Please wait a minute...
中国腐蚀与防护学报  2025, Vol. 45 Issue (6): 1549-1562     CSTR: 32134.14.1005.4537.2025.046      DOI: 10.11902/1005.4537.2025.046
  研究报告 本期目录 | 过刊浏览 |
单组分氟碳改性环氧涂层对碳钢和铝合金长期防腐性能的对比研究
王得1,2, 张璠3, 王兴奇2, 张贺新1, 赵成志1, 杨延格2()
1 哈尔滨工程大学材料科学与化学工程学院 哈尔滨 150001
2 中国科学院金属研究所 师昌绪先进材料创新中心 沈阳 110016
3 沈阳防锈包装材料有限责任公司 沈阳 110000
Long-term Corrosion Resistance of Carbon Steel and Al-alloy with Single Component Fluorocarbon Modified Epoxy Coating
WANG De1,2, ZHANG Fan3, WANG Xingqi2, ZHANG Hexin1, ZHAO Chengzhi1, YANG Yange2()
1 School of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
2 Shi -changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
3 Shenyang Rustprooft Packaging Materials Co. Ltd. , Shenyang 110000, China
引用本文:

王得, 张璠, 王兴奇, 张贺新, 赵成志, 杨延格. 单组分氟碳改性环氧涂层对碳钢和铝合金长期防腐性能的对比研究[J]. 中国腐蚀与防护学报, 2025, 45(6): 1549-1562.
De WANG, Fan ZHANG, Xingqi WANG, Hexin ZHANG, Chengzhi ZHAO, Yange YANG. Long-term Corrosion Resistance of Carbon Steel and Al-alloy with Single Component Fluorocarbon Modified Epoxy Coating[J]. Journal of Chinese Society for Corrosion and protection, 2025, 45(6): 1549-1562.

全文: PDF(26163 KB)   HTML
摘要: 

通过开路电位、电化学阻抗谱、动电位极化曲线等电化学测试,结合附着力测试、水接触角测试及宏/微观形貌表征等手段,详细对比研究了一种新型单组分氟碳改性环氧涂层对10#钢和LY12铝合金两种不同金属基体的长期防腐蚀性能。结果表明,通过在3.5%NaCl溶液中长期浸泡3500 h的测试,改性环氧涂层对LY12铝合金的防腐性能优于10#钢。改性环氧涂层在10#钢基体表面的失效分为4个阶段,而在LY12铝合金基体表面则分为3个阶段,且失效历程有所不同,涂层/金属界面的腐蚀是决定涂层是否快速失效的关键。铝合金上低的涂层附着力、高的水接触角以及碳钢基体上高的涂层附着力、低的水接触角是造成涂层具有不同失效历程的主要原因。

关键词 环氧涂层碳钢铝合金防腐性能电化学阻抗谱    
Abstract

In this paper, the long-term anticorrosion performance in 3.5%NaCl solution of 10# mild steel and LY12 Al-alloy coated with the same single-component fluorocarbon-modified epoxy coating, was comparatively studied by means of electrochemical tests such as open-circuit potential (OCP), electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization curve, and macro/micro morphology characterization as well as adhesion test and water contact angle test. The results showed that the modified epoxy coating shows better corrosion resistance when applied on LY12 Al-alloy rather than applied on 10# mild steel by long-term immersion in 3.5%NaCl solution for 3500 h. The failure of the modified epoxy coating on the surface of the two substrates can be divided into four and three stages respectively, and the failure process is different. The corrosion of the coating/metal interface is the key to determine the failure rate of the coating. Low coating adhesion and high water contact angle for the coating on Al-alloy and high coating adhesion and low water contact angle for the coating on carbon steel substrate are the main reasons for the different failure courses of coatings.

