|
|
掺氢天然气环境下管线钢氢致疲劳裂纹扩展研究进展 |
樊嘉骏1, 董立谨1( ), 马成2, 张兹瑜3, 明洪亮3, 韦博鑫3, 彭庆4, 王勤英1 |
1.西南石油大学新能源与材料学院 成都 610500 2.河钢集团材料技术研究中心 石家庄 050000 3.中国科学院金属研究所 沈阳 110016 4.中国科学院力学研究所 北京 100190 |
|
Research Progress on Hydrogen-assisted Fatigue Crack Growth of Pipeline Steels in Hydrogen-blended Natural Gas Environment |
FAN Jiajun1, DONG Lijin1( ), MA Cheng2, ZHANG Ziyu3, MING Hongliang3, WEI Boxin3, PENG Qing4, WANG Qinying1 |
1.School of New energy and Materials, Southwest Petroleum University, Chengdu 610500, China 2.Materials Technology Research Institute, HBIS Group, Shijiazhuang 050000, China 3.Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China 4.Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China |
引用本文:
樊嘉骏, 董立谨, 马成, 张兹瑜, 明洪亮, 韦博鑫, 彭庆, 王勤英. 掺氢天然气环境下管线钢氢致疲劳裂纹扩展研究进展[J]. 中国腐蚀与防护学报, 2025, 45(2): 296-306.
Jiajun FAN,
Lijin DONG,
Cheng MA,
Ziyu ZHANG,
Hongliang MING,
Boxin WEI,
Qing PENG,
Qinying WANG.
Research Progress on Hydrogen-assisted Fatigue Crack Growth of Pipeline Steels in Hydrogen-blended Natural Gas Environment[J]. Journal of Chinese Society for Corrosion and protection, 2025, 45(2): 296-306.
1 |
Liu F, Yang H W, Deng F J. Hydrogen embrittlement behavior of X65 pipeline steel for transmitting hydrogen-enriched compressed natural gas [J]. Oil Gas Storage Transp., 2024, 43: 289
|
1 |
刘 方, 杨宏伟, 邓付洁. 掺氢天然气输送用X65管线钢的氢脆行为 [J]. 油气储运, 2024, 43: 289
|
2 |
Wei R C, Yang Z W, Chen Y F, et al. Study on the influence of gas phase impurities on hydrogen embrittlement sensitivity of L245 pipeline steel in hydrogen environment [J]. Mech. Eng., 2024: 1, doi: 10.6052/1000-0879-24-118
|
2 |
魏仁超, 杨志文, 陈迎锋 等. 气相杂质对临氢环境中L245管线钢氢脆敏感性的影响研究 [J]. 力学与实践, 2024: 1, doi: 10.6052/1000-0879-24-118
|
3 |
Wu X, Tan M Q, Zhang Q R, et al. Advancements in investigating crack propagation in pipeline steel base metal and welded joints exposed to hydrogen-blended natural gas [J]. J. Saf. Environ., 2024, 24(8): 3063
|
3 |
吴 瑕, 谭旻倩, 张沁蕊 等. 掺氢天然气管道本体及焊缝裂纹扩展研究进展 [J]. 安全与环境学报, 2024, 24: 3063
|
4 |
Qiu Y, Zhou S Y, Gu W, et al. Application prospect analysis of hydrogen enriched compressed natural gas technologies under the target of carbon emission peak and carbon neutrality [J]. Proc. CSEE, 2022, 42: 1301
|
4 |
邱 玥, 周苏洋, 顾 伟 等. “ 碳达峰、碳中和”目标下混氢天然气技术应用前景分析 [J]. 中国电机工程学报, 2022, 42: 1301
|
5 |
Liu B, Bi Z Y, Li Z X, et al. Research progress in pure hydrogen and hydrogen doped transportation pipes at home and abroad [J]. Welded Pipe Tube, 2024, 47(7): 8
|
5 |
刘 斌, 毕宗岳, 李中祥 等. 国内外纯氢及掺氢输送管材研究进展 [J]. 焊管, 2024, 47(7): 8
|
6 |
Zhang Y W, Gu C H, Li Y H, et al. Effects of hydrogen in synthetic natural gas on mechanical properties of X80 steel spiral welded pipe [J]. Pressure Vessel Technol., 2020, 37(3): 1
|
6 |
张一苇, 顾超华, 李炎华 等. 煤制天然气中氢对X80钢螺旋焊管力学性能的影响 [J]. 压力容器, 2020, 37(3): 1
|
7 |
Wu W, Li Y, Ji L K, et al. Progress in research on fatigue behavior of pipeline steel [J]. Welded Pipe Tube, 2009, 32(8): 31
|
7 |
