. Mechanical and microstructural behaviour of 2024-7075 aluminium alloy sheets joined by friction stir welding [J]. Int. J. Mach. Tools Manuf., 2006, 46(6): 588-594

[2] He C W, Cai X S, Li S Q. Corrosion and corrosion fatigue of typical aircraft joints [J]. Corros. Prot., 2006,27(3): 118-121

    (贺崇武, 蔡新锁, 李素强.飞机典型连接件腐蚀及腐蚀疲劳试验研究[J]. 腐蚀与防护, 2006, 27(3):118-121)

[3] Starke E A, Staley J T. Application of modern aluminum alloys to aircraft [J]. Prog. Aeros. Sci., 1996, 32(2):131-172

[4] Cheng Z H. Study on corrosion behaviors of the LY12CZ aluminum alloy plane component [D]. Harbin: Harbin Institute of Technology, 2006

    (程宗辉.LY12CZ铝合金飞机构件腐蚀行为研究[D]. 哈尔滨: 哈尔滨工业大学, 2006)

[5] Guillaumin V, Mankowski G. Localized corrosion of 2024 T351 aluminium alloy in chloride media [J]. Corros. Sci., 1999,41(3): 421-438

[6] Van Horn K R, Aluminum Vol. I. Properties, Physical Metallurgy and Phase Diagrams [M]. Metals Park, Ohio: American Society for Metals, 1967

[7] Szklarska-Smialowska Z. Pitting corrosion of aluminum [J].Corros. Sci., 1999, 41(9): 1743-1767

[8] Callaghan B G. Atmospheric Corrosion Testing in Southern Africa [A]. Atmospheric Corrosion [C]. New York, 1982

[9] Summitt R, Fink F T. The USAF Corrosion Testing Program and a Corrosion Severity Index Algorithm [A]. Atmospheric Corrosion [C]. New York, 1982

[10] Dean S W, Anthony W H. Atmospheric Corrosion of Wrought Aluminum Alloys During a Ten-Year Period [A]. Degradation of Metals in the Atmosphere [C]. Philadelphia, 1988

[11] Petroyiannis P V, Pantelakis S G, Haidemenopoulos G N. Protective role of local Al cladding against corrosion damage and hydrogen embrittlement of 2024 aluminum alloy specimens [J].Theor. Appl. Fract. Mech., 2005, 44(1): 70-81

[12] Han W, Wang Z Y, Yu G C. Atmospheric corrosion behavior of two high strength aluminum alloys with aluminum overlayer under strain [J]. Corros. Sci. Prot. Technol., 2003,15(5): 254-257

     (韩薇, 王振尧, 于国才.两种包铝的高强铝合金受力状态下的大气腐蚀行为[J]. 腐蚀科学与防护技术,2003, 15(5): 254-257)

[13] Liu H C, Gu A, Zhu L Q, et al. Influence of partial aluminum clad on pitting of aluminum alloy fatigue samples in NSS [J]. Journal of Aeronautical Materials, 2009, 29(4): 52-56

     (刘慧丛, 谷岸, 朱立群等.局部包铝层对铝合金疲劳板材盐雾环境中点腐蚀的影响[J]. 航空材料学报,2009, 29(4): 52-56)

[14] Elola A S, Otero T F, Porro A. Evolution of the pitting of aluminum exposed to the atmosphere [J]. Corrosion, 1992, 48(10):854-863

[15] Burynski Jr R M, Chen G S, Wei R P. Evolution of Pitting Corrosion in a 2024-T3 Aluminum Alloy [A]. Structural Integrity in Aging Aircraft, ASME International Mechanical Engineering Congress and Exposition [C]. San Francisco, California, 1995

[16] Romans H S, Craig H L J. Atmospheric Stress Corrosion Testing of Aluminum alloy [A], Metal Corrosion in the Atmosphere [C]. Baltimore, 1968
 
[1] 范益,陈林恒,蔡佳兴,代芹芹,马宏驰,程学群. 热轧AH36船板钢在室内仓储条件下的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(1): 10-16.
[2] 潘成成,马超,夏大海. EBSD技术研究金属材料晶体取向对大气腐蚀萌生的影响机理[J]. 中国腐蚀与防护学报, 2019, 39(6): 495-503.
[3] 赵晋斌,赵起越,陈林恒,黄运华,程学群,李晓刚. 不同表面处理方式对300M钢在青岛海洋大气环境下腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2019, 39(6): 504-510.
[4] 邓俊豪,胡杰珍,邓培昌,王贵,吴敬权,王坤. 氧化皮对SPHC热轧钢板在热带海洋大气环境中初期腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2019, 39(4): 331-337.
[5] 孙永伟,钟玉平,王灵水,范芳雄,陈亚涛. 低合金高强度钢的耐模拟工业大气腐蚀行为研究[J]. 中国腐蚀与防护学报, 2019, 39(3): 274-280.
[6] 王力, 郭春云, 肖葵, 吐尔逊·斯拉依丁, 董超芳, 李晓刚. Q235和Q450钢在吐鲁番干热大气环境中长周期暴晒时的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2018, 38(5): 431-437.
[7] 王军, 冯超, 彭碧草, 谢亿, 张明华, 吴堂清. S450EW焊接接头在NaHSO3溶液中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2017, 37(6): 575-582.
[8] 张新新,高志明,胡文彬,伍志鹏,韩连恒,卢丽花,修妍,夏大海. Q235钢在薄液膜下腐蚀行为与图像信息的相关性研究[J]. 中国腐蚀与防护学报, 2017, 37(5): 444-450.
[9] 张鑫,戴念维,杨燕,张俊喜. 模拟工业环境下直流电场对金属Zn腐蚀机理的影响[J]. 中国腐蚀与防护学报, 2017, 37(5): 451-459.
[10] 孟晓波,蒋武斌,廖永力,李锐海,郑志军,高岩. 输电杆塔材料在模拟工业环境中的大气腐蚀行为研究[J]. 中国腐蚀与防护学报, 2017, 37(5): 460-466.
[11] 孙霜青,郑弃非,李春玲,王秀民,胡松青. 腐蚀产物对纯Al 8A06长期大气腐蚀行为影响的研究[J]. 中国腐蚀与防护学报, 2017, 37(2): 110-116.
[12] 张飘飘,杨忠民,陈颖,王慧敏. 含铬耐候钢在模拟海洋大气环境中的腐蚀行为[J]. 中国腐蚀与防护学报, 2017, 37(2): 93-100.
[13] 白子恒,黄运华,李晓刚,杨浪,董超芳,颜利丹,肖葵. 硫硼酸阳极氧化处理的7050铝合金在工业海洋大气中的腐蚀行为[J]. 中国腐蚀与防护学报, 2016, 36(6): 580-586.
[14] 李东亮,付贵勤,朱苗勇. 湿热工业海洋大气中Si对桥梁钢腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2016, 36(5): 433-440.
[15] 刘艳洁,王振尧,柯伟. 纯Al在3种典型沿海,工业和乡村大气中的腐蚀行为[J]. 中国腐蚀与防护学报, 2016, 36(1): 47-51.