Please wait a minute...
中国腐蚀与防护学报  2026, Vol. 46 Issue (1): 103-114     CSTR: 32134.14.1005.4537.2025.257      DOI: 10.11902/1005.4537.2025.257
  增材制造与腐蚀专题 本期目录 | 过刊浏览 |
激光定向能量沉积17-4PH不锈钢钝化与点蚀行为研究
谷清宇1, 宋雁飞1, 张亮亮2, 王楠1, 雷晓维1()
1.西北工业大学物理科学与技术学院 西安 710129
2.西安建筑科技大学冶金工程学院 西安 710055
Passivation and Pitting Corrosion Behavior of Laser Directed Energy Deposited 17-4PH Stainless Steel
GU Qingyu1, SONG Yanfei1, ZHANG Liangliang2, WANG Nan1, LEI Xiaowei1()
1.School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an 710129, China
2.School of Metallurgical Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
引用本文:

谷清宇, 宋雁飞, 张亮亮, 王楠, 雷晓维. 激光定向能量沉积17-4PH不锈钢钝化与点蚀行为研究[J]. 中国腐蚀与防护学报, 2026, 46(1): 103-114.
Qingyu GU, Yanfei SONG, Liangliang ZHANG, Nan WANG, Xiaowei LEI. Passivation and Pitting Corrosion Behavior of Laser Directed Energy Deposited 17-4PH Stainless Steel[J]. Journal of Chinese Society for Corrosion and protection, 2026, 46(1): 103-114.

全文: PDF(18249 KB)   HTML
摘要: 

激光定向能量沉积(DED) 17-4PH不锈钢比传统制造方法具有更细的晶粒且存在残余奥氏体,现有研究主要聚焦于其力学性能,针对钝化与点蚀行为的研究仍然欠缺。本文通过动电位极化曲线、电化学阻抗谱、恒电位极化、临界点蚀温度、Mott-Schottky曲线等电化学测试手段,结合XRD、SEM、EBSD与XPS等表征方法,研究了3种DED热输入的17-4PH不锈钢与传统挤压件的组织特征及在Cl-溶液中的钝化与点蚀行为。结果表明:热输入1440 J·cm-1的DED样品含有6.9%的残余奥氏体(EBSD体积分数),与传统挤压件相比,DED样品马氏体板条细化67.5%,点蚀电位提升0.131 V (vs. Ag/AgCl),亚稳态点蚀抗性更强,临界点蚀温度由47.9 ℃升高至67.2 ℃,钝化膜的点缺陷密度更低且Cr氧化物含量更高,说明DED样品的钝化能力更强,具有更为优异的耐点蚀性能。

关键词 17-4PH不锈钢激光定向能量沉积残余奥氏体钝化膜点蚀    
Abstract

In comparison with those prepared by ordinary hot extrusion method, the 17-4PH stainless steel fabricated by laser directed energy deposition (DED) has finer grains and retained austenite. However, current research mainly focuses on its mechanical properties, and there is still a lack of studies on its passivation and pitting corrosion behavior. In this work, the microstructural characteristics, passivation, and pitting behavior in 3.5%NaCl solution of 17-4PH stainless steel prepared with three different DED heat inputs were assessed by taking the hot extruded 17-4PH steel as comparison, via potentiodynamic polarization curves, electrochemical impedance spectroscopy, potentiostatic polarization, critical pitting temperature, and Mott-Schottky curves, as well as XRD, SEM, EBSD, and XPS. The results show that the DED steel prepared with a heat input of 1440 J·cm-1 contains 6.9% retained austenite (EBSD volume fraction). Compared with the hot extruded steel the lath martensite size of DED steel is reduced by 67.5%, the pitting potential is increased by 0.131 V (vs. Ag/AgCl), the resistance to metastable pitting is higher, the critical pitting temperature is elevated from 47.9 oC to 67.2 oC, besides, the point defect density is lower and the Cr oxide content is higher for the passivation film. These findings indicate that the DED sample has stronger passivation ability and superior pitting corrosion resistance.