武 威, 李 洋, 吉玲康 等. 管线钢疲劳行为研究进展 [J]. 焊管, 2009, 32(8): 31
|
8 |
Zhong Y, Shan Y Y, Huo C Y, et al. Progress in research on fatigue characteristics of pipeline steel [J]. Mater. Rev., 2003, 17(8): 11
|
8 |
钟 勇, 单以银, 霍春勇 等. 管线钢疲劳特性研究进展 [J]. 材料导报, 2003, 17(8): 11
|
9 |
Gou J X, Nie R Y, Xing X, et al. Fatigue crack growth model of X80 pipeline steel in hydrogen environment for quantification of hydrogen pressure effect [J]. Oil Gas Storage Transp., 2023, 42: 754
|
9 |
苟金鑫, 聂如煜, 邢 潇 等. 临氢X80管线钢量化氢压作用的疲劳裂纹扩展模型 [J]. 油气储运, 2023, 42: 754
|
10 |
Wu Y T, Qiao G Y, Xu K, et al. Effect of hydrogen on tensile and fatigue properties of ferritic/bainite dual-phase X70 pipeline steel [J]. Trans. Mater. Heat Treat., 2023, 44(9): 114
|
10 |
吴英铜, 乔桂英, 徐 凯 等. 氢对铁素体/贝氏体双相X70管线钢拉伸及疲劳性能的影响 [J]. 材料热处理学报, 2023, 44(9): 114
|
11 |
Nanninga N, Slifka A, Levy Y, et al. A review of fatigue crack growth for pipeline steels exposed to hydrogen [J]. J. Res. Natl. Inst. Stand. Technol., 2010, 115: 437
pmid: 27134796
|
12 |
Richards F. Failure analysis of a natural gas pipeline rupture [J]. J. Fail. Anal. Prev., 2013, 13: 653
|
13 |
Li S Y, Quan J, Liu Y, et al. Prevention of failure accidents of gas transmission pipelines in high consequence areas [J]. China Pet. Chem. Stand. Qual., 2022, 42(19): 65
|
13 |
李枢一, 全 佳, 刘 颜 等. 高后果区输气管道失效事故防范 [J]. 中国石油和化工标准与质量, 2022, 42(19): 65
|
14 |
Wang X W, Luo J H, Yuan H W, et al. Hazard analysis on the offshore natural gas pipelines fatigue failure leakage [J]. Fire Sci. Technol., 2018, 37: 729
|
14 |
王小完, 骆济豪, 袁宏伟 等. 海底天然气管道疲劳破坏泄漏灾害研究 [J]. 消防科学与技术, 2018, 37: 729
|
15 |
Oriani R A. A mechanistic theory of hydrogen embrittlement of steels [J]. Ber. Bunsen-Ges. Phys. Chem., 1972, 76: 848
|
16 |
Beachem C D. A new model for hydrogen-assisted cracking (hydrogen “embrittlement”) [J]. Metall. Trans., 1972, 3: 441
|
17 |
Nagumo M, Takai K. The predominant role of strain-induced vacancies in hydrogen embrittlement of steels: overview [J]. Acta Mater., 2019, 165: 722
|
18 |
Lynch S P. Environmentally assisted cracking: overview of evidence for an adsorption-induced localised-slip process [J]. Acta Metall., 1988, 36: 2639
|
19 |
Röthig M, Hoschke J, Tapia C, et al. A review of gas phase inhibition of gaseous hydrogen embrittlement in pipeline steels [J]. Int. J. Hydrog. Energy, 2024, 60: 1239
|
20 |
Murakami Y, Kanezaki T, Mine Y, et al. Hydrogen embrittlement mechanism in fatigue of austenitic stainless steels [J]. Metall. Mater. Trans., 2008, 39A: 1327
|
21 |
Marrow T J, Cotterill P J, King J E. Temperature effects on the mechanism of time independent hydrogen assisted fatigue crack propagation in steels [J]. Acta Metall. Mater., 1992, 40: 2059
|
22 |
Nishikawa H A, Oda Y, Noguchi H. Investigation of the mechanism for brittle-striation formation in low carbon steel fatigued in hydrogen gas [J]. J. Solid Mech. Mater. Eng., 2011, 5: 370
|
23 |