Key wordsepoxy coating    carbon steel    Al-alloy    corrosion resistance    electrochemical impedance spectroscopy
收稿日期: 2025-02-14      32134.14.1005.4537.2025.046
ZTFLH:  TG174  
基金资助:国家重点研发计划(2022RDC2012502)
通讯作者: 杨延格,E-mail:ygyang@imr.ac.cn,研究方向为金属材料的海洋腐蚀与防护
Corresponding author: YANG Yange, E-mail: ygyang@imr.ac.cn
作者简介: 王 得,女,2000年生,硕士生
图1  涂层电化学测试用装置示意图
图2  涂覆环氧涂层的10#钢和LY12铝合金开路电位随浸泡时间的变化
图3  涂覆涂层的10#钢4个阶段的Nyquist图和Bode图
图4  涂覆涂层的LY12铝合金3个阶段的Nyquist图和Bode图
图5  用于拟合涂覆涂层的10#钢和LY12铝合金阻抗谱数据的等效电路模型
图6  涂覆涂层的两种金属低频阻抗模值|Z|0.01 Hz随浸泡时间的变化
图7  涂覆涂层的两种金属电化学拟合参数随时间的变化
Time / hRs / Ω·cm2Qc / F·cm-2n1Rc / Ω·cm2Qdl / F·cm-2n2Rct / Ω·cm2W / Ω·cm2σ2
02.96 × 10-42.34 × 10-100.9483.76 × 1010----9.328 × 10-3
21.40 × 10-22.03 × 10-100.9662.79 × 1061.33 × 10-90.4639.80 × 107-9.612 × 10-4
42.89 × 10-43.16 × 10-90.9482.50 × 1062.92 × 10-80.7153.62 × 106-1.237 × 10-3
61.02 × 10-33.42 × 10-100.9406.44 × 1061.28 × 10-80.7836.88 × 106-9.641 × 10-4
121.02 × 10-33.42 × 10-100.9406.44 × 1061.28 × 10-80.7836.88 × 106-4.831 × 10-4
2437.13.28 × 10-100.9469.43 × 1058.66 × 10-80.5862.34 × 106-1.619 × 10-4
481283.35 × 10-100.9471.02 × 1062.14 × 10-70.4871.62 × 106-2.537 × 10-4
7249.23.53 × 10-100.9441.08 × 1067.88 × 10-70.4121.55 × 106-1.001 × 10-4
9640.73.50 × 10-100.9442.60 × 1066.98 × 10-70.4806.76 × 106-5.418 × 10-5
1201093.35 × 10-100.9473.32 × 1066.80 × 10-70.4361.26 × 107-6.914 × 10-5
14468.63.56 × 10-100.9433.74 × 1066.48 × 10-70.3889.29 × 106-3.642 × 10-5
1926843.76 × 10-100.9424.10 × 1052.64 × 10-70.0859.36 × 106-8.478 × 10-4
2407.42 × 10-33.47 × 10-100.9361.20 × 1061.63 × 10-70.3721.25 × 1061.75 × 10-61.923 × 10-4
2881.00 × 10-23.24 × 10-100.9419.01 × 1051.68 × 10-70.3051.47 × 1061.69 × 10-62.082 × 10-4
3363.35 × 10-33.16 × 10-100.9442.28 × 1051.08 × 10-70.2131.87 × 1061.99 × 10-61.623 × 10-4
3841.00 × 10-23.75 × 10-100.9398.34 × 1059.90 × 10-70.3001.41 × 1061.18 × 10-62.102 × 10-5
48030.13.45 × 10-100.9439.43 × 1056.46 × 10-70.3011.90 × 1061.96 × 10-63.349 × 10-5
8164.27 × 10-52.58 × 10-100.9525.61 × 1051.59 × 10-70.1992.04 × 1061.49 × 10-61.492 × 10-4
108076.94.53 × 10-100.9331.13 × 1051.24 × 10-60.3037.79 × 105-4.257 × 10-4
129616.15.98 × 10-100.9181.02 × 1052.88 × 10-60.2655.61 × 105-1.950 × 10-4
15601597.49 × 10-80.7211.10 × 1039.78 × 10-50.4314.20 × 104-3.122 × 10-3
19682944.70 × 10-80.7849.51 × 1029.79 × 10-50.4304.24 × 104-3.152 × 10-3
244871.54.60 × 10-70.6107.77 × 1021.04 × 10-40.5777.37 × 106-3.015 × 10-3
280860.28.07 × 10-70.5824.73 × 1021.47 × 10-40.6931.27 × 104-1.025 × 10-3
314435.61.01 × 10-60.5555.36 × 1022.00 × 10-40.7071.47 × 104-6.570 × 10-4
333661.91.06 × 10-60.5723.91 × 1022.74 × 10-40.6961.25 × 104-9.363 × 10-4
350066.81.23 × 10-60.5703.27 × 1023.30 × 10-40.6981.27 × 104-9.130 × 10-4
表1  10#钢表面涂覆涂层后在3.5%Nacl溶液中得的电化学拟合参数
Time / hRs / Ω·cm2Qc / F·cm-2n1Rc / Ω·cm2Qdl / F·cm-2n2Rct / Ω·cm2W / Ω·cm2σ2
01.00 × 1023.01 × 10-100.9548.63 × 1066.82 × 10-90.8134.00 × 1075.12 × 10-72.87 × 10-3
