Please wait a minute...
中国腐蚀与防护学报  2025, Vol. 45 Issue (5): 1175-1186     CSTR: 32134.14.1005.4537.2024.382      DOI: 10.11902/1005.4537.2024.382
  综合评述 本期目录 | 过刊浏览 |
在电解液中添加陶瓷颗粒对钛合金表面微弧氧化膜层改性的研究进展
何江海, 杨子钰, 刘琦, 马子骅, 何伟, 陈飞()
北京石油化工学院新材料与化工学院 北京 102617
Research Progress on Modification of Microarc Oxidation Coatings on Ti-alloy Surface by Adding Ceramic Particles to Electrolyte
HE Jianghai, YANG Ziyu, LIU Qi, MA Zihua, HE Wei, CHEN Fei()
School of New Materials and Chemical Engineering, Beijing Institute of Petrochemical Technology, Beijing 102617, China
引用本文:

何江海, 杨子钰, 刘琦, 马子骅, 何伟, 陈飞. 在电解液中添加陶瓷颗粒对钛合金表面微弧氧化膜层改性的研究进展[J]. 中国腐蚀与防护学报, 2025, 45(5): 1175-1186.
Jianghai HE, Ziyu YANG, Qi LIU, Zihua MA, Wei HE, Fei CHEN. Research Progress on Modification of Microarc Oxidation Coatings on Ti-alloy Surface by Adding Ceramic Particles to Electrolyte[J]. Journal of Chinese Society for Corrosion and protection, 2025, 45(5): 1175-1186.

全文: PDF(8701 KB)   HTML
摘要: 

钛合金微弧氧化(MAO)后在表面形成的涂层疏松多孔等物理缺陷,严重影响了钛合金相关性能及服役时间,针对这一问题,本文总结了利用二元化合物在电解液里的掺杂,提高钛合金MAO涂层的耐磨性、耐蚀性、高温抗氧化性、光催化性、抗菌性的相关性能研究。并在此基础上提出了未来二元化合物的掺杂来提高钛合金微弧氧化涂层性能的研究方向和思路,希望能为今后钛合金的研究提供参考和借鉴。

关键词 微弧氧化钛合金缺陷二元化合物性能    
Abstract

It is known that modification with micro arc oxidation (MAO) technique, the physical defects such as porosities or pinholes may commonly exist in the formed coatings on the Ti-alloy surface, which seriously affects the relevant properties and the service life-time of Ti-alloy parts or facilities, in view of this problem, herein it summarizes the research progress on the addition of binary compounds in the electrolyte to modify the relevant properties of MAO coatings on Ti-alloy in terms of the resistance to abrasion, corrosion and high temperature oxidation, as well as the photocatalytic and antimicrobial properties. Furthermore, the future research direction and ideas to create MAO coatings of peculiar performance for Ti-alloy, the utilizing different binary compounds with various function and particle size, even multiple binary compounds etc. are proposed, hoping to provide reference and reference for future research on titanium alloys.

Key wordsmicroarc oxidation    Ti-alloy    defects    binary compounds    properties
收稿日期: 2024-11-26      32134.14.1005.4537.2024.382
ZTFLH:  TG174.45  
基金资助:北京市自然科学基金(2202017)
通讯作者: 陈飞,E-mail:chenfei@bipt.edu.cn,研究方向为金属材料腐蚀与防护
Corresponding author: CHEN Fei, E-mail: chenfei@bipt.edu.cn
作者简介: 何江海,男,2000年生,硕士生
图1  在电解液中添加不同含量的ZrO2颗粒后钛合金MAO膜的表面与截面形貌[36]
SubstratesParticlesSize of particlesEcorr without particles / VEcorr with particles / VIcorr without particlesA·cm-2Icorr with particlesA·cm-2Refs.