Birenis D, Ogawa Y, Matsunaga H, et al. Interpretation of hydrogen-assisted fatigue crack propagation in BCC iron based on dislocation structure evolution around the crack wake [J]. Acta Mater., 2018, 156: 245
|
24 |
Dmytrakh I M, Leshchak R L, Syrotyuk A M, et al. Effect of hydrogen concentration on fatigue crack growth behaviour in pipeline steel [J]. Int. J. Hydrog. Energy, 2017, 42: 6401
|
25 |
Entezari E, Velázquez J L G, Mohtadi-Bonab M A, et al. Experimental observations of nucleation and crack growth paths of hydrogen-induced cracking in pipeline steel [J]. Eng. Fail. Anal., 2023, 154: 107650
|
26 |
Peng Z X, Cao C S, Huang F, et al. Effect of slow strain rates on the hydrogen migration and different crack propagation modes in pipeline steel [J]. Steel Res. Int., 2023, 94: 2300070
|
27 |
Shang J, Guo J X, Xing B H, et al. CO2 effect on the fatigue crack growth of X80 pipeline steel in hydrogen-enriched natural gas: experiment vs DFT [J]. Int. J. Hydrog. Energy, 2024, 66: 636
|
28 |
Cai L X, Bai G Q, Gao X F, et al. Experimental investigation on the hydrogen embrittlement characteristics and mechanism of natural gas-hydrogen transportation pipeline steels [J]. Mater. Res. Express, 2022, 9: 046512
|
29 |
Zheng T S, Chen N Z. A cyclic cohesive zone model for predicting hydrogen assisted fatigue crack growth (FCG) of subsea pipeline steels [J]. Int. J. Fatigue, 2023, 173: 107707
|
30 |
Wu X, Zhang H F, Yang M, et al. From the perspective of new technology of blending hydrogen into natural gas pipelines transmission: mechanism, experimental study, and suggestions for further work of hydrogen embrittlement in high-strength pipeline steels [J]. Int. J. Hydrog. Energy, 2022, 47: 8071
|
31 |
Golahmar A, Kristensen P K, Niordson C F, et al. A phase field model for hydrogen-assisted fatigue [J]. Int. J. Fatigue, 2022, 154: 106521
|
32 |
Li P D, Li W D, Li B, et al. A review on phase field models for fracture and fatigue [J]. Eng. Fract. Mech., 2023, 289: 109419
|
33 |
Cui C J, Bortot P, Ortolani M, et al. Computational predictions of hydrogen-assisted fatigue crack growth [J]. Int. J. Hydrog. Energy, 2024, 72: 315
|
34 |
Lo Y S, Borden M J, Ravi-Chandar K, et al. A phase-field model for fatigue crack growth [J]. J. Mech. Phys. Solids, 2019, 132: 103684
|
35 |
De Francisco U, Larrosa N O, Peel M J. Development of a microstructural cohesive zone model for intergranular hydrogen environmentally assisted cracking [J]. Eng. Fract. Mech., 2022, 260: 108167
|
36 |
Fernández-Sousa R, Betegón C, Martínez-Pañeda E. Cohesive zone modelling of hydrogen assisted fatigue crack growth: The role of trapping [J]. Int. J. Fatigue, 2022, 162: 106935
|
37 |
Amaro R L, Rustagi N, Findley K O, et al. Modeling the fatigue crack growth of X100 pipeline steel in gaseous hydrogen [J]. Int. J. Fatigue, 2014, 59: 262
|
38 |
Mohtadi-Bonab M A. Effect of different parameters on hydrogen affected fatigue failure in pipeline steels [J]. Eng. Fail. Anal., 2022, 137: 106262.
