Please wait a minute...
中国腐蚀与防护学报  2026, Vol. 46 Issue (1): 115-125     CSTR: 32134.14.1005.4537.2025.170      DOI: 10.11902/1005.4537.2025.170
  增材制造与腐蚀专题 本期目录 | 过刊浏览 |
激光粉末床熔融成形CoCrNi中熵合金的高温热腐蚀行为
周小包1, 王子腾2, 任延杰1,2(), 董少阳2, 甘浪2, 李聪2
1.浙江科技大学智能制造与能源工程学院 杭州 310023
2.长沙理工大学能源与动力工程学院 长沙 410076
Hot Corrosion Behavior of CoCrNi Medium-entropy Alloys Fabricated by Laser Powder Bed Fusion
ZHOU Xiaobao1, WANG Ziteng2, REN Yanjie1,2(), DONG Shaoyang2, GAN Lang2, LI Cong2
1.School of Intelligent Manufacturing and Energy Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China
2.Department of Energy and Power Engineering, Changsha University of Science and Technology, Changsha 410076, China
引用本文:

周小包, 王子腾, 任延杰, 董少阳, 甘浪, 李聪. 激光粉末床熔融成形CoCrNi中熵合金的高温热腐蚀行为[J]. 中国腐蚀与防护学报, 2026, 46(1): 115-125.
Xiaobao ZHOU, Ziteng WANG, Yanjie REN, Shaoyang DONG, Lang GAN, Cong LI. Hot Corrosion Behavior of CoCrNi Medium-entropy Alloys Fabricated by Laser Powder Bed Fusion[J]. Journal of Chinese Society for Corrosion and protection, 2026, 46(1): 115-125.

全文: PDF(17789 KB)   HTML
摘要: 

采用电化学阻抗谱技术研究激光粉末床熔融(LPBF)成形和轧制CoCrNi中熵合金(MEA)在650 ℃高温环境中受50%KCl + 50%Na2SO4 (质量分数)混合盐膜作用时的腐蚀行为。结果表明,LPBF成形合金在腐蚀周期内呈双容抗弧响应,而轧制合金在腐蚀初期呈双容抗特征,随着时间延长逐渐转变为扩散特征。微观表征显示,LPBF成形合金表面形成由Co3O4、NiO、Ni3S2和Cr2O3组成的多元产物层结构;而轧制合金表面仅生成单一Cr2O3,且伴随严重的内氧化。两种合金的晶界密度和晶界特征分布影响了金属原子和腐蚀介质的扩散行为,进而导致其电化学腐蚀行为及腐蚀产物膜结构存在差异。

关键词 热腐蚀激光粉末床熔融CoCrNi中熵合金电化学阻抗谱微观组织    
Abstract

Herein, the corrosion behavior of two CoCrNi medium entropy alloys (MEA) with the same chemical composition, but prepared by laser powder bed fusion (LPBF) and rolling respectively, was comparatively investigated beneath a molten mixed salt film of 50%KCl + 50%Na2SO4 (mass fraction) at 650 oC by means of electrochemical impedance spectroscopy. The results reveal that the LPBF-fabricated alloy exhibits a double capacitive response, whereas the rolled alloy displays a transition from double capacitive characteristics to diffusion-dominated behavior with increasing corrosion time. Microscopic characterization shows that the LPBF-fabricated alloy surface forms a layered multi-product consisting of Co3O4, NiO, Ni3S2 and Cr2O3, while the rolled alloy surface generates only a single Cr2O3, accompanied by severe internal oxidation. The distinct corrosion behavior may be attributed to the influence of grain boundary density and grain boundary distribution characteristics on the metal atom diffusion and corrosive medium permeation, thereby affecting the characteristics of electrochemical impedance spectra and the composition and structure of corrosion product films.