TC4ZrO20.5-1 μm-0.2237-2.4 × 10-9[36]
Ti6Al4VMoS2< 2 μm-0.3830.0389.6 × 10-84.2 × 10-9[46]
TC4SiC400 nm--9.1 × 10-54.1 × 10-6[47]
TC4TaC1 μm-0.220.121.1 × 10-62.7 × 10-8[48]
Ti6Al4VZrO2/TiO21 μm-0.4470.1131.5 × 10-75.7 × 10-8[49]
Ti6Al4VGO/HA-0.290.615.0 × 10-81.6 × 10-8[50]
Ti6Al4VAlN--0.7311-0.38176.9 × 10-62.8 × 10-9[51]
表1  在电解液中添加二元化合物粒子对钛合金MAO膜层在3.5%NaCl溶液中耐蚀性的影响
图2  电解液中添加MoS2所制备的MAO涂层在3.5% (质量分数) NaCl溶液中的EIS谱和拟合曲线[46]
SubstratesParticlesDurometerFriction coefficientsRefs.
TC4ZrO2-0.35[35]
Ti6Al4VTaC965HV0.148[49]
TC11Er2O3(486.9 ± 11.8)HV0.5[54]
TC11Nd2O3-0.6[55]
Ti6Al4VSiC(443.5 ± 15.8)HV0.38[56]
TC4BN/ZrO2-0.45[57]
Ti6Al4VMoS2/TiO2(360 ± 15)HV0.49[58]
TB8BN-0.6[59]
TC4Al2O31261HV0.63[60]
TC4Cu2O-0.3[61]
TC4GO-0.36[62]
表2  二元化合物添加对钛合金的MAO膜层硬度及摩擦系数的影响
图3  电解液中添加不同含量的GO颗粒表面膜层的磨痕SEM形貌[64]
图4  添加不同含量的Nd2O3MAO层800 ℃氧化50 h的氧化增重及其对应的宏观形貌[55]
图5  MAO制备的TiO2薄膜和TiO2/Eu2O3复合薄膜的紫外-可见光谱[66]
图6  MAO制备的TiO2薄膜和TiO2/Eu2O3复合薄膜的光电流强度[66]
图7  MAO制备的TiO2薄膜及TiO2/Eu2O3复合薄膜的光催化活性[66]
[1] Huang P H, Wang Y H. Alkali separation-ammonium ferric sulfate titration method for determining titanium in titanium-vanadium alloys [J]. Gold, 2023, 44(7): 125
[2] Song B, An M Y, Wang H Y, et al. Effect of cooling method after solution on microstructure and mechanical properties of new near-β Ti alloy Ti-5321 [J]. J. Liaocheng Univ. (Nat. Sci. Ed.), 2024, 37(3): 53
[2] 宋 博, 安明宇, 王红阳 等. 固溶冷却方式对新型高强近β钛合金Ti-5321微观组织及力学性能的影响 [J]. 聊城大学学报(自然科学版), 2024, 37(3): 53
[3] Sun Y, Sun Y, Yang Y, et al. Constitutive equation and thermal processing map of thermal compression for TC21 titanium alloy [J]. Forging Stamp. Technol., 2023, 48: 241
[4] Guo J, Lin C G, Cai S, et al. Record-high superconductivity in niobium-titanium alloy [J]. Adv. Mater., 2019, 31: 1807240
[5] Yeung K W K, Chan R Y L, Lam K O, et al. In vitro and in vivo characterization of novel plasma treated nickel titanium shape memory alloy for orthopedic implantation [J]. Surf. Coat. Technol., 2007, 202: 1247
[6] Xin G Q, Wu C Y, Cao H Y, et al. Superhydrophobic TC4 alloy surface fabricated by laser micro-scanning to reduce adhesion and drag resistance [J]. Surf. Coat. Technol., 2020, 391: 125707
[7] Xue K, Tan P H, Zhao Z H, et al. In vitro degradation and multi-antibacterial mechanisms of β-cyclodextrin@curcumin embodied Mg(OH)2/MAO coating on AZ31 magnesium alloy [J]. J. Mater. Sci. Technol., 2023, 132: 179
[8] Xia Q X, Li X, Yao Z P, et al. Investigations on the thermal control properties and corrosion resistance of MAO coatings prepared on Mg-5Y-7Gd-1Nd-0.5Zr alloy [J]. Surf. Coat. Technol., 2021, 409: 126874
[9] Singh C, Tiwari S K, Singh R. Development of corrosion-resistant electroplating on AZ91 Mg alloy by employing air and water-stable eutectic based ionic liquid bath [J]. Surf. Coat. Technol., 2021, 428: 127881