|
39 |
Wang H L, Ming H L, Wang J Q, et al. Hydrogen permeation behavior at different positions in the normal direction of X42 and X52 pipeline steels [J]. Int. J. Hydrog. Energy, 2024, 72: 1105
|
40 |
Mohtadi-Bonab M A, Eskandari M, Rahman K M M, et al. An extensive study of hydrogen-induced cracking susceptibility in an API X60 sour service pipeline steel [J]. Int. J. Hydrog. Energy, 2016, 41: 4185
|
41 |
Drexler E S, Slifka A J, Amaro R L, et al. Fatigue crack growth rates of API X70 pipeline steel in a pressurized hydrogen gas environment [J]. Fatigue Fract. Eng. Mater. Struct., 2014, 37: 517
|
42 |
Zhao X H, Wang H, Liu G, et al. Research on the hydrogen assisted fatigue damage in X80 pipeline steel welded joint [J]. Mater. Today Commun., 2022, 31: 103524
|
43 |
Ronevich J A, D'Elia C R, Hill M R. Fatigue crack growth rates of X100 steel welds in high pressure hydrogen gas considering residual stress effects [J]. Eng. Fract. Mech., 2018, 194: 42
|
44 |
Yao C, Chen J, Ming H L, et al. Research progress on hydrogen permeability behavior of pipeline steel [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 209
|
44 |
姚 婵, 陈 健, 明洪亮 等. 管线钢氢渗透行为的研究进展 [J]. 中国腐蚀与防护学报, 2023, 43: 209
|
45 |
Yuan W, Huang F, Gan L J, et al. Effect of microstructure on hydrogen induced cracking and hydrogen trapping behavior of X100 pipeline steel [J]. J. Chin. Soc. Corros. Prot., 2019, 39: 536
|
45 |
袁 玮, 黄 峰, 甘丽君 等. 显微组织对X100管线钢氢致开裂及氢捕获行为影响 [J]. 中国腐蚀与防护学报, 2019, 39: 536
|
46 |
Park G T, Koh S U, Jung H G, et al. Effect of microstructure on the hydrogen trapping efficiency and hydrogen induced cracking of linepipe steel [J]. Corros. Sci., 2008, 50: 1865
|
47 |
Wang M M, Gao X H, Song L Y, et al. Hydrogen trapping and electrochemical corrosion behavior of V-N microalloyed X80 pipeline steels consisting of acicular ferrite and polygonal ferrite [J]. J. Iron Steel Res. Int., 2022, 29: 1683
|
48 |
Cheng W S, Song B, Mao J H. Effect of Ce content on the hydrogen induced cracking of X80 pipeline steel [J]. Int. J. Hydrog. Energy, 2023, 48: 15303
|
49 |
Li L F, Song B, Cheng J, et al. Effects of cooling processes on microstructure and susceptibility of hydrogen-induced cracking of X80 pipeline steel [J]. Mater. Corros., 2018, 69: 590
|
50 |
Mousavi Anijdan S H, Arab G, Sabzi M, et al. Sensitivity to hydrogen induced cracking, and corrosion performance of an API X65 pipeline steel in H2S containing environment: influence of heat treatment and its subsequent microstructural changes [J]. J. Mater. Res. Technol., 2021, 15: 1
doi: 10.1016/j.jmrt.2021.07.118
|
51 |
Mousavi Anijdan S H, Sabzi M, Park N, et al. Sour corrosion performance and sensitivity to hydrogen induced cracking in the X70 pipeline steel: effect of microstructural variation and pearlite percentage [J]. Int. J. Pressure Vessels Piping, 2022, 199: 104759
|
52 |
Koren E, Yamabe J, Lu X, et al. Hydrogen diffusivity in X65 pipeline steel: desorption and permeation studies [J]. Int. J. Hydrog. Energy, 2024, 61: 1157
