Please wait a minute...
中国腐蚀与防护学报  2012, Vol. 32 Issue (1): 28-33    
  研究报告 本期目录 | 过刊浏览 |
NaCl液滴下304不锈钢表面电化学性质研究
刘圆圆,王伟,王燕华,王佳
中国海洋大学化学化工学院 青岛 266100
ELECTROCHEMICAL CHARACTERISTICS OF 304 STAINLESS STEEL UNDER A DROPLET OF NaCl
LIU Yuanyuan, WANG Wei, WANG Yanhua, WANG Jia
College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100
全文: PDF(4912 KB)  
摘要: 利用丝束电极技术研究NaCl液滴下304不锈钢表面电化学参数分布及其随腐蚀时间的变化规律。结果表明,液滴下不锈钢丝束电极表面的腐蚀电位分布和电偶电流分布均呈现空间、时间上的不均匀性;丝束电极表面随机形成局部阴极区和阳极区,而且随着腐蚀时间的延长,局部区域的极性发生反转。液滴下电极表面的腐蚀程度和不均匀程度均随腐蚀时间的延长先增加后减小,在腐蚀12 h时达到最大。
关键词 不锈钢液滴丝束电极腐蚀电位电偶电流    
Abstract:The wire beam electrode (WBE) was used to study the distributions of the electrochemical parameters of 304 stainless steel under a droplet of NaCl as well as their variations with the corrosion time. It was found that the distributions of the corrosion potential and the galvanic current were inhomogeneous with local anodic and cathodic zones appeared randomly. Moreover, the polarity of local zones changed with the evolution of corrosion process. The corrosion degree and inhomogeneity increased firstly, then decreased afterward with the increase of time. Stainless steel exhibited the highest anodic current density after exposure for 12 hours.
Key wordsstainless steel    droplet    wire beam electrode    corrosion potential    galvanic current
收稿日期: 2010-10-29     
ZTFLH: 

TG172.3

 
基金资助:

国家自然科学基金项目(40906039)资助

通讯作者: 王燕华     E-mail: wyhazz@163.com
Corresponding author: WANG Yanhua     E-mail: wyhazz@163.com
作者简介: 刘圆圆,女,1986年生,硕士生,研究方向为金属腐蚀与防护

引用本文:

刘圆圆,王伟,王燕华,王佳. NaCl液滴下304不锈钢表面电化学性质研究[J]. 中国腐蚀与防护学报, 2012, 32(1): 28-33.
LIU Yuan-Yuan, YU Wei, YU Yan-Hua, YU Jia. ELECTROCHEMICAL CHARACTERISTICS OF 304 STAINLESS STEEL UNDER A DROPLET OF NaCl. J Chin Soc Corr Pro, 2012, 32(1): 28-33.

链接本文:

https://www.jcscp.org/CN/      或      https://www.jcscp.org/CN/Y2012/V32/I1/28

[1] Skerry B S, Johnson J B, Wood G C. Corrosion in smoke, hydrocarbon and SO2 polluted atmospheres I. General behavior of iron [J]. Corros. Sci., 1988, 28 (7): 657-695

[2] Zakipour S, Leygraf C. Quartz crystal microbalance applied to studies of atmospheric corrosion of metals [J]. Br. Corros.J.,1992, 27 (4): 295-298

[3] Neufeld A K, Cole I S, Bond A M. The initiation mechanism of corrosion of zinc by sodium chloride particle deposition [J].Corros. Sci., 2002, 44(3): 555-572

[4] Wang J. Role of salt particle deposition in the initiation and propagation of atmospheric corrosion [J]. J. Chin. Soc. Corros. Prot., 2004, 24(3): 155-158

    (王佳.无机盐微粒沉积和大气腐蚀的发生与发展 [J]. 中国腐蚀与防护学报, 2004,24 (3): 155-158)

[5] Dubuisson E, Lavie P, Dalard F, et al. Corrosion of galvanised steel under an electrolytic drop [J]. Corros. Sci., 2007,49(2): 910-919

[6] Dubuisson E, Lavie P, Dalard F, et al. Study of the atmospheric corrosion of galvanised steel in a micrometric electrolytic droplet [J]. Electrochem. Commun., 2006, 8(6): 911-915

[7] Wang R G, Kido M. Corrosion behavior of pure iron by different droplet volume of sulfuric acid solution [J]. Mater.Trans., 2007, 48 (6): 1451-1457

[8] Tsutsumi Y, Nishikata A, Tsuru T. Pitting corrosion mechanism of Type 304 stainless steel under a droplet of chloride solutions [J]. Corros. Sci., 2007, 49(3): 1394-1407

[9] Hastuty S, Nishikata A, Tsuru T. Pitting corrosion of Type 430 stainless steel under chloride solution droplet [J]. Corros.Sci., 2010, (52): 2035-2043

[10] Tsuru T, Tamiya K I, Nishikata A. Formation and growth of micro-droplets during the initial stage of atmospheric corrosion [J]. Electrochim. Acta. 2004, 49(17-18): 2709-2715

[11] Tan Y J, Liu T, Aung N N. Novel corrosion experiments using the wire beam electrode: (III) Measuring electrochemical corrosion parameters from both the metallic and electrolytic phases [J]. Corros. Sci., 2006, 48(1):53-66

[12] Muster T H, Bradbury A, Trinchi A, et al. The atmospheric corrosion of zinc: The effects of salt concentration, droplet size and droplet shape [J]. Electrochim. Acta, 2011, 56(4): 1866-1872