[10] Meng X, Wang J L, Zhang J, et al. Electroplated super-hydrophobic Zn-Fe coating for corrosion protection on magnesium alloy [J]. Trans. Nonferrous Met. Soc. China, 2022, 32: 3250
[11] Marzbanrad B, Razmpoosh M H, Toyserkani E, et al. Role of heat balance on the microstructure evolution of cold spray coated AZ31B with AA7075 [J]. J. Magnes. Alloy., 2021, 9: 1458
doi: 10.1016/j.jma.2021.03.009
[12] Palanisamy K, Gangolu S, Antony J M, et al. Effects of HVOF spray parameters on porosity and hardness of 316L SS coated Mg AZ80 alloy [J]. Surf. Coat. Technol., 2022, 448: 128898
[13] Liu Y P, Cheng X, Wang X Y, et al. Micro-arc oxidation-assisted sol-gel preparation of calcium metaphosphate coatings on magnesium alloys for bone repair [J]. Mater. Sci. Eng., 2021, 131C: 112491
[14] Pereira G S, Ramirez O M P, Avila P R T, et al. Cerium conversion coating and sol-gel coating for corrosion protection of the WE43 Mg alloy [J]. Corros. Sci., 2022, 206: 110527
[15] Wang X H, Huang L Q, Niu L J, et al. The impacts of growth temperature on morphologies, compositions and optical properties of Mg-doped ZnO nanomaterials by chemical vapor deposition [J]. J. Alloy. Compd., 2015, 622: 440
[16] Fattah-Alhosseini A, Chaharmahali R, Babaei K. Effect of particles addition to solution of plasma electrolytic oxidation (PEO) on the properties of PEO coatings formed on magnesium and its alloys: A review [J]. J. Magnes. Alloy., 2020, 8: 799
doi: 10.1016/j.jma.2020.05.001
[17] Jiang L P, Cui X F, Jin G, et al. Synthesis and microstructure, properties characterization of Ni-Ti-Cu/Cu-Al functionally graded coating on Mg-Li alloy by laser cladding [J]. Appl. Surf. Sci., 2022, 575: 151645
[18] Gao B. Experiment research on laser cladding repairing technology based on multiple-cladding [D]. Shanghai: Shanghai Jiao Tong University, 2010
[18] 高 宾. 基于复合堆焊的激光熔覆修复技术的实验研究 [D]. 上海: 上海交通大学, 2010
[19] Fan X L, Li C Y, Wang Y B, et al. Corrosion resistance of an amino acid-bioinspired calcium phosphate coating on magnesium alloy AZ31 [J]. J. Mater. Sci. Technol., 2020, 49: 224
[20] Chaharmahali R, Fattah-Alhosseini A, Babaei K. Surface characterization and corrosion behavior of calcium phosphate (Ca-P) base composite layer on Mg and its alloys using plasma electrolytic oxidation (PEO): A review [J]. J. Magnes. Alloy., 2021, 9(1): 21
doi: 10.1016/j.jma.2020.07.004
[21] Rakoch A G, Monakhova E P, Khabibullina Z V, et al. Plasma electrolytic oxidation of AZ31 and AZ91 magnesium alloys: Comparison of coatings formation mechanism [J]. J. Magnes. Alloy., 2020, 8: 587
doi: 10.1016/j.jma.2020.06.002
[22] Wang L S, Jiang J H, Liu H, et al. Microstructure characterization and corrosion behavior of Mg-Y-Zn alloys with different long period stacking ordered structures [J]. J. Magnes. Alloy., 2020, 8: 1208