|
53 |
Kim J S, Lee Y H, Lee D L, et al. Microstructural influences on hydrogen delayed fracture of high strength steels [J]. Mater. Sci. Eng., 2009, 505A: 105
|
54 |
Tau L, Chan S L I. Effects of ferrite/pearlite alignment on the hydrogen permeation in a AISI 4130 steel [J]. Mater. Lett., 1996, 29: 143
|
55 |
Ogawa Y, Hino M, Nakamura M, et al. Pearlite-driven surface-cracking and associated loss of tensile ductility in plain-carbon steels under exposure to high-pressure gaseous hydrogen [J]. Int. J. Hydrog. Energy, 2021, 46: 6945
|
56 |
Ronevich J A, Somerday B P, San Marchi C W. Effects of microstructure banding on hydrogen assisted fatigue crack growth in X65 pipeline steels [J]. Int. J. Fatigue, 2016, 82: 497
|
57 |
Ogawa Y, Nishida H, Nakamura M, et al. Dual roles of pearlite microstructure to interfere/facilitate gaseous hydrogen-assisted fatigue crack growth in plain carbon steels [J]. Int. J. Fatigue, 2022, 154: 106561
|
58 |
Ogawa Y, Iwata K. Resistance of pearlite against hydrogen-assisted fatigue crack growth [J]. Int. J. Hydrogen Energy, 2022, 47: 31703
|
59 |
Wu C, Yan C Y, Zhang S L, et al. Research on hydrogen-induced induced cracking sensitivity of X80 pipeline steel under different heat treatments [J]. Materials, 2024, 17: 1953
|
60 |
Arafin M A, Szpunar J A. Effect of bainitic microstructure on the susceptibility of pipeline steels to hydrogen induced cracking [J]. Mater. Sci. Eng., 2011, 528A: 4927
|
61 |
Huang F, Li X G, Liu J, et al. Effects of alloying elements, microstructure, and inclusions on hydrogen induced cracking of X120 pipeline steel in wet H2S sour environment [J]. Mater. Corros., 2012, 63: 59
|
62 |
Entezari E, Velázquez J L G, López D R, et al. An experimental and statistical study on the characteristics of non-metallic inclusions that serve as hydrogen-induced crack nucleation sites in pipeline steel [J]. Eng. Fail. Anal., 2023, 154: 107695
|
63 |
Jack T A, Pourazizi R, Ohaeri E, et al. Investigation of the hydrogen induced cracking behaviour of API 5L X65 pipeline steel [J]. Int. J. Hydrog. Energy, 2020, 45: 17671
|
64 |
Zhu Y S, Zhang J M, Wu F J, et al. Analysis and prediction of nonmetallic inclusions and their effect on hydrogen induced cracking behavior of X65 acid-resistant pipeline steel [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 169
|
64 |
朱延山, 张继明, 武凤娟 等. X65抗酸管线钢中非金属夹杂物和氢致开裂裂纹的分析及预测 [J]. 中国腐蚀与防护学报, 2022, 42: 169
doi: 10.11902/1005.4537.2021.015
|
65 |
Domizzi G, Anteri G, Ovejero-Garcı́a J. Influence of sulphur content and inclusion distribution on the hydrogen induced blister cracking in pressure vessel and pipeline steels [J]. Corros. Sci., 2001, 43: 325
|
66 |
Du X S, Cao W B, Wang C D, et al. Effect of microstructures and inclusions on hydrogen-induced cracking and blistering of A537 steel [J]. Mater. Sci. Eng., 2015, 642A: 181
|
67 |
Wang B, Zhou C, Li L J, et al. Resistance to hydrogen induced corrosion cracking of weld joint of X100 pipeline steel [J]. J. Chin. Soc. Corros. Prot., 2014, 34: 237