[13] Zhang D L, Wang W, Li Y. An electrode array study of electrochemical inhomogeneity of zinc in zinc/steel couple during galvanic corrosion [J]. Corros. Sci., 2010, 52 (4): 1277-1285

[14] Zhang X, Wang W, Wang J. A novel device for the wire beam electrode method and its application in the ennoblement study [J]. Corros. Sci., 2009, 51 (6):1475-1479

[15] Zhang X, Wang W, Wang J. Characterization of electrochemical heterogeneity of interface of an artificial biofilm/metal by means of a wire beam electrode [J]. Corros. Sci.Prot. Technol., 2009, 21(3): 242-244

     (张霞, 王伟, 王佳.采用丝束电极研究硫酸盐还原菌生物膜的电化学不均匀性 [J].腐蚀科学与防护技术, 2009, 21(3): 242-244)

[16] Wang W, Wang J, Zhang X. The influence of local glucose oxidase activity on the potential/current distribution on stainless steel: A study by the wire beam electrode method [J]. Electrochim.Acta, 2009, 54(23): 5598-5604

[17] Zhong Q D. Study of corrosion behavior of mild steel and copper in thin film salt solution using the wire beam electrode [J] Corros. Sci., 2002, 44(6): 909-916

[18] Zhong Q D, Zhang Z. Study of anti-contamination performance of temporarily protective oil coatings using wire beam electrode [J] Corros. Sci., 2002, 44(12): 2777-2787

[19] Zhong Q D. Electrochemical technique for investigating temporarily protective oil coatings [J]. Prog. Org. Coat., 1997, 30(4): 213-218

[20] Kolotyrkin J M. Pitting corrosion of metals [J]. Nat. Assoc. Corros. Eng., 1963, 19(8): 261-268

[21] Szklarska-Smialowsk Z, Mankowski J. Effect of temperature on the kinetics of developments of pits in stainless steel in 0.5 N NaCl+0.1 N H2SO4 solution [J]. Corros. Sci., 1972, 12(12):925-934
[1] 冉斗, 孟惠民, 刘星, 李全德, 巩秀芳, 倪荣, 姜英, 龚显龙, 戴君, 隆彬. pH对14Cr12Ni3WMoV不锈钢在含氯溶液中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2021, 41(1): 51-59.
[2] 左勇, 曹明鹏, 申淼, 杨新梅. MgCl2-NaCl-KCl熔盐体系中金属Mg对316H不锈钢的缓蚀性能研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 80-86.
[3] 王欣彤, 陈旭, 韩镇泽, 李承媛, 王岐山. 硫酸盐还原菌作用下2205双相不锈钢在3.5%NaCl溶液中应力腐蚀开裂行为研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 43-50.
[4] 张浩, 杜楠, 周文杰, 王帅星, 赵晴. 模拟海水溶液中Fe3+对不锈钢点蚀的影响[J]. 中国腐蚀与防护学报, 2020, 40(6): 517-522.
[5] 马鸣蔚, 赵志浩, 荆思文, 于文峰, 谷义恩, 王旭, 吴明. 17-4 PH不锈钢在含SRB的模拟海水中的应力腐蚀开裂行为研究[J]. 中国腐蚀与防护学报, 2020, 40(6): 523-528.
[6] 赵柏杰, 范益, 李镇镇, 张博威, 程学群. 不同类型接触面对316L不锈钢缝隙腐蚀的影响[J]. 中国腐蚀与防护学报, 2020, 40(4): 332-341.
[7] 胡玉婷, 董鹏飞, 蒋立, 肖葵, 董超芳, 吴俊升, 李晓刚. 海洋大气环境下TC4钛合金与316L不锈钢铆接件腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(2): 167-174.
[8] 秦越强, 左勇, 申淼. FLiNaK-CrF3/CrF2氧化还原缓冲熔盐体系对316L不锈钢耐蚀性能的影响[J]. 中国腐蚀与防护学报, 2020, 40(2): 182-190.
[9] 何壮,王兴平,刘子涵,盛耀权,米梦芯,陈琳,张岩,李宇春. 316L和HR-2不锈钢在盐酸液膜环境中的钝化与点蚀[J]. 中国腐蚀与防护学报, 2020, 40(1): 17-24.
[10] 武栋才,韩培德. 中温时效处理对SAF2304双相不锈钢耐蚀性的影响[J]. 中国腐蚀与防护学报, 2020, 40(1): 51-56.
[11] 丁国清,李向阳,张波,杨朝晖,黄桂桥,杨海洋,刘凯吉. 金属材料在天然海水中的腐蚀电位及其变化规律[J]. 中国腐蚀与防护学报, 2019, 39(6): 543-549.
[12] 骆鸿,高书君,肖葵,董超芳,李晓刚. 磁控溅射工艺对CrN薄膜及其腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2019, 39(5): 423-430.
[13] 付安庆,赵密锋,李成政,白艳,朱文军,马磊,熊茂县,谢俊峰,雷晓维,吕乃欣. 激光表面熔凝对超级13Cr不锈钢组织与性能的影响研究[J]. 中国腐蚀与防护学报, 2019, 39(5): 446-452.
[14] 孙晓光,韩晓辉,张星爽,张志毅,李刚卿,董超芳. 超低碳奥氏体不锈钢焊接接头耐腐蚀性及环保型化学钝化工艺研究[J]. 中国腐蚀与防护学报, 2019, 39(4): 345-352.
[15] 李雨,关蕾,王冠,张波,柯伟. 机械应力对不锈钢点蚀行为的影响[J]. 中国腐蚀与防护学报, 2019, 39(3): 215-226.