|
|
|
| 激光粉末床熔融成形CoCrNi中熵合金的高温热腐蚀行为 |
周小包1, 王子腾2, 任延杰1,2( ), 董少阳2, 甘浪2, 李聪2 |
1.浙江科技大学智能制造与能源工程学院 杭州 310023 2.长沙理工大学能源与动力工程学院 长沙 410076 |
|
| Hot Corrosion Behavior of CoCrNi Medium-entropy Alloys Fabricated by Laser Powder Bed Fusion |
ZHOU Xiaobao1, WANG Ziteng2, REN Yanjie1,2( ), DONG Shaoyang2, GAN Lang2, LI Cong2 |
1.School of Intelligent Manufacturing and Energy Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China 2.Department of Energy and Power Engineering, Changsha University of Science and Technology, Changsha 410076, China |
引用本文:
周小包, 王子腾, 任延杰, 董少阳, 甘浪, 李聪. 激光粉末床熔融成形CoCrNi中熵合金的高温热腐蚀行为[J]. 中国腐蚀与防护学报, 2026, 46(1): 115-125.
Xiaobao ZHOU,
Ziteng WANG,
Yanjie REN,
Shaoyang DONG,
Lang GAN,
Cong LI.
Hot Corrosion Behavior of CoCrNi Medium-entropy Alloys Fabricated by Laser Powder Bed Fusion[J]. Journal of Chinese Society for Corrosion and protection, 2026, 46(1): 115-125.
| [1] |
Cantor B, Chang I T H, Knight P, et al. Microstructural development in equiatomic multicomponent alloys [J]. Mater. Sci. Eng., 2004, 375-377A: 213
|
| [2] |
Tsai M H, Yeh J W. High-entropy alloys: A critical review [J]. Mater. Res. Lett., 2014, 2: 107
doi: 10.1080/21663831.2014.912690
|
| [3] |
Yeh J W. Recent progress in high-entropy alloys [J]. Ann. Chim. Sci. Mater., 2006, 31: 633
doi: 10.3166/acsm.31.633-648
|
| [4] |
Yeh J W, Chen S K, Lin S J, et al. Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes [J]. Adv. Eng. Mater., 2004, 6: 299
doi: 10.1002/adem.v6:5
|
| [5] |
Jian W R, Xie Z C, Xu S Z, et al. Effects of lattice distortion and chemical short-range order on the mechanisms of deformation in medium entropy alloy CoCrNi [J]. Acta Mater., 2020, 199: 352
doi: 10.1016/j.actamat.2020.08.044
|
| [6] |
Laplanche G, Kostka A, Reinhart C, et al. Reasons for the superior mechanical properties of medium-entropy CrCoNi compared to high-entropy CrMnFeCoNi [J]. Acta Mater., 2017, 128: 292
doi: 10.1016/j.actamat.2017.02.036
|
| [7] |
Gludovatz B, Hohenwarter A, Thurston K V S, et al. Exceptional damage-tolerance of a medium-entropy alloy CrCoNi at cryogenic temperatures [J]. Nat. Commun., 2016, 7: 10602
doi: 10.1038/ncomms10602
pmid: 26830651
|
| [8] |
Agustianingrum M P, Lee U, Park N. High-temperature oxidation behaviour of CoCrNi medium-entropy alloy [J]. Corros. Sci., 2020, 173: 108755
doi: 10.1016/j.corsci.2020.108755
|
| [9] |
Adomako N K, Kim J H, Hyun Y T. High-temperature oxidation behaviour of low-entropy alloy to medium- and high-entropy alloys [J]. J. Therm. Anal. Calorim., 2018, 133: 13
doi: 10.1007/s10973-018-6963-y
|
| [10] |
Guo J B, Yang S H, Zhou Z Y, et al. High-temperature oxidation behavior of laser additively manufactured AlCoCrFeNiSi high entropy alloy [J]. J. Chin. Soc. Corros. Prot., 2025, 45: 217
|
| [10] |
郭静波, 杨守华, 周子翼 等. 激光增材制造AlCoCrFeNiSi高熵合金的氧化行为 [J]. 中国腐蚀与防护学报, 2025, 45: 217
doi: 10.11902/1005.4537.2024.313
|
| [11] |
Guo S, Ng C, Liu C T. Anomalous solidification microstructures in Co-free Al x CrCuFeNi2 high-entropy alloys [J]. J. Alloy. Compd., 2013, 557: 77
doi: 10.1016/j.jallcom.2013.01.007
|
| [12] |
Jia Q B, Gu D D. Selective laser melting additive manufactured Inconel 718 superalloy parts: High-temperature oxidation property and its mechanisms [J]. Opt. Laser Technol., 2014, 62: 161
doi: 10.1016/j.optlastec.2014.03.008
|
| [13] |
Huang W Y, Li Y T, Yanjie R E N, et al. Effect of scanning speed on the high-temperature oxidation resistance and mechanical properties of Inconel 625 alloys fabricated by selective laser melting [J]. Vacuum, 2022, 206: 111447
