Please wait a minute...
中国腐蚀与防护学报  2010, Vol. 30 Issue (1): 46-50    
  研究报告 本期目录 | 过刊浏览 |
X70钢在库尔勒土壤环境中的腐蚀特征
刘智勇;杜翠薇;李晓刚;贾改风
北京科技大学腐蚀与防护中心 北京市腐蚀磨蚀与表面技术开放实验室 北京 100083
CHARACTERISTIC OF X70 PIPELINE STEEL IN THE KU'ERLE SOIL ENVIRONMENT
LIU Zhiyong;DU Cuiwei;LI Xiaogang;JIA Gaifeng
Key Lab of Corrosion Erosion and Surface Technique Beijing; Corrosion and Protection Center;University of Science and Technology Beijing; Beijing 100083
全文: PDF(1738 KB)  
摘要: 

通过实验室和现场条件下的埋片实验,并结合微观形貌分析和电化学极化技术,研究了X70钢在库尔勒土壤环境中的腐蚀行为。研究表明,X70钢在库尔勒土壤环境中能够生成较稳定的腐蚀产物膜,其局部腐蚀区域(新鲜金属表面)的腐蚀电流密度大大高于非局部腐蚀区的,表明X70钢在库尔勒土壤环境中容易发生局部腐蚀。这些局部腐蚀的特点是宏观上为不均匀腐蚀或大的点蚀,微观上发生明显的晶界腐蚀。

关键词 X70钢库尔勒土壤腐蚀    
Abstract

Corrosion characteristic of X70 pipeline steel in a high saliferous and alkaline soil environment, named Ku'erle soil, was investigated by burying tests both in lab and nature field, micro-morphology analyses and electrochemical polarization technique. The X70 pipeline steel would form a protective corrosion product film, leading to a relative low dissolution current, however, the anodic current in local corrosion area, or in fresh surface without film covering, is much more intensive than the usual metal surface covered with productive film, indicating that X70 pipeline steel is susceptible to local corrosion. The characteristic of these localizing corrosion is non-uniform corrosion and visible corrosion pits observed in a magnifying scale, and in a mode of intergranular corrosion under micro scale observation.

Key wordsX70 pipeline steel    Soil in Ku’erle    Corrosion
收稿日期: 2008-05-12     
ZTFLH: 

TG 172.4

 
基金资助:

国家科技基础条件平台建设项目(2005DKA10400),国家十五重大基金项目(50499333-08)资助

通讯作者: 刘智勇     E-mail: liuzhiyong7804@126.com
Corresponding author: LIU Zhiyong     E-mail: liuzhiyong7804@126.com
作者简介: 刘智勇,男,1978年生,博士生,研究方向为金属材料腐蚀性能

引用本文:

刘智勇;杜翠薇;李晓刚;贾改风. X70钢在库尔勒土壤环境中的腐蚀特征[J]. 中国腐蚀与防护学报, 2010, 30(1): 46-50.
LIU Zhi-Yong. CHARACTERISTIC OF X70 PIPELINE STEEL IN THE KU'ERLE SOIL ENVIRONMENT. J Chin Soc Corr Pro, 2010, 30(1): 46-50.

链接本文:

https://www.jcscp.org/CN/      或      https://www.jcscp.org/CN/Y2010/V30/I1/46

[1] Lu M X, Bai Z Q, Zhao X W, et al. Actuality and typical cases for corrosion in the process of extraction, storage and transmission for oil and gas [J]. Corros. Prot., 2002, 23(3): 105-113
    (路民旭, 白真权, 赵新伟等. 油气采集储运中的腐蚀现状及典型案例 [J]. 腐蚀与防护, 2002, 23(3): 105-113)
[2] Guo S J, Chen B D, Wang Z L, et al. Analysis and repair technology of corrosive defect on buried oil pipelines [J]. Pipeline Technol. Equip., 2007, (12): 41-43
    (郭淑娟, 陈保东, 王占黎等. 埋地输油管道腐蚀缺陷分析及修复工艺 [J]. 管道技术与设备, 2007, (12): 41-43)
[3] Chin D T, Sabde G M. Current distribution and electrochemical environment in a cathodically protected crevice [J]. Corrosion, 1999, 55(3): 229-235
[4] Qiao L J, Luo J L, Mao X. Hydrogen evolution and enrichment around stress corrosion crack tips of pipeline steels in dilute bicarbonate solution [J]. Corrosion, 1998, 54(2): 115-120
[5] Van Boven G, Chen W, Rogge R. The role of residual stress in neutral pH stress corrosion cracking of pipeline steels, Part I: Pitting and cracking occurrence [J]. Acta Mater., 2006, 2: 1-3
[6] Gu B, Luo J, Mao X.Hydrogen-facilitated anodic dissolution-type stress corrosion cracking of pipeline steels in near-neutral pH solution [J].Corrosion, 1999, 55 (1): 96-106
[7] Li X G, Du C W, Liu Z Y, et al.Corrosion Property and Experimental Study for X70 Pipeline Steel [M].Beijing: Science Press, 2006: 13
    (李晓刚, 杜翠薇, 刘智勇等. X70钢的腐蚀行为与试验研究 [M]. 北京: 科学出版社,2006: 13)
[8] Liu Z Y, Zhai G L, Du C W, et al. SCC of X70 pipeline steel in Yingtan acid soil environment [J]. J. Sichuan Univ.(Eng. Sci. Ed.), 2008, 40(2): 76-81
    (刘智勇, 翟国丽, 杜翠薇等. X70钢在鹰潭酸性土壤中的应力腐蚀行为 [J]. 四川大学学报(工程科学版), 2008, 40(2): 76-81)
[9] Liu Z Y, Zhai G L, Du C W, et al. Stress corrosion behavior of X70 pipeline steel in simulated solution of acid soil [J]. Acta Metall. Sin., 2008, 44(2): 209-214
    (刘智勇, 翟国丽, 杜翠薇等. X70钢在酸性土壤模拟溶液中的应力腐蚀行为 [J]. 金属学报, 2008, 44(2): 209-214)
[10] Li M X, Wang R, Li P L, et al.Electrochemical characteristics of X70 pipeline steel in a synthetic near neutral soil solution [J]. J. Chin. Soc. Corros. Prot., 2004, 24(3): 163-167
     (李明星, 王荣, 李鹏亮等. X70管线钢在模拟土壤介质中裂纹扩展量化模型 [J]. 中国腐蚀与防护学报, 2004, 24(3): 163-167)
[11] Guo H, Li G F, Cai X, et al. Effect of applied potentials on stress corrosion cracking of X70 pipeline steel in near-neutral-pH solutions [J]. J. Chin. Soc. Corros. Prot.,2004, 24(4): 208-212
     (郭浩, 李光福, 蔡王旬等. 外加电位对X70管线钢在近中性pH溶液中的应力腐蚀破损的影响 [J]. 中国腐蚀与防护学报, 2004, 24(4): 208-212)
[12] Zhao Y, Wang R. An investigation on mechanical behaviors of X70 pipeline steel after electrochemical hydrogen charging [J].J. Chin. Soc. Corros. Prot., 2004, 24(5): 293-296
     (赵颖, 王荣. X70管线钢电化学充氢后的力学行为研究 [J]. 中国腐蚀与防护学报,2004, 24(5): 293-296)
[13] Mao J P, Tang J M, Zuo Y. Electrochemical characteristics of pitting of X70 pipeline steel in phosphate buffer solution [J]. J.Chin. Soc. Corros. Prot., 2006, 26(2): 80-84