Key wordshot corrosion    laser powder bed fusion    CoCrNi MEA    electrochemical impedance spectroscopy    microstructure
收稿日期: 2025-06-06      32134.14.1005.4537.2025.170
ZTFLH:  TG174  
基金资助:国家自然科学基金(52171066);国家自然科学基金(52175129)
通讯作者: 任延杰,E-mail:yjren@zust.edu.cn,研究方向为中熵合金
作者简介: 周小包,1994年出生,2024年毕业于湘潭大学,获博士学位。现就职于浙江科技大学,讲师,主要研究方向为能源材料腐蚀与防护,近5 年以第一/通讯作者在Corrosion Science、Bioelectrochemistry 等期刊发表SCI论文8篇。
任延杰,1979 年出生,2008 年毕业于中国科学院金属研究所,获博士学位。现就职于浙江科技大学,教授、硕士生导师,中国腐蚀与防护学会高温专业委员会委员。主要从事动力电池关键材料、新能源材料、动力设备高温腐蚀与防护等方面的研究。先后主持国家自然科学基金、省自然科学基金等项目10余项。在国内外权威期刊上发表论文50 余篇,出版学术专著1 部、授权发明专利10余项。获湖南省科技进步三等奖2项、中国腐蚀与防护学会科学技术一、二等奖各1项。
图1  LPBF用CoCrNi MEA粉末的形貌、粒径分布和扫描策略示意图
图2  熔盐电化学测试系统
图3  LPBF CoCrNi和轧制CoCrNi合金的金相显微结构和XRD谱图
图4  LPBF CoCrNi和轧制CoCrNi合金的EBSD结构表征图集
图5  LPBF CoCrNi MEA在高温盐膜腐蚀下的阻抗特征
图6  轧制CoCrNi MEA在高温盐膜腐蚀下的阻抗特征
图7  LPBF CoCrNi和轧制CoCrNi合金的拟合等效电路
AlloyTimeRsY0, dlndlRdlY0, dndY0, fnfRf
/ h/ Ω·cm2/ Ω-1·cm-2·s-n/ Ω·cm2/ Ω-1·cm-2·s-n/ Ω-1·cm-2·s-n/ Ω·cm2
LPBF CoCrNi30.9690.6200.6117.864--0.5600.838114.6
101.1280.0630.5590.699--0.2680.609167.3
241.1420.0750.5270.722--0.3080.66963.69
301.1260.0880.5090.817--0.3260.68964.28
481.1850.1060.4790.979--0.3600.70765.82
Rolled CoCrNi31.0590.2370.8003.467--0.1090.715259.7
101.1540.1590.4044.471--0.0980.723244.1
241.1900.1550.4098.789--0.1110.677280.7
300.9730.1000.5292.1270.0950.5601---
480.9980.0800.5140.88530.1310.5054---
表1  LPBF和轧制CoCrNi MEA在高温盐膜腐蚀下的电化学阻抗谱拟合参数
图8  LPBF和轧制CoCrNi MEA在50%KCl + 50%Na2SO4盐膜腐蚀48 h后的XRD图谱
图9  LPBF CoCrNi MEA在50%KCl + 50%Na2SO4盐膜腐蚀48 h后的截面形貌和元素EDS分布图
图10  轧制CoCrNi MEA在50%KCl + 50%Na2SO4盐膜腐蚀48 h后的截面形貌和元素EDS分布图
图11  LPBF与轧制CoCrNi MEA在50%KCl-50%Na2SO4熔融盐膜中的腐蚀机理示意图
[1] Cantor B, Chang I T H, Knight P, et al. Microstructural development in equiatomic multicomponent alloys [J]. Mater. Sci. Eng., 2004, 375-377A: 213
[2] Tsai M H, Yeh J W. High-entropy alloys: A critical review [J]. Mater. Res. Lett., 2014, 2: 107
doi: 10.1080/21663831.2014.912690
[3] Yeh J W. Recent progress in high-entropy alloys [J]. Ann. Chim. Sci. Mater., 2006, 31: 633
doi: 10.3166/acsm.31.633-648
[4] Yeh J W, Chen S K, Lin S J, et al. Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes [J]. Adv. Eng. Mater., 2004, 6: 299
doi: 10.1002/adem.v6:5
[5] Jian W R, Xie Z C, Xu S Z, et al. Effects of lattice distortion and chemical short-range order on the mechanisms of deformation in medium entropy alloy CoCrNi [J]. Acta Mater., 2020, 199: 352
doi: 10.1016/j.actamat.2020.08.044
[6] Laplanche G, Kostka A, Reinhart C, et al. Reasons for the superior mechanical properties of medium-entropy CrCoNi compared to high-entropy CrMnFeCoNi [J]. Acta Mater., 2017, 128: 292
doi: 10.1016/j.actamat.2017.02.036
[7] Gludovatz B, Hohenwarter A, Thurston K V S, et al. Exceptional damage-tolerance of a medium-entropy alloy CrCoNi at cryogenic temperatures [J]. Nat. Commun., 2016, 7: 10602