[23] Wang X, Yan H G, Hang R Q, et al. Enhanced anticorrosive and antibacterial performances of silver nanoparticles/polyethyleneimine/MAO composite coating on magnesium alloys [J]. J. Mater. Res. Technol., 2021, 11: 2354
doi: 10.1016/j.jmrt.2021.02.053
[24] Lin T Y. Regulation of interfacial gradient of bimodal organization of titanium alloys and the mechanism of its influence on strength and plasticity [D]. Guiyang: Guizhou University, 2024
[24] 林廷艺. 钛合金双态组织界面梯度调控及其对强塑性影响机制研究 [D]. 贵阳: 贵州大学, 2024
[25] Wu G L, Yen C E, Hsu W C, et al. Incorporation of cerium oxide nanoparticles into the micro-arc oxidation layer promotes bone formation and achieves structural integrity in magnesium orthopedic implants [J]. Acta Biomater., 2025, 191: 80
[26] Krishtal M M, Ivashin P V, Polunin A V. The effect of dispersity of silicon dioxide nanoparticles added to electrolyte on the composition and properties of oxide layers formed by plasma electrolytic oxidation on magnesium 9995A [J]. Mater. Lett., 2019, 241: 119
doi: 10.1016/j.matlet.2019.01.080
[27] Bai X. Study on the synergistic lubrication effect of micro arc oxidation coating on titanium alloy surface and lubricating oil additives [D]. Ji'nan: Qilu University of Technology, 2024
[27] 白 霄. 钛合金表面微弧氧化涂层与润滑油添加剂协同润滑作用的研究 [D]. 济南: 齐鲁工业大学, 2024
[28] Zhan Z W, Zhang Q, Liu X H, et al. Effect of CeO2 particles on growth behavior and wear/corrosion resistance of micro-arc oxidation coating on 7075 aluminum alloy [J]. Surf. Technol., 2024, 53: 17
[28] 詹中伟, 张 骐, 刘小辉 等. CeO2颗粒对7075铝合金微弧氧化膜生长行为及耐磨/耐蚀性能的影响 [J]. 表面技术, 2024, 53: 17
[29] Yang Y Q. Preparation and performance regulation of electroless plating polyalloy coatings on micro-arc oxidized titanium [D]. Qinhuangdao: Yanshan University, 2024
[29] 杨永强. 微弧氧化钛表面多元化学镀膜层制备与性能调控研究 [D]. 秦皇岛: 燕山大学, 2024
[30] Yang C C, Liu L, Liu C H, et al. Study on the interfacial cohesive performance of nano-SiO2 grafted basalt fiber with asphalt [J]. Chem. Ind. Eng. Progress, 2024, 15: 16
[30] 杨程程, 柳 力, 刘朝晖 等. 纳米SiO2接枝玄武岩纤维与沥青界面粘结性能研究 [J]. 化工进展, 2024, 15: 16
[31] Xiao J X. Structure and classification, phase behavior of cationic surfactants, toxicity, applications, and interactions with other surfactants and interactions with other surfactants and various macromolecules [J]. Chem. Daily Use Eng., 2024, 47(11): 1
[31] 肖进新. 阳离子表面活性剂的结构及分类、相行为、毒性、应用以及与其他表面活性剂和各类大分子的相互作用 [J]. 日用化学品工程, 2024, 47(11): 1
[32] Pu Z. Preparation process of MoS2/TiO2 micro-arc oxide film grown on the surface of TC4 titanium alloy [D]. Xi'an: Chang'an University, 2019
[32] 蒲 哲. TC4钛合金表面原位生长MoS2/TiO2微弧氧化膜层制备工艺研究 [D]. 西安: 长安大学, 2019
[33] An J H, Qi Y M, Peng Z J, et al. Preparation and corrosion resistance of MgF coating containing Si C nanoparticles on AZ31 magnesium alloy [J]. China Surf. Eng., 2020, 33(1): 24
[33] 安景花, 齐玉明, 彭振军 等. AZ31镁合金表面含纳米SiC氟化镁膜层的制备及耐腐蚀性能 [J]. 中国表面工程, 2020, 33(1): 24