21.00 × 10-21.00 × 10-90.8712.64 × 1071.88 × 10-90.8758.28 × 1072.50 × 10-81.27 × 10-3
41.00 × 1031.61 × 10-90.8434.13 × 1067.30 × 10-100.9357.10 × 1071.92 × 10-88.37 × 10-4
61.00 × 1022.55 × 10-90.8082.01 × 1067.94 × 10-90.8251.93 × 1071.56 × 10-77.44 × 10-3
121.00 × 10-23.43 × 10-90.7873.25 × 1062.34 × 10-90.9005.82 × 1067.80 × 10-83.23 × 10-3
246.68 × 10-21.62 × 10-90.8491.82 × 1075.44 × 10-90.7507.17 × 1071.02 × 10-74.44 × 10-3
483.31 × 1041.85 × 10-90.8374.82 × 1053.95 × 10-90.8676.10 × 1079.43 × 10-82.72 × 10-3
721.00 × 10-21.41 × 10-90.8593.48 × 1065.27 × 10-90.8108.01 × 1075.70 × 10-83.81 × 10-3
961.00 × 10-26.38 × 10-110.9191.97 × 1057.70 × 10-90.7641.28 × 1085.10 × 10-82.65 × 10-3
1201.00 × 1025.71 × 10-100.9271.51 × 1066.42 × 10-90.8081.34 × 1085.94 × 10-88.24 × 10-4
1681.00 × 1035.59 × 10-100.9326.67 × 1057.84 × 10-90.7869.65 × 1076.85 × 10-82.77 × 10-3
1923.47 × 10-26.58 × 10-100.9216.92 × 1059.09 × 10-90.8256.83 × 1071.01 × 10-51.96 × 10-3
2401.00 × 10-25.82 × 10-100.9291.78 × 1061.20 × 10-80.7739.06 × 1077.26 × 10-83.45 × 10-3
2881.00 × 10-24.86 × 10-100.9431.68 × 1049.68 × 10-90.8498.30 × 1073.92 × 10-81.14 × 10-2
3361.00 × 10-24.57 × 10-90.9491.95 × 1051.24 × 10-80.8046.17 × 1077.65 × 10-87.50 × 10-4
3841.00 × 1033.70 × 10-100.9641.97 × 1051.32 × 10-80.7741.09 × 1086.77 × 10-84.46 × 10-4
4321.00 × 10-23.36 × 10-100.9702.02 × 1072.79 × 10-80.7207.56 × 1072.27 × 10-72.33 × 10-3
4801.00 × 1033.66 × 10-100.9622.81 × 1051.68 × 10-80.7761.00 × 1082.61 × 10-76.33 × 10-4
5761.00 × 10-24.06 × 10-80.9561.57 × 1051.71 × 10-80.7705.11 × 1071.56 × 10-71.51 × 10-3
6961.27 × 10-23.48 × 10-100.9671.04 × 1051.50 × 10-80.7735.91 × 1071.30 × 10-61.60 × 10-3
8161.00 × 10-22.16 × 10-101.0006.62 × 1051.40 × 10-80.7378.80 × 1079.73 × 10-82.68 × 10-3
10801.00 × 10-23.73 × 10-100.9608.76 × 1042.15 × 10-80.8162.28 × 1078.00 × 10-81.22 × 10-3
12961.00 × 10-25.87 × 10-100.9213.42 × 1055.38 × 10-80.8591.72 × 1078.74 × 10-95.80 × 10-3
15601.00 × 10-28.39 × 10-100.8964.80 × 1056.94 × 10-80.8951.02 × 1083.31 × 10-75.05 × 10-3
19681.00 × 1031.72 × 10-90.8485.02 × 1049.05 × 10-80.8776.07 × 1065.18 × 10-71.82 × 10-3
24481.00 × 1034.46 × 10-90.7822.40 × 1041.01 × 10-70.8501.12 × 1073.12 × 10-76.10 × 10-3
28081.00 × 1032.10 × 10-80.6752.21 × 1041.34 × 10-70.8893.80 × 1061.66 × 10-68.04 × 10-3
31441.00 × 1037.92 × 10-90.7452.31 × 1042.94 × 10-70.8814.00 × 1062.42 × 10-68.75 × 10-3
33361.00 × 10-21.66 × 10-90.6922.46 × 1043.49 × 10-70.8642.74 × 1063.05 × 10-69.65 × 10-3
35001.00 × 10-21.70 × 10-80.6932.01 × 1044.08 × 10-70.8451.79 × 1067.18 × 10-89.28 × 10-3
表2  LY12铝合金表面涂覆涂层后在3.5%Nacl溶液中得的电化学拟合参数
图8  涂覆涂层的10#钢和LY12铝合金浸泡3500 h前后的动电位极化曲线
图9  10#钢和LY12铝合金浸泡3500 h前后附着力的测试结果
图10  涂覆涂层的10#钢和LY12铝合金浸泡3500 h前后与水的接触角
图11  涂覆涂层的10#钢浸泡3500 h过程中的宏观形貌演变
图12  涂覆涂层的LY12铝合金浸泡3500 h过程中的宏观形貌演变
图13  涂覆涂层的10#钢和LY12铝合金浸泡3500 h前后的光学显微形貌
图14  涂覆环氧涂层的10#钢和LY12铝合金浸泡3500 h前后的微观形貌
图15  涂覆环氧涂层的10#钢和LY12铝合金浸泡3500 h后的元素分布
图16  涂覆环氧涂层的10#钢和LY12铝合金的失效过程
