Please wait a minute...
中国腐蚀与防护学报  2026, Vol. 46 Issue (1): 81-91     CSTR: 32134.14.1005.4537.2025.290      DOI: 10.11902/1005.4537.2025.290
  增材制造与腐蚀专题 本期目录 | 过刊浏览 |
热处理工艺对电子束熔丝沉积Ti-6Al-3Nb-2Zr-1Mo合金微观组织与腐蚀行为的影响
苏宝献1,2,3, 高如心1, 朱国强1(), 姜博涛1, 王斌斌4, 刘琛5, 于永生2, 王亮1, 苏彦庆1
1.哈尔滨工业大学 金属精密热加工国家级重点实验室 哈尔滨 150001
2.哈尔滨工业大学化学与化工学院 哈尔滨 150001
3.华中科技大学 材料成形与模具技术全国重点实验室 武汉 430074
4.滨州铝产业先进制造山东省实验室 滨州 256606
5.哈尔滨工业大学物理学院 哈尔滨 150001
Effects of Post Heat Treatment on Microstructure and Corrosion Behavior of Ti-6Al-3Nb-2Zr-1Mo Alloy Fabricated by Electron Beam Freeform Fabrication
SU Baoxian1,2,3, GAO Ruxin1, ZHU Guoqiang1(), JIANG Botao1, WANG Binbin4, LIU Chen5, YU Yongsheng2, WANG Liang1, SU Yanqing1
1.National Key Laboratory for Precision Hot Processing of Metals, School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
2.School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
3.State Key Laboratory of Materials Processing and Die & Mould Technology, Huazhong University of Science and Technology, Wuhan 430074, China
4.Shandong Laboratory of Aluminum Advanced Manufacturing in Binzhou, Binzhou 256606, China
5.School of Physics, Harbin Institute of Technology, Harbin 150001, China
引用本文:

苏宝献, 高如心, 朱国强, 姜博涛, 王斌斌, 刘琛, 于永生, 王亮, 苏彦庆. 热处理工艺对电子束熔丝沉积Ti-6Al-3Nb-2Zr-1Mo合金微观组织与腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2026, 46(1): 81-91.
Baoxian SU, Ruxin GAO, Guoqiang ZHU, Botao JIANG, Binbin WANG, Chen LIU, Yongsheng YU, Liang WANG, Yanqing SU. Effects of Post Heat Treatment on Microstructure and Corrosion Behavior of Ti-6Al-3Nb-2Zr-1Mo Alloy Fabricated by Electron Beam Freeform Fabrication[J]. Journal of Chinese Society for Corrosion and protection, 2026, 46(1): 81-91.

全文: PDF(11762 KB)   HTML
摘要: 

Ti-6Al-3Nb-2Zr-1Mo (Ti80)合金是我国针对海洋工程领域自主研发的一种新型钛合金,然而传统制备成形方法存在工艺复杂、工序长、成本高等问题。以高能电子束为热源、金属丝为原材料、在真空环境下快速沉积的电子束熔丝沉积技术,非常适合高熔点、高活性钛合金的高质量快速成形。本文采用电子束熔丝沉积技术制备了Ti80合金,并对其进行了3种不同工艺的热处理,详细分析了热处理制度对电子束熔丝沉积Ti80合金微观组织和腐蚀行为的影响。结果表明,经不同热处理制度处理后的合金均主要由α相构成,然而组织形态具有显著差异,热处理之后分别获得了3种合金分别具有粗网篮组织、全片层组织和层级组织,它们不同于传统锻态合金的等轴组织。电化学测试结果表明层级组织的耐腐蚀性能最好,全片层组织次之,粗网篮组织最差, 但仍优于锻态合金,这与合金表面形成的氧化膜的厚度密切相关。本文研究结果为通过调整热处理工艺调控钛合金的微观组织进而改善其耐腐蚀性能提供了理论依据。

关键词 热处理电子束熔丝沉积钛合金微观组织耐腐蚀性能    
Abstract

Ti-6Al-3Nb-2Zr-1Mo (Ti80) alloy is a novel home-made Ti-alloy for marine engineering applications. However, conventional forming methods for Ti-alloys present challenges, including complex processes, lengthy procedures, and high costs, etc. Electron beam freeform fabrication (EBF3) technology, utilizing a high-energy electron beam as the heat source and metal wires as raw material for rapid deposition in vacuum conditions, is well-suited for the high-quality rapid forming of highly reactive Ti-alloys ofhigh melting points. Herein, Ti80 alloy was fabricated by using the EBF3 technique. Meanwhile, the influence of post-heat treatment procedures on the microstructure, and the corrosion behavior in 3.5%NaCl solution of the prepared