[34] Yao Z P, Chen C J, Wang J K, et al. Preparation and phenol degradation performance of Fenton catalysts with iron oxide film layers on titanium alloy surface [J]. Chin. J. Inorg. Chem., 2017, 33: 1797
[34] 姚忠平, 陈昌举, 王建康 等. 钛合金表面铁氧化物膜层类Fenton催化剂制备及降解苯酚性能 [J]. 无机化学学报, 2017, 33: 1797
[35] Zhang Q, Li Y H, Liu X. Properties of ZrO2/TiO2 composite ceramic coating on TC4 titanium alloy [J]. Trans. Mater. Heat Treatment, 2014, 35(9): 199
[35] 张 勤, 李玉海, 刘 馨. TC4钛合金表面ZrO2/TiO2复合陶瓷膜的性能 [J]. 材料热处理学报, 2014, 35(9): 199
[36] Cao F, Lü K, Zhang Y P, et al. Study on corrosion resistance of micro arc oxidation coating on Ti5111 alloy filled with ZrO2 particles [J]. Hot Work. Technol., 2020, 49(8): 84
[36] 曹 飞, 吕 凯, 张雅萍 等. ZrO2颗粒填充Ti5111合金微弧氧化膜的耐蚀性研究 [J]. 热加工工艺, 2020, 49(8): 84
[37] Wang X J, Wang P, Liu Y, et al. Effect of adding HfO2 on the properties of micro-arc oxidation film on titanium alloy [J]. Rare Met.Mater. Eng., 2023, 52: 3452
[37] 王香洁, 王 平, 刘 毅 等. 添加HfO2对钛合金微弧氧化膜层特性的影响 [J]. 稀有金属材料与工程, 2023, 52: 3452
[38] Lü K, Zhang R F, Chen W D, et al. Effect of graphene oxide on wear and corrosion characteristics of micro arc oxidation coating on titanium alloy [J]. Rare Met. Mater. Eng., 2022, 51: 4103
[38] 吕 凯, 张瑞芳, 陈伟东 等. 氧化石墨烯对钛合金微弧氧化膜耐磨损与腐蚀性影响 [J]. 稀有金属材料与工程, 2022, 51: 4103
[39] Ma N, Huang J M, Su J, et al. Effects of MgO nanoparticles on corrosion and wear behavior of micro-arc oxide coatings formed on AZ31B magnesium alloy [J]. Mater. Rep., 2018, 32: 2768
[39] 马 妞, 黄佳木, 苏 俊 等. MgO纳米颗粒对AZ31B镁合金微弧氧化涂层耐磨和耐蚀性的影响 [J]. 材料导报, 2018, 32: 2768
[40] Wang X Y, Ju P F, Lu X P, et al. Influence of Cr2O3 particles on corrosion, mechanical and thermal control properties of green PEO coatings on Mg alloy [J]. Ceram. Int., 2022, 48: 3615
[41] Zhang Y, Xu B, Chen Z N, et al. Effect of graphene addition on the properties of micro of graphene addition on the properties of micro-arc oxidation coating on arc oxidation coating on AZ31B magnesium alloy [J]. Ordnance Mater. Sci. Eng., 2022, 45(6): 153
[41] 张 艳, 许 波, 陈志楠 等. 石墨烯添加剂对AZ31B镁合金微弧氧化膜层性能的影响 [J]. 兵器材料科学与工程, 2022, 45(6): 153
[42] Pezzato L, Angelini V, Brunelli K, et al. Tribological and corrosion behavior of PEO coatings with graphite nanoparticles on AZ91 and AZ80 magnesium alloys [J]. Trans. Nonferrous Met. Soc. China, 2018, 28: 259
[43] Liang X B, Li X G, Zhang K, et al. Micro-arc oxidation coatings formed on VW75 Mg alloy with Al2O3 nano-additive [J]. Chin. J. Rare Met., 2021, 45: 812
[43] 梁锡炳, 李兴刚, 张 奎 等. 纳米Al2O3添加剂对VW75稀土镁合金微弧氧化膜层的影响 [J]. 稀有金属, 2021, 45: 812
[44] Daroonparvar M, Mat Yajid M A, Kumar Gupta R, et al. Antibacterial activities and corrosion behavior of novel PEO/nanostructured ZrO2 coating on Mg alloy [J]. Trans. Nonferrous Met. Soc. China, 2018, 28: 1571
[45] Huang K, Wang G M, Qing H W, et al. Effect of Cu content on electrical resistivity, mechanical properties and corrosion resistance of AlCu x NiTiZr0.75 high entropy alloy films [J]. Vacuum, 2022, 195: 110695