     (毛健鹏, 唐聿明, 左禹. X70钢在磷酸盐缓冲溶液中的孔蚀电化学行为研究 [J]. 中国腐蚀与防护学报, 2006, 26(2): 80-84)
[14] Guo H, He X Y. Antisepsis of X70 steel in weak acidic solution with H2S [J]. J. Chin. Soc. Corros. Prot.,2006, 26(6): 355-359
     (郭红, 何晓英. X70钢在含H2S弱酸性溶液中的防腐研究 [J]. 中国腐蚀与防护学报,2006, 26(6): 355-359)
[15] Deng H Y, He X Y, Wang H Y, et al. Corrosion behavior of X70 steel in HAc-NaHAc solution saturated with CO2 [J]. J. Chin. Soc. Corros. Prot., 2007, 27(4): 224-227
     (邓海英, 何晓英, 王红云等. X70钢在饱和CO2的HAc-NaAc溶液中的腐蚀行为 [J]. 中国腐蚀与防护学报, 2007, 27(4): 224-227)
[16] Xie G Y, Tang D, Wu H B, et al. Investigation of sulfide stress-corrosion cracking for X70 pipeline steel [J]. J. Chin. Soc. Corros. Prot., 2008, 28(2): 86-89
     (谢广宇, 唐荻, 武会宾等. X70级管线钢抗硫化物应力腐蚀开裂实验研究 [J]. 中国腐蚀与防护学报, 2008, 28(2): 86-89)
[17] Xu C C, Chi L, Hu G, et al. Influence of concentration of HCO3- to anodic reaction of X70 steel [J]. J. Chin.Soc. Corros. Prot., 2005, 25(1): 20-24
     (许淳淳, 池琳, 胡钢等. HCO3-浓度对X70钢阳极反应过程的影响 [J]. 中国腐蚀与防护学报, 2005, 25(1): 20-24)
[18] Zhang Y R, Dong C F, Li X G, et al.Hydrogen induced cracking behaviors of X70 pipeline steel and its welds under electrochemical charging [J]. Acta Metall. Sin.,2006, 42(5): 521-527
     (张颖瑞, 董超芳, 李晓刚等. 电化学充氢条件下X70管线钢及其焊缝的氢致开裂行为 [J]. 金属学报, 2006, 42(5): 521-527)
[19] Wang R. Effects of hydrogen on fracture of pre-cracking specimens of X70 pipeline steel [J]. J. Chin. Soc. Corros. Prot., 2008, 28(2): 81-85
     (王荣. 氢对X70管线钢预裂纹试样断裂性能的影响 [J]. 中国腐蚀与防护学报,2008, 28(2): 81-85)
[20] Du C W, Liu Z Y, Liang P, et al. Short-term corrosion behavior of X70 pipeline steel with different microstructure in Ku'erle soil with saturated water [J]. Heat Treat.Met., 2008, 33(6): 80-84
     (杜翠薇, 刘智勇, 梁平等. 不同组织X70钢在库尔勒含饱和水土壤中的短期腐蚀行为 [J]. 金属热处理, 2008, 33(6): 80-84)
[21] Du C W, Li X G, Wu J W, et al. Corrosion behavior comparison of X70 steel in three different environments [J].J. Univ. Sci. Technol. Beijing, 2004, 26(5): 529-532
     (杜翠薇, 李晓刚, 武俊伟等. 三种土壤对X70钢腐蚀行为的比较 [J].北京科技大学学报, 2004, 26(5): 529-532)
[22] Wu J W, Li X G, Du C W, et al. Short-term corrosion behaviour of X70 pipeline steel in Ku'erle soil [J]. J. Chin. Soc. Corros.Prot., 2005, 25(1): 15-19
     (武俊伟, 李晓刚, 杜翠薇等. X70钢在库尔勒土壤中短期腐蚀行为研究 [J].中国腐蚀与防护学报, 2005, 25(1): 15-19)
[23] Parkins R N. Predictive approaches to stress corrosion cracking failure [J]. Corros. Sci., 1980, 20(2): 147-166
[24] Zeng Y M, Luo J L. Electronic band structure of passive film on X70 pipeline steel [J]. Electrochim. Acta, 2003,48: 3551-3562
     (武俊伟, 李晓刚, 杜翠薇等. X70钢在库尔勒土壤中短期腐蚀行为研究. 中国腐蚀与防护学报, 2005, 25(1): 15-19)
[25] Cheng Y F, Wilmott M, Luo J L. The role of chloride ions in pitting of carbon steel studied by the statistical analysis of electrochemical noise [J]. Appl. Surf. Sci., 1999, 152: 161-168
[26] Zeng Y M, Luo J L, Norton P R. Initiation and propagation of pitting and crevice corrosion of hydrogen-containing passive films on X70 micro-alloyed steel [J]. Electrochim. Acta,2004, 49: 703-714