Ti80 alloy was assessed by means of XRD, SEM+EBSD as well as electrochemical measurements. The results reveal that the microstructures of all the Ti80 alloys subjected to three different post-heat treatments are predominantly composed of the α phase, but with three distinct microstructural morphologies: coarse basket weave, fully lamellar and hierarchical structures, respectively, which contrast significantly with the traditional forged state ones (equiaxed structure). Among others, the hierarchical microstructure exhibits the highest corrosion resistance, followed by the fully lamellar microstructure. The coarse basket-weave microstructure demonstrates the lowest corrosion resistance but still outperformed the wrought alloy. The differences in the corrosion resistance are closely related to the thickness of the passivation films formed on the alloys surface. The findings of this study provide a reference for enhancing corrosion resistance by adjusting the heat treatment process to regulate the microstructure for Ti-alloys.

Key wordsheat treatment    electron beam freeform fabrication    titanium alloy    microstructure    corrosion behavior
收稿日期: 2025-09-11      32134.14.1005.4537.2025.290
ZTFLH:  TG174  
基金资助:国家自然科学基金(52401040);材料成形与模具技术全国重点实验室开放基金(P2024-015);黑龙江省自然科学基金(LH2024E024);中央高校基本科研业务费,中国博士后科学基金(2025T181140);中央高校基本科研业务费,中国博士后科学基金(2023M740896);黑龙江省博士后面上资助(LBH-Z23168)
通讯作者: 朱国强,E-mail:zhugqhit@163.com,研究方向为金属材料增材制造
作者简介: 苏宝献,工学博士,副研究员,硕士导师,哈尔滨工业大学材料学院金属精密热加工国家级重点实验室。入选第十届中国科协青年人才托举工程、国家资助博士后研究人员计划(B档)、黑龙江省科技总师。主要从事先进金属材料增材制造、高熔点高活性合金熔凝理论与技术、金属材料极端环境服役行为等研究。近年来,在Corrosion Science、International Journal of Plasticity、Additive Manufacturing、Advanced Science、Journal of Materials Science & Technology 等期刊发表学术论文63篇,高被引论文1篇,申请/授权国家发明专利36项、软件著作权2项,参编专著1部。主持国家自然科学基金青年科学基金、国家重点研发计划子课题、GF基础科研计划、云南省重大科技专项计划、中国博士后科学基金特别资助等项目10余项。担任黑龙江省机械工程学会增材制造专委会委员,Corrosion Communications、《中国腐蚀与防护学报》及China Foundry 等期刊青年编委。荣获NFSOC(中国有色金属学会)博士论文卓越计划、首届黑龙江省博士后创新创业大赛银奖等。
朱国强,本科就读于大连交通大学,后保研至哈尔滨工业大学材料学院并获得优秀毕业生称号,哈尔滨工业大学材料学院2022 级博士在读,致力于增材制造高质量钛合金快速成形。在International Journal of Plasticity、Additive Manufacturing 等期刊发表学术论文15 篇(第1作者6篇),申请/授权国家发明专利10项;博士期间荣获国家奖学金、哈尔滨工业大学三好学生、优秀学生等称号,并先后获得中国研究生双碳竞赛全国二等奖、中国国际大学生创新与创意大赛黑龙江赛区铜奖以及首届黑龙江省博士后创新创业大赛银奖等国家/省级荣誉。
图1  电子束熔丝沉积过程示意图
图2  热处理方案示意图[18]
图3  锻态合金和热处理-EBF3合金的XRD图
图4  锻态合金和热处理-EBF3合金的微观组织
图5  锻态合金和热处理-EBF3合金的EBSD反极图
图6  锻态合金和热处理-EBF3合金的极图
图7  锻态合金和热处理-EBF3合金的OCP测试结果
图8  锻态合金和热处理-EBF3合金的动电位极化曲线PDP测量结果
图9  锻态合金和热处理-EBF3合金的EIS图谱
图10  拟合EIS所采用的等效电路
AlloyRs / Ω·cm2CPEf / μS·s n ·cm-2nfCf / μF·cm-2Rf / MΩ·cm2χ2 / 10-4d / mm
Wrought12.3339.980.89953.270.419.261.08
950FC10.6938.380.91649.930.466.201.15
1010FC6.3936.450.91848.040.593.381.20
910WC + 600AC14.4435.050.92047.230.886.491.22
表1  锻态合金和热处理-EBF3合金的等效电路拟合参数
图11  锻态合金和热处理-EBF3合金的Rp和d
[1] Wang L, Yi D Q, Liu H Q, et al. Effect of Ru on corrosion behavior of Ti-6Al-4V alloy and its mechanism [J]. J. Chin. Soc. Corros. Prot., 2020, 40: 25