[46] Chen X W, Li M L, Zhang D F, et al. Corrosion resistance of MoS2-modified titanium alloy micro-arc oxidation coating [J]. Surf. Coat. Technol., 2022, 433: 128127
[47] Chang H, Guo X G, Wen L, et al. Influence of SiC nanoparticles on microstructure and corrosion behavior of microarc oxidation coatings formed on TC4 alloy [J]. J. Mater. Eng., 2019, 47(3): 109
doi: 10.11868/j.issn.1001-4381.2018.000766
[47] 常 海, 郭雪刚, 文 磊 等. SiC纳米颗粒对TC4钛合金微弧氧化涂层组织结构及耐蚀性能的影响 [J]. 材料工程, 2019, 47(3): 109
[48] Ding Z S, Gao W, Wei J P, et al. Effects of TaC microparticles on structure and properties of micro-arc oxidation coating on Ti-6Al-4V alloy [J]. Acta Phys. Sin., 2022, 71: 331
[48] 丁智松, 高 巍, 魏敬鹏 等. TaC微粒对Ti-6Al-4V合金微弧氧化层结构和性能的影响 [J]. 物理学报, 2022, 71: 331
[49] Wang R Y, He X J, Gao Y E, et al. Antimicrobial property, cytocompatibility and corrosion resistance of Zn-doped ZrO2/TiO2 coatings on Ti6Al4V implants [J]. Mater. Sci. Eng., 2017, 75C: 7
[50] Li M Z, Zhao Z C, Wu M B, et al. Fabrication and performance of GO/HA/MAO composite coating on titanium alloy surface [J]. China Surf. Eng., 2020, 33(2): 97
[50] 李明泽, 赵子聪, 吴敏宝 等. 钛合金表面GO/HA/MAO复合膜层的制备及其性能 [J]. 中国表面工程, 2020, 33(2): 97
[51] Han L P. Effect of ceramic particles on the structure and properties of MAO film of titanium alloy [D]. Zhengzhou: North China University of Water Resources and Hydropower, 2018
[51] 韩林萍. 陶瓷颗粒对钛合金微弧氧化膜结构与性能的影响 [D]. 郑州: 华北水利水电大学, 2018
[52] Xie Y N. Preparation and properties of SiC particles reinforced micro-arc oxidation layer on titanium alloy [D]. Dalian: Dalian Maritime University, 2019
[52] 谢延楠. SiC复合钛合金微弧氧化膜的制备与研究 [D]. 大连: 大连海事大学, 2019
[53] Lu X P, Blawert C, Huang Y D, et al. Plasma electrolytic oxidation coatings on Mg alloy with addition of SiO2 particles [J]. Electrochim. Acta, 2016, 187: 20
[54] Zhang Y L, Dong X Y, Zhai Z Y, et al. Microstructure and wear resistance of MAO coatings of TC4 alloy with different Er2O3 Doping amounts [J]. Chin. J. Rare Met., 2024, 48: 1120
[54] 张云龙, 董鑫焱, 翟梓棫 等. Er2O3微粒掺杂对TC4钛合金微弧氧化涂层组织和耐磨性的影响 [J]. 稀有金属, 2024, 48: 1120
[55] Cheng Z H, Yang W, Zhang Y, et al. Effect of Nano Nd2O3 on the wear resistance and high temperature oxidation resistance of micro-arc oxidation coating on TC11 titanium alloy [J]. Mater. Prot., 2023, 56(7): 38
[55] 程赵辉, 杨 巍, 张 勇 等. 纳米Nd2O3对TC11钛合金微弧氧化层耐磨性及高温抗氧化性能的影响 [J]. 材料保护, 2023, 56(7): 38
[56] Wang X, Yu X T. Effects of SiC content on the composite membrane structure and friction properties of Ti-6Al-4V alloy for internal combustion engine [J]. Mater. Sci. Eng. Powder Metall., 2020, 25: 458
[56] 王 雪, 于秀涛. SiC含量对内燃机用Ti-6Al-4V合金复合膜组织和摩擦性能的影响 [J]. 粉末冶金材料科学与工程, 2020, 25: 458
[57] Wang W. Study on the friction and wear performance of MAO BN、ZrO2 composite coating on TC4 Alloy [D]. Nanchang: Nanchang Aviation University, 2015