[1] 董续成, 管方, 徐利婷, 段继周, 侯保荣. 海洋环境硫酸盐还原菌对金属材料腐蚀机理的研究进展[J]. 中国腐蚀与防护学报, 2021, 41(1): 1-12.
[2] 唐荣茂, 朱亦晨, 刘光明, 刘永强, 刘欣, 裴锋. Q235钢/导电混凝土在3种典型土壤环境中腐蚀的灰色关联度分析[J]. 中国腐蚀与防护学报, 2021, 41(1): 110-116.
[3] 韩月桐, 张鹏超, 史杰夫, 李婷, 孙俊才. 质子交换膜燃料电池中TA1双极板的表面改性研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 125-130.
[4] 张雨轩, 陈翠颖, 刘宏伟, 李伟华. 铝合金霉菌腐蚀研究进展[J]. 中国腐蚀与防护学报, 2021, 41(1): 13-21.
[5] 冉斗, 孟惠民, 刘星, 李全德, 巩秀芳, 倪荣, 姜英, 龚显龙, 戴君, 隆彬. pH对14Cr12Ni3WMoV不锈钢在含氯溶液中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2021, 41(1): 51-59.
[6] 左勇, 曹明鹏, 申淼, 杨新梅. MgCl2-NaCl-KCl熔盐体系中金属Mg对316H不锈钢的缓蚀性能研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 80-86.
[7] 王欣彤, 陈旭, 韩镇泽, 李承媛, 王岐山. 硫酸盐还原菌作用下2205双相不锈钢在3.5%NaCl溶液中应力腐蚀开裂行为研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 43-50.
[8] 史昆玉, 吴伟进, 张毅, 万毅, 于传浩. TC4表面沉积Nb涂层在模拟体液环境下的电化学性能研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 71-79.
[9] 郑黎, 王美婷, 于宝义. 镁合金表面冷喷涂技术研究进展[J]. 中国腐蚀与防护学报, 2021, 41(1): 22-28.
[10] 于宏飞, 邵博, 张悦, 杨延格. 2A12铝合金锆基转化膜的制备及性能研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 101-109.
[11] 贾世超, 高佳祺, 郭浩, 王超, 陈杨杨, 李旗, 田一梅. 再生水水质因素对铸铁管道的腐蚀研究[J]. 中国腐蚀与防护学报, 2020, 40(6): 569-576.
[12] 赵鹏雄, 武玮, 淡勇. 空间分辨技术在金属腐蚀原位监测中的应用[J]. 中国腐蚀与防护学报, 2020, 40(6): 495-507.
[13] 马鸣蔚, 赵志浩, 荆思文, 于文峰, 谷义恩, 王旭, 吴明. 17-4 PH不锈钢在含SRB的模拟海水中的应力腐蚀开裂行为研究[J]. 中国腐蚀与防护学报, 2020, 40(6): 523-528.
[14] 岳亮亮, 马保吉. 超声表面滚压对AZ31B镁合金腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2020, 40(6): 560-568.
[15] 艾芳芳, 陈义庆, 钟彬, 李琳, 高鹏, 伞宏宇, 苏显栋. T95油井管在酸性油气田环境中的应力腐蚀开裂行为及机制[J]. 中国腐蚀与防护学报, 2020, 40(5): 469-473.