doi: 10.1038/ncomms10602 pmid: 26830651
[8] Agustianingrum M P, Lee U, Park N. High-temperature oxidation behaviour of CoCrNi medium-entropy alloy [J]. Corros. Sci., 2020, 173: 108755
doi: 10.1016/j.corsci.2020.108755
[9] Adomako N K, Kim J H, Hyun Y T. High-temperature oxidation behaviour of low-entropy alloy to medium- and high-entropy alloys [J]. J. Therm. Anal. Calorim., 2018, 133: 13
doi: 10.1007/s10973-018-6963-y
[10] Guo J B, Yang S H, Zhou Z Y, et al. High-temperature oxidation behavior of laser additively manufactured AlCoCrFeNiSi high entropy alloy [J]. J. Chin. Soc. Corros. Prot., 2025, 45: 217
[10] 郭静波, 杨守华, 周子翼 等. 激光增材制造AlCoCrFeNiSi高熵合金的氧化行为 [J]. 中国腐蚀与防护学报, 2025, 45: 217
doi: 10.11902/1005.4537.2024.313
[11] Guo S, Ng C, Liu C T. Anomalous solidification microstructures in Co-free Al x CrCuFeNi2 high-entropy alloys [J]. J. Alloy. Compd., 2013, 557: 77
doi: 10.1016/j.jallcom.2013.01.007
[12] Jia Q B, Gu D D. Selective laser melting additive manufactured Inconel 718 superalloy parts: High-temperature oxidation property and its mechanisms [J]. Opt. Laser Technol., 2014, 62: 161
doi: 10.1016/j.optlastec.2014.03.008
[13] Huang W Y, Li Y T, Yanjie R E N, et al. Effect of scanning speed on the high-temperature oxidation resistance and mechanical properties of Inconel 625 alloys fabricated by selective laser melting [J]. Vacuum, 2022, 206: 111447
doi: 10.1016/j.vacuum.2022.111447
[14] Tan J J, Ding P, Lv F C, et al. Reasons and prevention measures for high-temperature corrosion of water-cooled walls in coal-fired boilers [J]. Total Corros. Control, 2024, 38(10): 205
[14] 谈金军, 丁 鹏, 吕馥丞 等. 燃煤锅炉水冷壁高温腐蚀形成原因及防治措施 [J]. 全面腐蚀控制, 2024, 38(10): 205
[15] Qu Y M, Yuan W, Xu Y F, et al. Corrosion analysis of high-temperature superheater tubes of a waste incineration boiler [J]. Mater. Prot., 2025, 58(2): 131
doi: 10.5937/ZasMat1702131F
[15] 曲炎淼, 袁 玮, 徐云峰 等. 某垃圾焚烧锅炉内高温过热器管腐蚀分析 [J]. 材料保护, 2025, 58(2): 131
[16] Guan Y, Liu G M, Zhang M Q, et al. High temperature corrosion behavior of Sanicro 25 steel in high-sulfur coal ash/simulated flue gas [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 681
[16] 官 宇, 刘光明, 张民强 等. Sanicro 25钢在高硫煤灰/模拟烟气中的高温腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2022, 42: 681
[17] Kyogoku H, Ikeshoji T T. A review of metal additive manufacturing technologies: Mechanism of defects formation and simulation of melting and solidification phenomena in laser powder bed fusion process [J]. Mech. Eng. Rev., 2020, 7: 19-00182
[18] Han B L, Zhang C C, Feng K, et al. Additively manufactured high strength and ductility CrCoNi medium entropy alloy with hierarchical microstructure [J]. Mater. Sci. Eng., 2021, 820A: 141545