[1] Qi Y F, Dong C C, Yang W G. Corrosion data of carbon steel, low alloy steel in the marine environment in our country [J]. Total Corros. Control, 2017, 31(1): 24
[1] (亓云飞, 董彩常, 杨万国. 碳钢、低合金钢材料在我国海洋环境中的腐蚀数据 [J]. 全面腐蚀控制, 2017, 31(1): 24)
[2] Zhao G X. 'The study of the ocean steel structure thing' carries material application [J]. Mater. China, 2014, 33: 46
[2] (赵耕贤.“海洋钢结构物”载体材料应用的探讨 [J]. 中国材料进展, 2014, 33: 46)
[3] Liu Z X. Application of aluminum alloy materials in ships and offshore engineering equipment [J]. Mar. Equip. Mater. Market, 2021, 29: 47
[3] (刘占先. 铝合金材料在船舶与海洋工程装备中的应用 [J]. 船舶物资与市场, 2021, 29: 47)
[4] Wahid M A, Siddiquee A N, Khan Z A. Aluminum alloys in marine construction: Characteristics, application, and problems from a fabrication viewpoint [J]. Mar. Syst. Ocean Technol., 2020, 15: 70
[5] He X Y, Xia H J, Wen Z H, et al. Summary of the corrosion status and protection measures of marine steel structure in China [J]. Mater. Prot., 2022, 55: 149
[5] (何晓宇, 夏宏杰, 温哲华 等. 我国海洋钢结构腐蚀现状及防护对策概述 [J]. 材料保护, 2022, 55: 149)
[6] Zhang X M, Chen Z Y, Luo H F, et al. Corrosion resistances of metallic materials in environments containing chloride ions: A review [J]. Trans. Nonf. Met. Soc. China, 2022, 32: 377
[7] Wang Z S, Jiao D Z, Cheng L, et al. Visually monitoring of wear damage and interfacial corrosion in lubricant coating enabled by MXene@Rhodamine B fluorophores [J]. Carbon, 2025, 234: 119962
[8] Wang T C, Zhao D Y, Xiang X Y, et al. Degradation behavior of an epoxy corrosion-resistant coating in NaCl solution [J]. J. Chin. Soc. Corros. Prot., 2024, 44: 1361
[8] (王天丛, 赵东杨, 向雪云 等. 一种环氧耐蚀涂层在NaCl溶液中的劣化行为研究 [J]. 中国腐蚀与防护学报, 2024, 44: 1361)
[9] Wan Y, Song F L, Li L J. Corrosion characteristics of carbon steel in simulated marine atmospheres [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 851
[9] (万 晔, 宋芳龄, 李立军.基于海洋大气环境因素影响下的碳钢腐蚀特征研究 [J]. 中国腐蚀与防护学报, 2022, 42: 851)
[10] Huang Y Y, Zhang B R, Wu J, et al. Preparation and characterization of graphene oxide/polyasniline/polyd- opamine nanocomposites towards long-term anticorrosive performance of epoxy coatings [J]. Polymers, 2022, 14: 3355
[11] Ammar A U, Shahid M, Ahmed M K, et al. Electrochemical study of polymer and ceramic-based nanocomposite coatings for corrosion protection of cast iron pipeline [J]. Materials, 2018, 11: 332
[12] Pei W L, Pei X L, Xie Z Z, et al. Research progress of marine anti-corrosion and wear-resistant coating [J]. Tribol. Int, 2024, 198: 109864
[13] Cao J Y, Li J, Yin W C, et al. Histamine-modified epoxy resin and its effect on properties of organic coatings [J]. J. Chin. Soc. Corros. Prot., 2024, 44: 151
[13] (曹京宜, 李 敬, 殷文昌 等. 组胺改性环氧树脂及其对有机涂层性能的影响 [J]. 中国腐蚀与防护学报, 2024, 44: 151)
[14] Sun S B, Shi C W, Wang D S, et al. Low temperature wear and corrosion resistance of epoxy based polar marine ice breaking coatings [J]. J. Chin. Soc. Corros. Prot., 2024, 44: 1177
[14] (孙士斌, 史常伟, 王东胜 等. 新型环氧基极地船舶用破冰涂料低温耐磨耐蚀性能研究 [J]. 中国腐蚀与防护学报, 2024, 44: 1177)