[1] 王 乐, 易丹青, 刘会群 等. Ru对Ti-6Al-4V合金腐蚀行为的影响及机理研究 [J]. 中国腐蚀与防护学报, 2020, 40: 25
[2] Su B X, Luo L S, Wang B B, et al. Annealed microstructure dependent corrosion behavior of Ti-6Al-3Nb-2Zr-1Mo alloy [J]. J. Mater. Sci. Technol., 2021, 62: 234
doi: 10.1016/j.jmst.2020.05.058
[3] Leon A, Levy G K, Ron T, et al. The effect of hot isostatic pressure on the corrosion performance of Ti-6Al-4 V produced by an electron-beam melting additive manufacturing process [J]. Addit. Manuf., 2020, 33: 101039
[4] Bush R W, Brice C A. Elevated temperature characterization of electron beam freeform fabricated Ti-6Al-4V and dispersion strengthened Ti-8Al-1Er [J]. Mater. Sci. Eng., 2012, 554A: 12
[5] Xu J Q, Zhu J, Fan J K, et al. Microstructure and mechanical properties of Ti-6Al-4V alloy fabricated using electron beam freeform fabrication [J]. Vacuum, 2019, 167: 364
doi: 10.1016/j.vacuum.2019.06.030
[6] Zhu G Q, Wang Y C, Wang L, et al. Insights into the gradient microstructure and mechanical properties of Ti-6.5Al-2Zr-Mo-V alloy manufactured by electron beam freeform fabrication [J]. Mater. Sci. Eng., 2023, 884A: 145550
[7] Su B X, Wang B B, Luo L S, et al. Tuning microstructure and improving the corrosion resistance of Ti-6Al-3Nb-2Zr-1Mo alloy using the electron beam freeform fabrication [J]. Chem. Eng. J., 2022, 444: 136524
doi: 10.1016/j.cej.2022.136524
[8] Liu Z, Zhao Z B, Liu J R, et al. Effect of α texture on the tensile deformation behavior of Ti-6Al-4V alloy produced via electron beam rapid manufacturing [J]. Mater. Sci. Eng., 2019, 742A: 508
[9] Wang H, Yao Z J, Tao X W, et al. Role of trace boron in the microstructure modification and the anisotropy of mechanical and wear properties of the Ti6Al4V alloy produced by electron beam freeform fabrication [J]. Vacuum, 2020, 172: 109053
doi: 10.1016/j.vacuum.2019.109053
[10] Pu Z, Du D, Wang K M, et al. Evolution of transformation behavior and tensile functional properties with process parameters for electron beam wire-feed additive manufactured NiTi shape memory alloys [J]. Mater. Sci. Eng., 2022, 840A: 142977
[11] Hemmasian Ettefagh A, Zeng C Y, Guo S M, et al. Corrosion behavior of additively manufactured Ti-6Al-4V parts and the effect of post annealing [J]. Addif. Manuf., 2019, 28: 252
[12] Zhang S S, Liu Y C, Xu T W, et al. Effect of build-up direction and annealing on corrosion properties of selected laser melting Ti6Al4V alloy [J]. J. Chin. Soc. Corros. Prot., 2025, 45: 995
[12] 张珊珊, 刘元才, 徐铁伟 等. 成型方向及热处理对选区激光熔化Ti6Al4V合金腐蚀性能的影响 [J]. 中国腐蚀与防护学报, 2025, 45: 995
doi: 10.11902/1005.4537.2024.220
[13] Delpazir M H, Asherloo M, Nasiri Khalil Abad S, et al. Microstructure and corrosion behavior of differently heat-treated Ti-6Al-4V alloy processed by laser powder bed fusion of hydride-dehydride powder [J]. Corros. Sci., 2023, 224: 111495
doi: 10.1016/j.corsci.2023.111495