[19] Liu Y F, Ren J, Guan S, et al. Microstructure and mechanical behavior of additively manufactured CoCrFeMnNi high-entropy alloys: Laser directed energy deposition versus powder bed fusion [J]. Acta Mater., 2023, 250: 118884
doi: 10.1016/j.actamat.2023.118884
[20] Chen F, Wang Q, Zhang C, et al. Microstructures and mechanical behaviors of additive manufactured Inconel 625 alloys via selective laser melting and laser engineered net shaping [J]. J. Alloy. Compd., 2022, 917: 165572
doi: 10.1016/j.jallcom.2022.165572
[21] Ni C S, Lu L Y, Zeng C L, et al. Electrochemical impedance studies of the initial-stage corrosion of 310S stainless steel beneath thin film of molten (0.62Li, 0.38K)2CO3 at 650 oC [J]. Corros. Sci., 2011, 53: 1018
doi: 10.1016/j.corsci.2010.11.036
[22] Encinas-Sánchez V, de Miguel M T, Lasanta M I, et al. Electrochemical impedance spectroscopy (EIS): An efficient technique for monitoring corrosion processes in molten salt environments in CSP applications [J]. Sol. Energy Mater. Sol. Cells, 2019, 191: 157
doi: 10.1016/j.solmat.2018.11.007
[23] Trinstancho-Reyes J L, Sanchez-Carrillo M, Sandoval-Jabalera R, et al. Electrochemical impedance spectroscopy investigation of alloy Inconel 718 in molten salts at high temperature [J]. Int. J. Electrochem. Sci., 2011, 6: 419
doi: 10.1016/S1452-3981(23)15005-X
[24] Li J, Zeng C L. Electrochemical impedance study of (Na, K)2SO4 induced hot corrosion of pure nickel and Ni-based superalloy M38G [J]. Corros. Sci. Prot. Technol., 2005, 17: 50
[24] 李 杰, 曾潮流. (Na, K)2SO4沉积引起的纯Ni和M38G合金热腐蚀的电化学阻抗研究 [J]. 腐蚀科学与防护技术, 2005, 17: 50
[25] Zeng C L, Wang W, Wu W T. Corrosion electrochemical-impedance of Fe-Cr alloys in eutectic (Li, K)2CO3 mixture at 650 oC [J]. Corros. Sci. Prot. Technol., 2000, 12: 249
[25] 曾潮流, 王 文, 吴维㞵. Fe-Cr合金在650 ℃共晶(Li, K)2CO3熔盐中的腐蚀电化学阻抗谱研究 [J]. 腐蚀科学与防护技术, 2000, 12: 249
[26] Zeng C L, Li J. Electrochemical impedance studies of molten (0.9Na, 0.1K)2SO4-induced hot corrosion of the Ni-based superalloy M38G at 900 oC in air [J]. Electrochim. Acta, 2005, 50: 5533
doi: 10.1016/j.electacta.2005.03.034
[27] Li Y M, Liu H, Qiao Z, et al. Comparison on hot corrosion behaviors of Ni-base superalloy DD5, DD10 and DSM11 [J]. Chin. J. Nonferrous Met., 2020, 30: 2105
[27] 李艳明, 刘 欢, 乔 志 等. 镍基高温合金DD5、DD10和DSM11热腐蚀行为比较 [J]. 中国有色金属学报, 2020, 30: 2105
[28] Hong M, Samuha S, Hosemann P. Corrosion mechanism of cold forged 316 stainless steel in molten FLiNaK salt [J]. Corros. Sci., 2024, 232: 111990
doi: 10.1016/j.corsci.2024.111990
[29] Yang T S, Zhang G Q, Dai Z Y, et al. Study of corrosion behavior of Inconel 625 cladding metal in KCl-MgCl2 molten salt under isothermal and thermal cycling conditions [J]. J. Mater. Sci., 2023, 58: 13205
doi: 10.1007/s10853-023-08823-7