Key words17-4PH stainless steel    laser directed energy deposition (DED)    retained austenite    passive film    pitting corrosion
收稿日期: 2025-08-08      32134.14.1005.4537.2025.257
ZTFLH:  TG178  
基金资助:国家自然科学基金(52571101);国家自然科学基金(52404351);国家科技重大专项(2025ZD1402005)
通讯作者: 雷晓维,E-mail:xiaowei_lei@nwpu.edu.cn,研究方向为金属材料腐蚀与防护
作者简介: 谷清宇,2001 年出生,本科与硕士均就读于西北工业大学物理科学与技术学院,目前为材料物理与化学专业2026 届硕士生。研究方向为增材制造17-4PH不锈钢的微观组织与腐蚀性能研究,聚焦不同热输入条件下激光定向能量沉积17-4PH不锈钢与传统挤压件在组织结构、相组成方面的差异,进而揭示微观组织对其钝化与点蚀性能的影响规律与作用机理。
雷晓维,1987年出生,西北工业大学副教授,硕士生导师。2017年获西安交通大学材料科学与工程专业博士学位,美国加州大学伯克利分校联合培养博士。担任中国机械工程学会材料分会委员,中国腐蚀与防护学会油气田及管道腐蚀与安全专业委员会委员,《中国腐蚀与防护学报》、《稀有金属》、《热加工工艺》期刊青年编委。主要从事航空航天材料腐蚀与防护、金属激光增材制造/焊接/表面处理方面的研究。主持国家自然科学基金2 项、国家科技重大专项子课题任务1 项、省部级项目4项、重点实验室基金及横向项目15项。获陕西省科学技术进步一等奖、陕西高等学校科学技术研究优秀成果一等奖、中国腐蚀与防护学会科学技术一等奖。以第一/通讯作者在Corros. Sci.、Appl. Surf. Sci.、Surf. Coat. Technol.等期刊发表论文30余篇。
SampleLaser power / WScanning speed / mm·min-1Layer thickness / mmPowder feeding rate / g·min-1Heat input / J·cm-1
1#12004500.910.61600
2#12005000.910.61440
3#12005500.910.61309
表1  同轴送粉DED 17-4PH不锈钢样品的制备参数
图1  17-4PH不锈钢DED样品和挤压件的XRD图谱
图2  17-4PH不锈钢DED样品和挤压件的SEM图像
图3  DED样品和挤压件中碳化物数量和尺寸对比
图4  17-4PH不锈钢DED样品和挤压件的EBSD表征结果
图5  17-4PH不锈钢在3.5%NaCl溶液中的动电位极化曲线
SampleEcorr / V (vs. Ag/AgCl)Icorr / A·cm-2Ep / V (vs. Ag/AgCl)ΔE / V (vs. Ag/AgCl)
1#-0.1781.67 × 10-70.1990.377
2#-0.1988.17 × 10-80.2180.416
3#-0.1881.42 × 10-70.1800.368
Extruded-0.2211.20 × 10-70.0870.308
表2  动电位极化曲线Tafel拟合得到的腐蚀参数
图6  17-4PH不锈钢在3.5%NaCl溶液中的亚稳态点蚀行为
图7  17-4PH不锈钢在3.5%NaCl溶液中的临界点蚀温度测试曲线
图8  17-4PH不锈钢在6%FeCl3溶液中浸泡8 h后的点蚀形貌
图9  17-4PH不锈钢点蚀萌生部位的SEM形貌和EDS面扫描分析
图10  17-4PH不锈钢在3.5%NaCl溶液中的电化学阻抗谱与等效电路
SampleRs / Ω·cm2Cdl / Ω-1·cm-2·s nnRp / Ω·cm2
1#9.444.98 × 10-50.901.16 × 105
2#8.395.01 × 10-50.821.95 × 105
3#8.587.75 × 10-50.851.30 × 105
Extruded14.721.15 × 10-40.890.61 × 105
表3  17-4PH不锈钢的电化学阻抗谱拟合结果
图11  17-4PH不锈钢在3.5%NaCl溶液中的Mott-Schottky曲线
SampleND / cm-3EFB / V (vs. Ag/AgCl)
1#2.09 × 1021-0.45
2#4.53 × 1021-0.44
3#4.15 × 1021-0.51
Extruded4.95 × 1021-0.56
表4  Mott-Schottky曲线拟合得到的钝化膜施主密度与平带电位
图12  17-4PH不锈钢表面钝化膜的XPS光谱
[1] Galindo-Nava E I, Rainforth W M, Rivera-Díaz-del-Castillo P E J. Predicting microstructure and strength of maraging steels: Elemental optimisation [J]. Acta Mater., 2016, 117: 270
doi: 10.1016/j.actamat.2016.07.020
[2] Wang J, Zou H, Li C, et al. The effect of microstructural evolution on hardening behavior of type 17-4PH stainless steel in long-term aging at 350 oC [J]. Mater. Charact., 2006, 57: 274
doi: 10.1016/j.matchar.2006.02.004
[3] Nakhaie D. Investigating the impact of pre-deformation on age hardening and pitting corrosion resistance of 17-4PH stainless steel [J]. Metall. Mater. Trans., 2023, 54A: 3653