[14] Longhitano G A, Arenas M A, Conde A, et al. Heat treatments effects on functionalization and corrosion behavior of Ti-6Al-4V ELI alloy made by additive manufacturing [J]. J. Alloy. Compd., 2018, 765: 961
doi: 10.1016/j.jallcom.2018.06.319
[15] Li Z J, Gou J, Gao J, et al. Microstructural evolution and corrosion resistance of additively manufactured Ti-6Al-4V alloy annular sha-ped components using multistage heat treatment [J]. Mater. Chem. Phys., 2025, 346: 131414
doi: 10.1016/j.matchemphys.2025.131414
[16] Su B X, Wang B B, Luo L S, et al. The corrosion behavior of Ti-6Al-3Nb-2Zr-1Mo alloy: Effects of HCl concentration and temperature [J]. J. Mater. Sci. Technol., 2021, 74: 143
doi: 10.1016/j.jmst.2020.08.066
[17] Zhu G Q, Wang L, Su B X, et al. Deciphering the microstructural development and excellent ductility in electron beam wire-fed additive manufacturing of Ti-6Al-3Nb-2Zr-1Mo alloys based on high deposition rate [J]. Addit. Manuf., 2024, 94: 104485
[18] Zhu G Q, Wang L, Su B X, et al. Interdependent slip and twinning behaviors for improving cryogenic mechanical properties in Ti-6Al-3Nb-2Zr-1Mo alloy additively manufactured by electron beam wire-fed [J]. Int. J. Plast., 2025, 191: 104390
doi: 10.1016/j.ijplas.2025.104390
[19] Wang Z B, Hu H X, Liu C B, et al. The effect of fluoride ions on the corrosion behavior of pure titanium in 0.05 M sulfuric acid [J]. Electrochim. Acta, 2014, 135: 526
doi: 10.1016/j.electacta.2014.05.055
[20] Li H Y, Zhang Z C, Wang Q C, et al. Formation mechanism of residue water stains on TC4 Ti-alloy surface and conter-measures [J]. J. Chin. Soc. Corros. Prot., 2025, 45: 244
[20] 李晗晔, 张志超, 王群昌 等. 钛合金表面碱洗及水洗留痕形成机制与腐蚀过程控制 [J]. 中国腐蚀与防护学报, 2025, 45: 244
doi: 10.11902/1005.4537.2024.231
[21] Bai Y, Gai X, Li S J, et al. Improved corrosion behaviour of electron beam melted Ti-6Al-4V alloy in phosphate buffered saline [J]. Corros. Sci., 2017, 123: 289
doi: 10.1016/j.corsci.2017.05.003
[22] Argade G R, Panigrahi S K, Mishra R S. Effects of grain size on the corrosion resistance of wrought magnesium alloys containing neodymium [J]. Corros. Sci., 2012, 58: 145
doi: 10.1016/j.corsci.2012.01.021
[23] Fathi P, Rafieazad M, Mohseni-Sohi E, et al. Corrosion performance of additively manufactured bimetallic aluminum alloys [J]. Electrochim. Acta, 2021, 389: 138689
doi: 10.1016/j.electacta.2021.138689
[24] Li J Q, Lin X, Yang Y, et al. Distinction in electrochemical behaviour of Ti6Al4V alloy produced by direct energy deposition and forging [J]. J. Alloy. Compd., 2021, 860: 157912
doi: 10.1016/j.jallcom.2020.157912
[25] Wang Z B, Hu H X, Zheng Y G. Synergistic effects of fluoride and chloride on general corrosion behavior of AISI 316 stainless steel and pure titanium in H2SO4 solutions [J]. Corros. Sci., 2018, 130: 203
doi: 10.1016/j.corsci.2017.10.028
[26] Walter G W. A review of impedance plot methods used for corrosion performance analysis of painted metals [J]. Corros. Sci., 1986, 26: 681
doi: 10.1016/0010-938X(86)90033-8