[30] Pan C L, Li X Q, Luo H, et al. Thermal oxidation behavior of CoCrNi medium-entropy alloy bond coatings deposited using laser cladding process [J]. Corros. Sci., 2022, 194: 109956
doi: 10.1016/j.corsci.2021.109956
[31] Zhao B, Wang Q L, Ren Y J, et al. Hot corrosion behavior of Inconel 625 alloys fabricated by selective laser melting [J]. Chin. J. Nonferrous Met., 2024, 34: 2030
[31] 赵 斌, 王琪霖, 任延杰 等. 激光选区熔化Inconel 625合金的高温热腐蚀行为 [J]. 中国有色金属学报, 2024, 34: 2030
[32] Liu G M, Liu K S, Mao X F, et al. Hot corrosion of T91 steel in molten mixture of KCl + Na2SO4 + K2SO4 [J]. J. Chin. Soc. Corros. Prot., 2017, 37: 23
[32] 刘光明, 刘康生, 毛晓飞 等. T91钢在KCl + Na2SO4 + K2SO4熔融盐中的热腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2017, 37: 23
doi: 10.11902/1005.4537.2016.168
[33] Yang Y F, Liu Z L, Ren P, et al. Hot corrosion behavior of Pt + Hf co-modified NiAl coating in the mixed salt of Na2SO4-NaCl at 900 oC  [J]. Corros. Sci., 2020, 167: 108527
doi: 10.1016/j.corsci.2020.108527
[34] Zhang Z W, Li J K, Xu W H, et al. Effects of overlapping process on grain orientation and microstructure of nickel-based single-crystal superalloy DD491 fabricated by selective laser melting [J]. Acta Metall. Sin., 2024, 60: 1471
doi: 10.11900/0412.1961.2023.00230
[34] 张振武, 李继康, 许文贺 等. 搭接工艺对选区激光熔化镍基单晶高温合金DD491晶体取向与微观组织的影响 [J]. 金属学报, 2024, 60: 1471
doi: 10.11900/0412.1961.2023.00230
[35] Dong N, Qin W R, Han P D. Theoretical study in adsorption behavior of S and Cl on surface and its effect on corrosion performance of γ-FeM (111) (M = Cr, Ni, Mn, Mo, Cu, Ce) [J]. J. Chin. Soc. Corros. Prot., 2024, 44: 1566
[35] 董 楠, 秦慰蓉, 韩培德. S、Cl表面吸附及其对γ-FeM(111) (M =Cr、Ni、Mn、Mo、Cu、Ce)腐蚀的理论研究 [J]. 中国腐蚀与防护学报, 2024, 44: 1566
[36] Ghaffari Y, Daub K, Long F, et al. Comparing the intergranular oxidation of Ni-Cr and Ni-Al model alloys in 480 oC hydrogenated steam [J]. Scr. Mater., 2023, 232: 115501
doi: 10.1016/j.scriptamat.2023.115501
[37] Teng Q, Li S, Xue P J, et al. High-temperature corrosion resistance of Inconel 718 fabricated by selective laser melting [J]. Chin. J. Nonferrous Met., 2019, 29: 1417
[37] 滕 庆, 李 帅, 薛鹏举 等. 激光选区熔化Inconel 718合金高温腐蚀性能 [J]. 中国有色金属学报, 2019, 29: 1417
[38] Hu B, Zhang H Q, Zhang J, et al. Progress in interfacial thermodynamics and grain boundary complexion diagram [J]. Acta Metall. Sin., 2021, 57: 1199
doi: 10.11900/0412.1961.2021.00036
[38] 胡 标, 张华清, 张 金 等. 界面热力学与晶界相图的研究进展 [J]. 金属学报, 2021, 57: 1199
[39] Xiao Z G, Huang Y, Liu Z X, et al. The role of grain boundaries in the corrosion process of Fe surface: Insights from ReaxFF molecular dynamic simulations [J]. Metals, 2022, 12: 876
doi: 10.3390/met12050876
[1] 苏宝献, 高如心, 朱国强, 姜博涛, 王斌斌, 刘琛, 于永生, 王亮, 苏彦庆. 热处理工艺对电子束熔丝沉积Ti-6Al-3Nb-2Zr-1Mo合金微观组织与腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2026, 46(1): 81-91.