[4] LeBrun T, Nakamoto T, Horikawa K, et al. Effect of retained austenite on subsequent thermal processing and resultant mechanical properties of selective laser melted 17-4PH stainless steel [J]. Mater. Des., 2015, 81: 44
doi: 10.1016/j.matdes.2015.05.026
[5] Stoudt M R, Ricker R E, Lass E A, et al. Influence of postbuild microstructure on the electrochemical behavior of additively manufactured 17-4 PH stainless steel [J]. JOM, 2017, 69: 506
doi: 10.1007/s11837-016-2237-y pmid: 28757787
[6] Barroux A, Ducommun N, Nivet E, et al. Pitting corrosion of 17-4PH stainless steel manufactured by laser beam melting [J]. Corros. Sci., 2020, 169: 108594
doi: 10.1016/j.corsci.2020.108594
[7] Wang T, Wang Z Y, Wang R, et al. Effect of solution aging treatment on corrosion resistance and erosion resistance of laser metal deposition 17-4PHss [J]. Eng. Failure Anal., 2025, 169: 109167
doi: 10.1016/j.engfailanal.2024.109167
[8] Garcia-Cabezon C, Castro-Sastre M A, Fernandez-Abia A I, et al. Microstructure-hardness-corrosion performance of 17-4 precipitation hardening stainless steels processed by selective laser melting in comparison with commercial alloy [J]. Met. Mater. Int., 2022, 28: 2652
doi: 10.1007/s12540-021-01155-8
[9] Standard test methods for electrochemical critical pitting temperature testing of stainless steels [S]. West Conshohocken, Pennsylvania: ASTM International, 2013
[10] Deng B, Jiang Y M, Hao R W, et al. Synergetic effect of fluoride and chloride on the critical pitting temperature of 316 stainless steel [J]. J. Chin. Soc. Corros. Prot., 2008, 28: 30
[10] 邓 博, 蒋益明, 郝允卫 等. F-和Cl-对316不锈钢临界点蚀温度的协同作用 [J]. 中国腐蚀与防护学报, 2008, 28: 30
[11] Yang Z Y, Ji C, Guo L Y, et al. Initial corrosion behavior of several pure irons and steels in 3.5%NaCl solution [J]. J. Chin. Soc. Corros. Prot., 2025, 45: 469
[11] 杨震宇, 基 超, 郭丽雅 等. 6种典型商用纯铁和钢材在3.5%NaCl溶液中的初期腐蚀行为 [J]. 中国腐蚀与防护学报, 2025, 45: 469
doi: 10.11902/1005.4537.2024.338
[12] Hou Y, Zhao J, Cao T S, et al. Improvement on the pitting corrosion resistance of 304 stainless steel via duplex passivation treatment [J]. Mater. Corros., 2019, 70: 1764
[13] Goodlet G, Faty S, Cardoso S, et al. The electronic properties of sputtered chromium and iron oxide films [J]. Corros. Sci., 2004, 46: 1479
doi: 10.1016/j.corsci.2003.09.022
[14] Li Z, Zhang Y W, Meng G Z, et al. Electrochemical corrosion behavior of 17-4PH stainless steel with laser surface melting treatment [J]. J. Chin. Soc. Corros. Prot., 2012, 32: 210
[14] 李 众, 张峻巍, 孟国哲 等. 激光表面处理17-4PH不锈钢的电化学腐蚀行为 [J]. 中国腐蚀与防护学报, 2012, 32: 210
[15] Olugbade T O, Oladapo B I, Omiyale B O. Electrochemical and microstructural characterization of a precipitation hardened 17-4 steel in different environments [J]. Colloids Surf., 2025, 706A: 135795