[27] Yang F F, Kang H J, Guo E Y, et al. The role of nickel in mechanical performance and corrosion behaviour of nickel-aluminium bronze in 3.5 wt.%NaCl solution [J]. Corros. Sci., 2018, 139: 333
doi: 10.1016/j.corsci.2018.05.012
[28] Zhang Z C, Lan A D, Zhang M, et al. Effect of Ce on the localized corrosion behavior of non-equiatomic high-entropy alloy Fe40Mn20Cr20Ni20 in 0.5 M H2SO4 solution [J]. Corros. Sci., 2022, 206: 110489
doi: 10.1016/j.corsci.2022.110489
[29] Zhao Q C, Pan Z M, Wang X F, et al. Corrosion and passive behavior of Al x CrFeNi3- x (x = 0.6, 0.8, 1.0) eutectic high entropy alloys in chloride environment [J]. Corros. Sci., 2022, 208: 110666
doi: 10.1016/j.corsci.2022.110666
[30] Zhang M D, Shi X L, Li Z Y, et al. Corrosion behaviors and mechanism of CrFeNi2 based high-entropy alloys [J]. Corros. Sci., 2022, 207: 110562
doi: 10.1016/j.corsci.2022.110562
[31] Wang Z B, Hu H X, Zheng Y G, et al. Comparison of the corrosion behavior of pure titanium and its alloys in fluoride-containing sulfuric acid [J]. Corros. Sci., 2016, 103: 50
doi: 10.1016/j.corsci.2015.11.003
[32] Xu W, Lu X, Tian J J, et al. Microstructure, wear resistance, and corrosion performance of Ti35Zr28Nb alloy fabricated by powder metallurgy for orthopedic applications [J]. J. Mater. Sci. Technol., 2020, 41: 191
doi: 10.1016/j.jmst.2019.08.041
[33] Li J, Bai Y, Fan Z D, et al. Effect of fluoride on the corrosion behavior of nanostructured Ti-24Nb-4Zr-8Sn alloy in acidulated artificial saliva [J]. J. Mater. Sci. Technol., 2018, 34: 1660
doi: 10.1016/j.jmst.2018.01.008
[34] Shukla A K, Balasubramaniam R. Effect of surface treatment on electrochemical behavior of CP Ti, Ti-6Al-4V and Ti-13Nb-13Zr alloys in simulated human body fluid [J]. Corros. Sci., 2006, 48: 1696
doi: 10.1016/j.corsci.2005.06.003
[35] Pan J, Thierry D, Leygraf C. Electrochemical impedance spectroscopy study of the passive oxide film on titanium for implant application [J]. Electrochim. Acta, 1996, 41: 1143
doi: 10.1016/0013-4686(95)00465-3
[36] del P B Hernández R, Aoki I V, Tribollet B, et al. Electrochemical impedance spectroscopy investigation of the electrochemical behaviour of copper coated with artificial patina layers and submitted to wet and dry cycles [J]. Electrochim. Acta, 2011, 56: 2801
doi: 10.1016/j.electacta.2010.12.059
[37] González J E G, Mirza-Rosca J C. Study of the corrosion behavior of titanium and some of its alloys for biomedical and dental implant applications [J]. J. Electroanal. Chem., 1999, 471: 109
doi: 10.1016/S0022-0728(99)00260-0
[38] Wu B T, Pan Z X, Li S Y, et al. The anisotropic corrosion behaviour of wire arc additive manufactured Ti-6Al-4V alloy in 3.5% NaCl solution [J]. Corros. Sci., 2018, 137: 176
doi: 10.1016/j.corsci.2018.03.047
[39] Amaya-Vazquez M R, Sánchez-Amaya J M, Boukha Z, et al. Microstructure, microhardness and corrosion resistance of remelted TiG2 and Ti6Al4V by a high power diode laser [J]. Corros. Sci., 2012, 56: 36