[15] Qian B, Liu C B, Song Z W, et al. Anticorrosion performance of epoxy coating modified with nanocontainers [J]. J. Chin. Soc. Corros. Prot., 2018, 38: 133
[15] (钱 备, 刘成宝, 宋祖伟 等. 纳米容器改性环氧涂层对Q235碳钢的防腐蚀性能 [J]. 中国腐蚀与防护学报, 2018, 38: 133)
[16] Patil H A, Maske V A, More A P. Synthesis and characterization of eco-friendly epoxy resins and novel fillers for enhanced corrosion protection of mild steel [J]. Polym. Adv. Technol., 2024, 35: e70027
[17] Li H, Meng X Z, Yan H J, et al. Intelligent marine waterborne epoxy coating based on functionalized multiscale nanocomposite: mechanical enhancement, self-reporting, and active/passive anti-corrosion [J]. J. Mater. Sci. Technol., 2025, 221: 68
[18] Cao J Y, Zhao Y, Liu Y S, et al. Preparation and protective properties of superhydrophobic modified basalt/epoxy coatings [J]. J. Chin. Soc. Corros. Prot., 2024, 44: 1476
[18] (曹京宜, 赵 伊, 刘岩硕 等. 超疏水改性玄武岩/环氧涂层的制备及防护性能研究 [J]. 中国腐蚀与防护学报, 2024, 44: 1476)
[19] Joseph Raj X, Nishimura T. Evaluation of the corrosion protection performance of epoxy-coated high manganese steel by SECM and EIS techniques [J]. J. Fail. Anal. Prev., 2016, 16: 417
[20] Yuan X, Yue Z F, Liu Z Q, et al. Comparison of the failure mechanisms of silicone-epoxy hybrid coatings on type A3 mild steel and 2024 Al-alloy [J]. Prog. Organ. Coat., 2016, 90: 101
[21] Gong J Y, Wei H, Hao P, et al. Study on the influence of metal substrates on protective performance of the coating by EIS [J]. Materials, 2024, 17: 378
[22] Zhu B F, Liu Z H, Liu J, et al. Preparation of fluorinated/silanized polyacrylates amphiphilic polymers and their anticorrosion and antifouling performance [J]. Prog. Organ. Coat., 2020, 140: 105510
[23] Wang X, Liang X, Wang B, et al. Corrosion resistance of graphene/basalt flake modified waterborne epoxy zinc-rich primer [J]. Pigm. Resin Technol., 2024, 53: 786
[24] Policastro S A, Anderson R M, Hangarter C M, et al. Experimental and numerical investigation into the effect of water uptake on the capacitance of an organic coating [J]. Materials, 2023, 16: 3623
[25] Banu A M, Thakur A, Arifa Farzana B, et al. Exploring the bio-inspired corrosion inhibition properties of eco-friendly Limonia acidissima leaves extract for mild steel in acidic media: Computational, electrochemical and spectroscopic insights [J]. J. Mol. Struct., 2025, 1323: 140713
[26] Yuan S C, Wu Y F, Xu C H, et al. Influence of polyhydroxy hyperdispersant on anti-corrosion property of waterborne epoxy coatings [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 289
[26] (袁世成, 吴艳峰, 徐长慧 等. 多羟基超分散剂对水性环氧涂层防腐性能的影响 [J]. 中国腐蚀与防护学报, 2023, 43: 289)
[27] Wang T Y, Zhang Z G, Lu W Z, et al. Effect of alternating pressure on electrochemical behavior of solvent-free epoxy coating in simulated ultra-deep sea environment [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 929
[27] (王腾宇, 张正贵, 陆卫中 等. 交变压力对无溶剂环氧涂层在模拟超深海环境下的电化学行为 [J]. 中国腐蚀与防护学报, 2022, 42: 929)
[1] 李兆南, 侯禹岑, 莒鹏, 庄铁钢, 陈景杰, 王明昱, 徐云泽. 模拟液滴电导率变化对碳钢大气腐蚀的影响机制研究[J]. 中国腐蚀与防护学报, 2025, 45(6): 1537-1548.