[2] 张泽群, 骆鑫杰, 刘鹏飞, 董凯, 卓先勤, 吴俊升, 张博威. TiC颗粒对激光粉末床熔融Al-Mg-Sc-Zr合金的微观结构与腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2026, 46(1): 92-102.
[3] 杨潇文, 陈泽浩, 杨莎莎, 王群昌, 王金龙, 陈明辉, 王福会. 镍基单晶高温合金N5及其纳米晶涂层的短期热腐蚀行为研究[J]. 中国腐蚀与防护学报, 2026, 46(1): 252-260.
[4] 庄宁, 曾易, 欧阳正平, 许金荣, 李翰泽, 宋霄锟, 王亚洲. 海洋环境下钢筋混凝土桩基的腐蚀与阴极保护特征分析[J]. 中国腐蚀与防护学报, 2026, 46(1): 273-282.
[5] 叶俊, 罗鑫, 镇咸生, 李新平, 谢云, 彭晓. Inconel 718合金在750 ℃下不同气氛中的氧化与热腐蚀行为研究[J]. 中国腐蚀与防护学报, 2025, 45(6): 1528-1536.
[6] 王得, 张璠, 王兴奇, 张贺新, 赵成志, 杨延格. 单组分氟碳改性环氧涂层对碳钢和铝合金长期防腐性能的对比研究[J]. 中国腐蚀与防护学报, 2025, 45(6): 1549-1562.
[7] 许诗源, 孟鑫, 杨亚璋, 刘辰, 张昭, 方晓祖. 腐蚀形貌对镁合金电化学阻抗谱特征的影响研究[J]. 中国腐蚀与防护学报, 2025, 45(6): 1589-1598.
[8] 彭望, 陈荐, 杨凌旭, 刘会军, 梁建平, 曾潮流. NaCl347HGH3539在熔融硝酸盐中热腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2025, 45(6): 1610-1618.
[9] 白英雄, 王艳丽, 李相伟, 吴泽峰, 张书彦. 热处理对激光选区熔化GH4099镍基高温合金900 ℃(75%Na2SO4 + 25%NaCl)热腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2025, 45(6): 1709-1716.
[10] 郭玉杰, 李艳辉, 夏大海, 胡文彬. 腐蚀电化学阻抗谱的数据解析与物理模型研究进展[J]. 中国腐蚀与防护学报, 2025, 45(5): 1143-1160.
[11] 夏大海, 潘成成, 郭玉杰, 胡文彬, TRIBOLLET Bernard. EIS研究7050铝合金在NaCl溶液空蚀作用下的界面状态与腐蚀机制[J]. 中国腐蚀与防护学报, 2025, 45(5): 1196-1204.
[12] 何武豪, 刘阳, 杨思懿, 张韶栋, 吴伟, 张俊喜. 敏化处理对传统和增材制造316L不锈钢电化学和晶间腐蚀的影响[J]. 中国腐蚀与防护学报, 2025, 45(5): 1331-1340.
[13] 赵欣宇, 刘恩泽, 张功, 赵媛, 宁礼奎, 信昕, 贾丹, 刘伟华, 谭政. 不同温度下DD10合金钎焊接头热腐蚀行为研究[J]. 中国腐蚀与防护学报, 2025, 45(5): 1361-1370.
[14] 李丽, 李善文, 史洪微, 梁国平, 李春霖, 孙禹, 秦晋, 王伟, 韩恩厚. 高速列车用铝合金环氧底漆的腐蚀行为和湿热老化机理研究[J]. 中国腐蚀与防护学报, 2025, 45(3): 757-764.
[15] 樊嘉骏, 董立谨, 马成, 张兹瑜, 明洪亮, 韦博鑫, 彭庆, 王勤英. 掺氢天然气环境下管线钢氢致疲劳裂纹扩展研究进展[J]. 中国腐蚀与防护学报, 2025, 45(2): 296-306.