doi: 10.1016/j.corsci.2011.11.006
[40] Gong X J, Cui Y J, Wei D X, et al. Building direction dependence of corrosion resistance property of Ti-6Al-4V alloy fabricated by electron beam melting [J]. Corros. Sci., 2017, 127: 101
doi: 10.1016/j.corsci.2017.08.008
[41] Xu W, Chen M, Lu X, et al. Effects of Mo content on corrosion and tribocorrosion behaviours of Ti-Mo orthopaedic alloys fabricated by powder metallurgy [J]. Corros. Sci., 2020, 168: 108557
doi: 10.1016/j.corsci.2020.108557
[42] Jüttner K. Electrochemical impedance spectroscopy (EIS) of corrosion processes on inhomogeneous surfaces [J]. Electrochim. Acta, 1990, 35: 1501
doi: 10.1016/0013-4686(90)80004-8
[43] Hirschorn B, Orazem M E, Tribollet B, et al. Determination of effective capacitance and film thickness from constant-phase-element parameters [J]. Electrochim. Acta, 2010, 55: 6218
doi: 10.1016/j.electacta.2009.10.065
[44] Kissi M, Bouklah M, Hammouti B, et al. Establishment of equivalent circuits from electrochemical impedance spectroscopy study of corrosion inhibition of steel by pyrazine in sulphuric acidic solution [J]. Appl. Surf. Sci., 2006, 252: 4190
doi: 10.1016/j.apsusc.2005.06.035
[45] Yang J L, Lu Y F, Guo Z H, et al. Corrosion behaviour of a quenched and partitioned medium carbon steel in 3.5wt.%NaCl solution [J]. Corros. Sci., 2018, 130: 64
doi: 10.1016/j.corsci.2017.10.027
[46] Siddiqui M A, Ren L, Macdonald D D, et al. Effect of Cu on the passivity of Ti-xCu (x = 0, 3 and 5wt%) alloy in phosphate-buffered saline solution within the framework of PDM-II [J]. Electrochim. Acta, 2021, 386: 138466
doi: 10.1016/j.electacta.2021.138466
[47] Li Y, Xu J. Is niobium more corrosion-resistant than commercially pure titanium in fluoride-containing artificial saliva? [J]. Electrochim. Acta, 2017, 233: 151
doi: 10.1016/j.electacta.2017.03.015
[48] Imani A, Asselin E. Fluoride induced corrosion of Ti-45Nb in sulfuric acid solutions [J]. Corros. Sci., 2021, 181: 109232
doi: 10.1016/j.corsci.2020.109232
[49] Hsu C H, Mansfeld F. Technical note: concerning the conversion of the constant phase element parameter Y into a capacitance [J]. Corrosion, 2001, 57: 747
doi: 10.5006/1.3280607
[50] Li X Q, Wang L W, Fan L, et al. Understanding the effect of fluoride on corrosion behavior of pure titanium in different acids [J]. Corros. Sci., 2021, 192: 109812
doi: 10.1016/j.corsci.2021.109812
[51] Pan J, Thierry D, Leygraf C. Electrochemical and XPS studies of titanium for biomaterial applications with respect to the effect of hydrogen peroxide [J]. J. Biomed. Mater. Res., 1994, 28: 113
doi: 10.1002/jbm.v28:1
[52] Bolat G, Izquierdo J, Santana J J, et al. Electrochemical characterization of ZrTi alloys for biomedical applications [J]. Electrochim. Acta, 2013, 88: 447
doi: 10.1016/j.electacta.2012.10.026
[1] 周丽, 曹晓蝶, 来佑彬, 丁旺旺, 韦博鑫, 吴嘉俊. 热处理工艺对增材制造金属零件腐蚀行为影响的研究进展[J]. 中国腐蚀与防护学报, 2026, 46(1): 37-48.