[2] 许诗源, 孟鑫, 杨亚璋, 刘辰, 张昭, 方晓祖. 腐蚀形貌对镁合金电化学阻抗谱特征的影响研究[J]. 中国腐蚀与防护学报, 2025, 45(6): 1589-1598.
[3] 李瓒龙, 颜晴, 满成. 加压载荷和摩擦频率对7075铝合金磨损腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2025, 45(6): 1669-1678.
[4] 阮智邦, 魏仕轩, 王树鹏, 吕正平, 李格升, 李燚周. 中性氯化钠溶液中咪唑啉磷酸酯对7075铝合金电偶腐蚀抑制行为研究[J]. 中国腐蚀与防护学报, 2025, 45(6): 1734-1740.
[5] 郭玉杰, 李艳辉, 夏大海, 胡文彬. 腐蚀电化学阻抗谱的数据解析与物理模型研究进展[J]. 中国腐蚀与防护学报, 2025, 45(5): 1143-1160.
[6] 夏大海, 潘成成, 郭玉杰, 胡文彬, TRIBOLLET Bernard. EIS研究7050铝合金在NaCl溶液空蚀作用下的界面状态与腐蚀机制[J]. 中国腐蚀与防护学报, 2025, 45(5): 1196-1204.
[7] 何武豪, 刘阳, 杨思懿, 张韶栋, 吴伟, 张俊喜. 敏化处理对传统和增材制造316L不锈钢电化学和晶间腐蚀的影响[J]. 中国腐蚀与防护学报, 2025, 45(5): 1331-1340.
[8] 胡娜, 彭文山, 郭为民, 刘天楠, 段体岗, 刘少通. 高强铝合金焊接接头力学-电化学腐蚀行为与退化规律研究[J]. 中国腐蚀与防护学报, 2025, 45(4): 965-974.
[9] 雷涛, 陈绍高, 刘秀利, 范金龙, 郑兴文. 乙二醇冷却液的劣化检测及增材制造AlSi10Mg铝合金在其中的腐蚀行为[J]. 中国腐蚀与防护学报, 2025, 45(4): 1014-1024.
[10] 熊启勇, 蒋婉娟, 曾美婷, 徐金山, 易勇刚, 李岩岩, 董泽华. 基于双电极电化学阻抗实现现场涂层老化状态的快速无损检测[J]. 中国腐蚀与防护学报, 2025, 45(4): 1025-1034.
[11] 陈宇强, 冉光林, 陆丁丁, 黄磊, 曾立英, 刘阳, 支倩. 循环强化对7075铝合金腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2025, 45(4): 1051-1060.
[12] 丁智超, 张树国, 肖晓春, 汪迪, 李文杰, 姜丽红. 半固态7075铝合金搅拌摩擦焊接头晶间腐蚀行为研究[J]. 中国腐蚀与防护学报, 2025, 45(4): 1089-1097.
[13] 彭立园, 谢敬礼, 曹胜飞, 谭季波, 吴欣强, 张兹瑜. 日本高放废物处置容器腐蚀厚度设计研究进展[J]. 中国腐蚀与防护学报, 2025, 45(3): 563-576.
[14] 宋晓稳, 白苗苗, 陈娜娜, 高逸晖, 冯亚丽, 刘倩倩, 张尧尧, 卢琳, 吴俊升, 肖葵. 海南滨海大气环境中棘孢曲霉对铝合金腐蚀行为影响[J]. 中国腐蚀与防护学报, 2025, 45(3): 631-642.
[15] 陈丽, 冯佳, 孟凡帝, 王福会. 煤矸石改性环氧涂层的制备及其防腐性能研究[J]. 中国腐蚀与防护学报, 2025, 45(3): 643-652.