doi: 10.1016/j.vacuum.2022.111447
|
| [14] |
Tan J J, Ding P, Lv F C, et al. Reasons and prevention measures for high-temperature corrosion of water-cooled walls in coal-fired boilers [J]. Total Corros. Control, 2024, 38(10): 205
|
| [14] |
谈金军, 丁 鹏, 吕馥丞 等. 燃煤锅炉水冷壁高温腐蚀形成原因及防治措施 [J]. 全面腐蚀控制, 2024, 38(10): 205
|
| [15] |
Qu Y M, Yuan W, Xu Y F, et al. Corrosion analysis of high-temperature superheater tubes of a waste incineration boiler [J]. Mater. Prot., 2025, 58(2): 131
doi: 10.5937/ZasMat1702131F
|
| [15] |
曲炎淼, 袁 玮, 徐云峰 等. 某垃圾焚烧锅炉内高温过热器管腐蚀分析 [J]. 材料保护, 2025, 58(2): 131
|
| [16] |
Guan Y, Liu G M, Zhang M Q, et al. High temperature corrosion behavior of Sanicro 25 steel in high-sulfur coal ash/simulated flue gas [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 681
|
| [16] |
官 宇, 刘光明, 张民强 等. Sanicro 25钢在高硫煤灰/模拟烟气中的高温腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2022, 42: 681
|
| [17] |
Kyogoku H, Ikeshoji T T. A review of metal additive manufacturing technologies: Mechanism of defects formation and simulation of melting and solidification phenomena in laser powder bed fusion process [J]. Mech. Eng. Rev., 2020, 7: 19-00182
|
| [18] |
Han B L, Zhang C C, Feng K, et al. Additively manufactured high strength and ductility CrCoNi medium entropy alloy with hierarchical microstructure [J]. Mater. Sci. Eng., 2021, 820A: 141545
|
| [19] |
Liu Y F, Ren J, Guan S, et al. Microstructure and mechanical behavior of additively manufactured CoCrFeMnNi high-entropy alloys: Laser directed energy deposition versus powder bed fusion [J]. Acta Mater., 2023, 250: 118884
doi: 10.1016/j.actamat.2023.118884
|
| [20] |
Chen F, Wang Q, Zhang C, et al. Microstructures and mechanical behaviors of additive manufactured Inconel 625 alloys via selective laser melting and laser engineered net shaping [J]. J. Alloy. Compd., 2022, 917: 165572
doi: 10.1016/j.jallcom.2022.165572
|
| [21] |
Ni C S, Lu L Y, Zeng C L, et al. Electrochemical impedance studies of the initial-stage corrosion of 310S stainless steel beneath thin film of molten (0.62Li, 0.38K)2CO3 at 650 oC [J]. Corros. Sci., 2011, 53: 1018
doi: 10.1016/j.corsci.2010.11.036
|
| [22] |
Encinas-Sánchez V, de Miguel M T, Lasanta M I, et al. Electrochemical impedance spectroscopy (EIS): An efficient technique for monitoring corrosion processes in molten salt environments in CSP applications [J]. Sol. Energy Mater. Sol. Cells, 2019, 191: 157
doi: 10.1016/j.solmat.2018.11.007
|
| [23] |
Trinstancho-Reyes J L, Sanchez-Carrillo M, Sandoval-Jabalera R, et al. Electrochemical impedance spectroscopy investigation of alloy Inconel 718 in molten salts at high temperature [J]. Int. J. Electrochem. Sci., 2011, 6: 419
doi: 10.1016/S1452-3981(23)15005-X
|
| [24] |
Li J, Zeng C L. Electrochemical impedance study of (Na, K)2SO4 induced hot corrosion of pure nickel and Ni-based superalloy M38G [J]. Corros. Sci. Prot. Technol., 2005, 17: 50
|
| [24] |
李 杰, 曾潮流. (Na, K)2SO4沉积引起的纯Ni和M38G合金热腐蚀的电化学阻抗研究 [J]. 腐蚀科学与防护技术, 2005, 17: 50
|
| [25] |
Zeng C L, Wang W, Wu W T. Corrosion electrochemical-impedance of Fe-Cr alloys in eutectic (Li, K)2CO3 mixture at 650 oC [J]. Corros. Sci. Prot. Technol., 2000, 12: 249
|
| [25] |
曾潮流, 王 文, 吴维㞵. Fe-Cr合金在650 ℃共晶(Li, K)2CO3熔盐中的腐蚀电化学阻抗谱研究 [J]. 腐蚀科学与防护技术, 2000, 12: 249
|
| [26] |
Zeng C L, Li J. Electrochemical impedance studies of molten (0.9Na, 0.1K)2SO4-induced hot corrosion of the Ni-based superalloy M38G at 900 oC in air [J]. Electrochim. Acta, 2005, 50: 5533