[2] 衣俊达, 冷傲, 宫得伦, 韦博鑫. 低模量耐腐蚀亚稳 β 钛合金的电子束增材制造与性能研究[J]. 中国腐蚀与防护学报, 2026, 46(1): 49-59.
[3] 周小包, 王子腾, 任延杰, 董少阳, 甘浪, 李聪. 激光粉末床熔融成形CoCrNi中熵合金的高温热腐蚀行为[J]. 中国腐蚀与防护学报, 2026, 46(1): 115-125.
[4] 李柯萱, 王义朋, 廖伯凯. 电弧送丝增材、激光选区熔化增材和传统TC4钛合金钝化行为的对比研究[J]. 中国腐蚀与防护学报, 2026, 46(1): 186-192.
[5] 邓艳, 彭子飘, 刘毅超, 钟显康. 一种新型含铜钛合金的制备与抗菌性能研究[J]. 中国腐蚀与防护学报, 2025, 45(6): 1649-1658.
[6] 白英雄, 王艳丽, 李相伟, 吴泽峰, 张书彦. 热处理对激光选区熔化GH4099镍基高温合金900 ℃(75%Na2SO4 + 25%NaCl)热腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2025, 45(6): 1709-1716.
[7] 王杰, 赵平平, 王春婷, 竺婷婷, 杨丽景, 宋振纶. TC4钛合金在含S2- 海水中的腐蚀磨损行为研究[J]. 中国腐蚀与防护学报, 2025, 45(6): 1764-1772.
[8] 佟向瑜, 徐玮辰, 王秀通, 王优强, 段继周. 常用钛合金焊接接头显微组织结构及对材料性能的影响[J]. 中国腐蚀与防护学报, 2025, 45(5): 1161-1174.
[9] 何江海, 杨子钰, 刘琦, 马子骅, 何伟, 陈飞. 在电解液中添加陶瓷颗粒对钛合金表面微弧氧化膜层改性的研究进展[J]. 中国腐蚀与防护学报, 2025, 45(5): 1175-1186.
[10] 张珊珊, 刘元才, 徐铁伟, 杨发展. 成型方向及热处理对选区激光熔化Ti6Al4V合金腐蚀性能的影响[J]. 中国腐蚀与防护学报, 2025, 45(4): 995-1004.
[11] 李茂, 邓轲, 陈衍祥, 刘中豪, 李尚, 郭宇婷, 董选普, 曹华堂. N2 流量和靶基距对多弧离子镀沉积AlSiN纳米复合涂层的微观组织及耐腐蚀性能影响[J]. 中国腐蚀与防护学报, 2025, 45(4): 1041-1050.
[12] 冉仁豪, 单慧琳, 张鹏杰, 汪冬梅, 斯佳佳, 徐光青, 吕珺. 表层镁合金化NdFeB磁体的制备及其耐腐蚀性能[J]. 中国腐蚀与防护学报, 2025, 45(4): 1117-1126.
[13] 樊嘉骏, 董立谨, 马成, 张兹瑜, 明洪亮, 韦博鑫, 彭庆, 王勤英. 掺氢天然气环境下管线钢氢致疲劳裂纹扩展研究进展[J]. 中国腐蚀与防护学报, 2025, 45(2): 296-306.
[14] 刘国强, 冯长杰, 辛丽, 马天宇, 常皓, 潘钰璇, 朱圣龙. 钛合金表面Ti-Al-Si扩散涂层的制备和显微结构[J]. 中国腐蚀与防护学报, 2025, 45(1): 69-80.
[15] 赵立佳, 崔新宇, 王吉强, 熊天英. 冷喷涂B4C/Al复合涂层在硼酸溶液中的腐蚀行为[J]. 中国腐蚀与防护学报, 2025, 45(1): 164-172.