|
67 |
王 斌, 周 翠, 李良君 等. X100管线钢焊接接头抗HIC性能研究 [J]. 中国腐蚀与防护学报, 2014, 34: 237
|
68 |
Qin W, Thomas A, Cheng Z Q, et al. Key factors affecting hydrogen trapping at the inclusions in steels: a combined study using microprint technique and theoretical modeling [J]. Corros. Sci., 2022, 200: 110239
|
69 |
Mostafijur Rahman K M, Mohtadi-Bonab M A, Ouellet R, et al. Effect of electrochemical hydrogen charging on an API X70 pipeline steel with focus on characterization of inclusions [J]. Int. J. Pressure Vessels Piping, 2019, 173: 147
|
70 |
Huang F, Liu J, Deng Z J, et al. Effect of microstructure and inclusions on hydrogen induced cracking susceptibility and hydrogen trapping efficiency of X120 pipeline steel [J]. Mater. Sci. Eng., 2010, 527A: 6997
|
71 |
Liu Z Y, Li X G, Du C W, et al. Effect of inclusions on initiation of stress corrosion cracks in X70 pipeline steel in an acidic soil environment [J]. Corros. Sci., 2009, 51: 895
|
72 |
Zhang S Q, Huang Y H, Sun B T, et al. Effect of Nb on hydrogen-induced delayed fracture in high strength hot stamping steels [J]. Mater. Sci. Eng., 2015, 626A: 136
|
73 |
Giarola J M, Calderón-Hernández J W, Quispe-Avilés J M, et al. Hydrogen-induced cracking and corrosion behavior of friction stir welded plates of API 5L X70 pipeline steel [J]. Int. J. Hydrog. Energy, 2021, 46: 28166
|
74 |
Gan L J, Huang F, Zhao X Y, et al. Hydrogen trapping and hydrogen induced cracking of welded X100 pipeline steel in H2S environments [J]. Int. J. Hydrog. Energy, 2018, 43: 2293
|
75 |
Mohtadi-Bonab M A, Eskandari M. A focus on different factors affecting hydrogen induced cracking in oil and natural gas pipeline steel [J]. Eng. Fail. Anal., 2017, 79: 351
|
76 |
Gavras A G, Lados D A, Donald J K. A unified method of design for fatigue crack growth resistance in structural materials [J]. Int. J. Fatigue, 2013, 47: 58
|
77 |
Ronevich J A, Somerday B P. Assessing gaseous hydrogen assisted fatigue crack growth susceptibility of pipeline steel weld fusion zones and heat affected zones [J]. Mater. Perform. Charact., 2016, 5: 290
|
78 |
Huang G, Zheng J Y, Meng B, et al. Mechanical properties of X70 welded joint in high-pressure natural gas/hydrogen mixtures [J]. J. Mater. Eng. Perform., 2020, 29: 1589
doi: 10.1007/s11665-020-04680-6
|
79 |
Olden V, Alvaro A, Akselsen O M. Hydrogen diffusion and hydrogen influenced critical stress intensity in an API X70 pipeline steel welded joint-experiments and FE simulations [J]. Int. J. Hydrog. Energy, 2012, 37: 11474
|
80 |
Nguyen T T, Beak U B, Park J, et al. Hydrogen environment assisted cracking in X70 welding heat-affected zone under a high-pressure hydrogen gas [J]. Theor. Appl. Fract. Mech., 2020, 109: 102746
|
81 |
Amaro R L, White R M, Looney C P, et al. Development of a Model for Hydrogen-Assisted Fatigue Crack Growth of Pipeline Steel1 [J]. J. Pressure Vessel Technol., 2018, 140: 021403.