[16] Wang Z, Feng Z, Zhang L. Effect of high temperature on the corrosion behavior and passive film composition of 316L stainless steel in high H2S-containing environments [J]. Corros. Sci., 2020, 174: 108844
doi: 10.1016/j.corsci.2020.108844
[17] Carmezim M J, Simões A M, Montemor M F, et al. Capacitance behaviour of passive films on ferritic and austenitic stainless steel [J]. Corros. Sci., 2005, 47: 581
doi: 10.1016/j.corsci.2004.07.002
[18] Barroux A, Duguet T, Ducommun N, et al. Combined XPS/TEM study of the chemical composition and structure of the passive film formed on additive manufactured 17-4PH stainless steel [J]. Surf. Interfaces, 2021, 22: 100874
[19] Biesinger M C, Payne B P, Grosvenor A P, et al. Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Cr, Mn, Fe, Co and Ni [J]. Appl. Surf. Sci., 2011, 257: 2717
doi: 10.1016/j.apsusc.2010.10.051
[20] Süzer S, Kadirgan F, Söhmen H M. XPS characterization of Co and Cr pigmented copper solar absorbers [J]. Sol. Energy Mater. Sol. Cells, 1999, 56: 183
doi: 10.1016/S0927-0248(98)00159-7
[21] Lei X W, Feng Y R, Zhang J X, et al. Impact of reversed austenite on the pitting corrosion behavior of super 13Cr martensitic stainless steel [J]. Electrochim. Acta, 2016, 191: 640
doi: 10.1016/j.electacta.2016.01.094
[22] Ping S B, Xie F, Wang R K, et al. Diffusion kinetics of chromium in a novel Super304H stainless steel [J]. High Temp. Mater. Processes, 2017, 36: 175
doi: 10.1515/htmp-2015-0227
[23] Wang L, Dong C F, Man C, et al. Effect of microstructure on corrosion behavior of high strength martensite steel: A literature review [J]. Int. J. Miner. Metall. Mater., 2021, 28: 754
doi: 10.1007/s12613-020-2242-6
[24] Tavares S S M, da Silva F J, Scandian C, et al. Microstructure and intergranular corrosion resistance of UNS S17400 (17-4PH) stainless steel [J]. Corros. Sci., 2010, 52: 3835
doi: 10.1016/j.corsci.2010.07.016
[25] Colaço R, Vilar R. Stabilisation of retained austenite in laser surface melted tool steels [J]. Mater. Sci. Eng., 2004, 385A: 123
[26] Ralston K D, Birbilis N, Davies C H J. Revealing the relationship between grain size and corrosion rate of metals [J]. Scr. Mater., 2010, 63: 1201
doi: 10.1016/j.scriptamat.2010.08.035
[27] Li Y, Zhang B C, Qu X H. Research progress on the influence of microstructure characteristics of metal additive manufacturing on its corrosion resistance [J]. Chin. J. Eng., 2022, 44: 573
[27] 李 莹, 张百成, 曲选辉. 金属增材制造的微观组织特征对其抗腐蚀行为影响的研究进展 [J]. 工程科学学报, 2022, 44: 573
[1] 衣俊达, 冷傲, 宫得伦, 韦博鑫. 低模量耐腐蚀亚稳 β 钛合金的电子束增材制造与性能研究[J]. 中国腐蚀与防护学报, 2026, 46(1): 49-59.