doi: 10.1016/j.electacta.2005.03.034
|
| [27] |
Li Y M, Liu H, Qiao Z, et al. Comparison on hot corrosion behaviors of Ni-base superalloy DD5, DD10 and DSM11 [J]. Chin. J. Nonferrous Met., 2020, 30: 2105
|
| [27] |
李艳明, 刘 欢, 乔 志 等. 镍基高温合金DD5、DD10和DSM11热腐蚀行为比较 [J]. 中国有色金属学报, 2020, 30: 2105
|
| [28] |
Hong M, Samuha S, Hosemann P. Corrosion mechanism of cold forged 316 stainless steel in molten FLiNaK salt [J]. Corros. Sci., 2024, 232: 111990
doi: 10.1016/j.corsci.2024.111990
|
| [29] |
Yang T S, Zhang G Q, Dai Z Y, et al. Study of corrosion behavior of Inconel 625 cladding metal in KCl-MgCl2 molten salt under isothermal and thermal cycling conditions [J]. J. Mater. Sci., 2023, 58: 13205
doi: 10.1007/s10853-023-08823-7
|
| [30] |
Pan C L, Li X Q, Luo H, et al. Thermal oxidation behavior of CoCrNi medium-entropy alloy bond coatings deposited using laser cladding process [J]. Corros. Sci., 2022, 194: 109956
doi: 10.1016/j.corsci.2021.109956
|
| [31] |
Zhao B, Wang Q L, Ren Y J, et al. Hot corrosion behavior of Inconel 625 alloys fabricated by selective laser melting [J]. Chin. J. Nonferrous Met., 2024, 34: 2030
|
| [31] |
赵 斌, 王琪霖, 任延杰 等. 激光选区熔化Inconel 625合金的高温热腐蚀行为 [J]. 中国有色金属学报, 2024, 34: 2030
|
| [32] |
Liu G M, Liu K S, Mao X F, et al. Hot corrosion of T91 steel in molten mixture of KCl + Na2SO4 + K2SO4 [J]. J. Chin. Soc. Corros. Prot., 2017, 37: 23
|
| [32] |
刘光明, 刘康生, 毛晓飞 等. T91钢在KCl + Na2SO4 + K2SO4熔融盐中的热腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2017, 37: 23
doi: 10.11902/1005.4537.2016.168
|
| [33] |
Yang Y F, Liu Z L, Ren P, et al. Hot corrosion behavior of Pt + Hf co-modified NiAl coating in the mixed salt of Na2SO4-NaCl at 900 oC [J]. Corros. Sci., 2020, 167: 108527
doi: 10.1016/j.corsci.2020.108527
|
| [34] |
Zhang Z W, Li J K, Xu W H, et al. Effects of overlapping process on grain orientation and microstructure of nickel-based single-crystal superalloy DD491 fabricated by selective laser melting [J]. Acta Metall. Sin., 2024, 60: 1471
doi: 10.11900/0412.1961.2023.00230
|
| [34] |
张振武, 李继康, 许文贺 等. 搭接工艺对选区激光熔化镍基单晶高温合金DD491晶体取向与微观组织的影响 [J]. 金属学报, 2024, 60: 1471
doi: 10.11900/0412.1961.2023.00230
|
| [35] |
Dong N, Qin W R, Han P D. Theoretical study in adsorption behavior of S and Cl on surface and its effect on corrosion performance of γ-FeM (111) (M = Cr, Ni, Mn, Mo, Cu, Ce) [J]. J. Chin. Soc. Corros. Prot., 2024, 44: 1566
|
| [35] |
董 楠, 秦慰蓉, 韩培德. S、Cl表面吸附及其对γ-FeM(111) (M =Cr、Ni、Mn、Mo、Cu、Ce)腐蚀的理论研究 [J]. 中国腐蚀与防护学报, 2024, 44: 1566
|
| [36] |
Ghaffari Y, Daub K, Long F, et al. Comparing the intergranular oxidation of Ni-Cr and Ni-Al model alloys in 480 oC hydrogenated steam [J]. Scr. Mater., 2023, 232: 115501
doi: 10.1016/j.scriptamat.2023.115501
|
| [37] |
Teng Q, Li S, Xue P J, et al. High-temperature corrosion resistance of Inconel 718 fabricated by selective laser melting [J]. Chin. J. Nonferrous Met., 2019, 29: 1417
|
| [37] |
滕 庆, 李 帅, 薛鹏举 等. 激光选区熔化Inconel 718合金高温腐蚀性能 [J]. 中国有色金属学报, 2019, 29: 1417
|
| [38] |
Hu B, Zhang H Q, Zhang J, et al. Progress in interfacial thermodynamics and grain boundary complexion diagram [J]. Acta Metall. Sin., 2021, 57: 1199
doi: 10.11900/0412.1961.2021.00036
|
| [38] |
胡 标, 张华清, 张 金 等. 界面热力学与晶界相图的研究进展 [J]. 金属学报, 2021, 57: 1199
|
| [39] |
Xiao Z G, Huang Y, Liu Z X, et al. The role of grain boundaries in the corrosion process of Fe surface: Insights from ReaxFF molecular dynamic simulations [J]. Metals, 2022, 12: 876
doi: 10.3390/met12050876
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|