|
82 |
Ronevich J A, Song E J, Feng Z L, et al. Fatigue crack growth rates in high pressure hydrogen gas for multiple X100 pipeline welds accounting for crack location and residual stress [J]. Eng. Fract. Mech., 2020, 228: 106846
|
83 |
Cialone H J, Holbrook J H. Effects of gaseous hydrogen on fatigue crack growth in pipeline steel [J]. Metall. Mater. Trans., 1985, 16A: 115
|
84 |
Liu D, Liu J, Huang F, et al. Corrosion fatigue crack growth prediction model based on stress ratio and threshold for marine engineering steel DH36Z35 in seawater [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 163
|
84 |
刘 冬, 刘 静, 黄 峰 等. 考虑应力比和门槛值的海水腐蚀疲劳裂纹扩展预测模型 [J]. 中国腐蚀与防护学报, 2022, 42: 163
|
85 |
Fassina P, Brunella F, Lazzari L, et al. Fatigue behavior of pipeline steel under hydrogen environment and low temperature [J]. Procedia Eng., 2011, 10: 3345
|
86 |
Fassina P, Brunella M F, Lazzari L, et al. Effect of hydrogen and low temperature on fatigue crack growth of pipeline steels [J]. Eng. Fract. Mech., 2013, 103: 10
|
87 |
Shinko T, Hénaff G, Halm D, et al. Hydrogen-affected fatigue crack propagation at various loading frequencies and gaseous hydrogen pressures in commercially pure iron [J]. Int. J. Fatigue, 2019, 121: 197
|
88 |
Alvaro A, Wan D, Olden V, et al. Hydrogen enhanced fatigue crack growth rates in a ferritic Fe-3 wt%Si alloy and a X70 pipeline steel [J]. Eng. Fract. Mech., 2019, 219: 106641
|
89 |
Macadre A, Artamonov M, Matsuoka S, et al. Effects of hydrogen pressure and test frequency on fatigue crack growth properties of Ni-Cr-Mo steel candidate for a storage cylinder of a 70 MPa hydrogen filling station [J]. Eng. Fract. Mech., 2011, 78: 3196 Struct. Integr., 2016, 2: 525
|
90 |
Yamabe J, Yoshikawa M, Matsunaga H, et al. Effects of hydrogen pressure, test frequency and test temperature on fatigue crack growth properties of low-carbon steel in gaseous hydrogen [J]. Struct. Integr., 2016, 2: 525
|
91 |
An T, Peng H T, Bai P P, et al. Influence of hydrogen pressure on fatigue properties of X80 pipeline steel [J]. Int. J. Hydrog. Energy, 2017, 42: 15669
|
92 |
Slifka A J, Drexler E S, Nanninga N E, et al. Fatigue crack growth of two pipeline steels in a pressurized hydrogen environment [J]. Corros. Sci., 2014, 78: 313
|
93 |
León-Cázares F D, Agnani M, Ronevich J, et al. Effects of hydrogen partial pressure on crack initiation and growth rate in vintage X52 steel [J]. Int. J. Hydrog. Energy, 2024, doi: 10.1016/j.ijhydene.2024.02.292
|
94 |
Dadfarnia M, Sofronis P, Brouwer J, et al. Assessment of resistance to fatigue crack growth of natural gas line pipe steels carrying gas mixed with hydrogen [J]. Int. J. Hydrog. Energy, 2019, 44: 10808
|
95 |
Staykov A, Yamabe J, Somerday B P. Effect of hydrogen gas impurities on the hydrogen dissociation on iron surface [J]. Int. J. Quantum Chem., 2014, 114: 626
|
96 |
Sun Y H, Ren Y N, Cheng Y F. Dissociative adsorption of hydrogen and methane molecules at high-angle grain boundaries of pipeline steel studied by density functional theory modeling [J]. Int. J. Hydrog. Energy, 2022, 47: 41069
|
97 |
Staykov A, Komoda R, Kubota M, et al. Coadsorption of CO and H2 on an iron surface and its implication on the hydrogen embrittlement of iron [J]. J. Phys. Chem., 2019, 123C: 30265
|
98 |
Wang T, Tian X X, Yang Y, et al. Co-adsorption and mutual interaction of nCO + mH2 on the Fe(110) and Fe(111) surfaces [J]. Catal. Today, 2016, 261: 82
|
99 |
Zhou C S, Zhou H B, Zhang L. The impact of impurity gases on the hydrogen embrittlement behavior of pipeline steel in high-pressure H2 environments [J]. Materials, 2024, 17: 2157
|
100 |
Zhang R, Yuan C, Liu C W, et al. Effects of natural gas impurities on hydrogen embrittlement susceptibility and hydrogen permeation of X52 pipeline steel [J]. Eng. Fail. Anal., 2024, 159: 108111
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|