[2] 黄泽邦, 刘光明, 范文学, 徐睿中, 朱炎彬, 刘晨辉. 钝化时间对304不锈钢耐蚀性能的影响[J]. 中国腐蚀与防护学报, 2025, 45(6): 1741-1747.
[3] 李萍, 时慧杰, 裴继斌, 王子健, 曹铁山, 程从前, 赵杰. 纳秒激光辐照对17-4PH不锈钢电化学腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2025, 45(5): 1417-1424.
[4] 许竞翔, 黄睿阳, 褚振华, 蒋全通. FeNiCoCrW0.2Al0.1 高熵合金在硫酸盐还原菌溶液环境下的腐蚀研究[J]. 中国腐蚀与防护学报, 2025, 45(2): 460-468.
[5] 翟熙伟, 刘士一, 王丽, 贾瑞灵, 张慧霞. 载荷对5383铝合金焊接接头电化学腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2025, 45(2): 515-522.
[6] 苏志诚, 张弦, 程焱, 刘静, 吴开明. 同成分的超细贝氏体钢和Q&P钢在海水中应力腐蚀开裂行为对比研究[J]. 中国腐蚀与防护学报, 2024, 44(6): 1495-1506.
[7] 张雅妮, 王思敏, 樊冰. TC4钛合金在O2 + CO2 气氛的高温高压模拟水沉积液中表面形成的钝化膜研究[J]. 中国腐蚀与防护学报, 2024, 44(6): 1518-1528.
[8] 史先飞, 陈晓华, 满成. HRB400钢在模拟混凝土孔隙液中的自然钝化行为及耐蚀性能的研究[J]. 中国腐蚀与防护学报, 2024, 44(5): 1213-1222.
[9] 洪孝木, 王永强, 李娜, 田凯, 杜娟. 时效处理对马氏体时效硬化不锈钢显微组织和局部腐蚀性能的影响[J]. 中国腐蚀与防护学报, 2024, 44(5): 1285-1294.
[10] 杨成, 杨广明, 王建军, 苗学良, 张译, 孙宝壮, 刘智勇. 温度对核电站用42CrMoE低合金钢在硼酸模拟液中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2024, 44(5): 1345-1352.
[11] 彭文山, 邢少华, 钱峣, 蔺存国, 侯健, 张大磊. 流动海水冲刷下TA2纯钛管路钝化膜腐蚀特性研究[J]. 中国腐蚀与防护学报, 2024, 44(4): 1038-1046.
[12] 麻衡, 田会云, 刘宇茜, 王月香, 何康, 崔中雨, 崔洪芝. S420海工钢在不同海洋区带环境下的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2024, 44(3): 635-644.
[13] 邢少华, 彭文山, 钱峣, 李相波, 马力, 张大磊. 海水流速对经抛光和钝化表面处理的2205不锈钢点蚀的影响[J]. 中国腐蚀与防护学报, 2024, 44(3): 658-668.
[14] 张成龙, 张斌, 朱敏, 袁永锋, 郭绍义, 尹思敏. CoCrNi中熵合金在不同浓度NH4Cl溶液中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2024, 44(3): 725-734.
[15] 耿真真, 张钰柱, 杜小将, 吴汉辉. S2-Cl-316L奥氏体不锈钢的腐蚀钝化行为的协同作用[J]. 中国腐蚀与防护学报, 2024, 44(3): 797-806.