[57] 王 伟. TC4钛合金微弧氧化/ZrO2、BN复合膜摩擦磨损性能研究 [D]. 南昌: 南昌航空大学, 2015
[58] Wang J C, You X Q, Zheng Y C, et al. Research and development status of partichlate reinforced metal matrix composites [J]. Cement. Carbide, 2003, 20: 51
[58] 王基才, 尤显卿, 郑玉春 等. 颗粒增强金属基复合材料的研究现状及展望 [J]. 硬质合金, 2003, 20: 51
[59] Liu Y C, Sun Q S, Liu Z Y, et al. Effect of adding boron nitride on micro arc oxidation coatings and wear resistance of the TB8 titanium alloy [J]. J. Qingdao Technol. Univ., 2020, 41(6): 102
[59] 刘元才, 孙启胜, 刘志远 等. 氮化硼对TB8钛合金微弧氧化膜及其耐磨性的影响 [J]. 青岛理工大学学报, 2020, 41(6): 102
[60] Jiang D X, Fu Y, Zhang J W, et al. Preparation and properties of alumina ceramic film on Ti-alloy surface [J]. J. Chin. Soc. Corros. Prot., 2019, 39: 469
[60] 姜冬雪, 付 颖, 张峻巍 等. 钛合金表面Al2O3陶瓷膜制备及性能研究 [J]. 中国腐蚀与防护学报, 2019, 39: 469
doi: 10.11902/1005.4537.2018.173
[61] Gao W, Liu J N, Wei J P, et al. Structure and properties of Cu2O doped micro arc oxidation coating on TC4 titanium alloy [J]. Chin. J. Mater. Res., 2022, 36: 409
doi: 10.11901/1005.3093.2021.411
[61] 高 巍, 刘江南, 魏敬鹏 等. TC4钛合金表面氧化亚铜掺杂微弧氧化层的结构和性能 [J]. 材料研究学报, 2022, 36: 409
[62] Chen Y N, Guo Z W, Yang Z H, et al. Study on self-sealing pore effect of GO/TiO2 coating controlled by graphene oxide [J]. Rare Met. Mater. Eng., 2021, 50: 3621
[62] 陈永楠, 郭紫薇, 杨泽慧 等. 氧化石墨烯调控GO/TiO2陶瓷膜层自封孔效应研究 [J]. 稀有金属材料与工程, 2021, 50: 3621
[63] Hu J, Zhao Y, Tao Y C, et al. Effect of neodymium oxide on properties of micro-arc oxidation coating formed on 2A12 aluminium alloy [J]. Mater. Prot., 2022, 55(3): 73
[63] 胡 杰, 赵 月, 陶业成 等. 氧化钕对2A12铝合金微弧氧化膜层性能的影响 [J]. 材料保护, 2022, 55(3): 73
[64] Wang C. Preparation of ZrO2/TiO2 micro-arc oxidation composite ceramic coatings on Ti6Al4V and study on high-temperature oxidation behavior [D]. Xi'an: Chang'an University, 2015
[64] 王 超. Ti6Al4V表面TiO2/ZrO2微弧氧化复合陶瓷层的制备及高温氧化行为研究 [D]. 西安: 长安大学, 2015
[65] Zhao B, Shen Y H, Zhou Y J, et al. Progress on preparation and application of carbon quantum dots/TiO2 composite photocatalysts [J]. Technol. Dev. Chem. Ind., 2024, 53(6): 47
[65] 赵 斌, 沈谊豪, 周雨洁 等. 碳量子点/TiO2复合光催化剂的制备和应用进展 [J]. 化工技术与开发, 2024, 53(6): 47
[66] Wang Y Q, Jiang X D, Pan C X, et al. “In situ” preparation of a TiO2/Eu2O3 composite film upon Ti alloy substrate by micro-arc oxidation and its photo-catalytic property [J]. J. Alloy. Compd., 2012, 538: 16
[67] Akatsu T, Yamada Y, Hoshikawa Y, et al. Multifunctional porous titanium oxide coating with apatite forming ability and photocatalytic activity on a titanium substrate formed by plasma electrolytic oxidation [J]. Mater. Sci. Eng., 2013, 33C: 4871
[68] Zhao D, Lu Y H, Wang Z, et al. Antifouling properties of micro arc oxidation coatings containing Cu2O/ZnO Nanoparticles on Ti6Al4V [J]. Int. J. Refract. Met. Hard Mater., 2016, 54: 417
[69] Li Z J, Zhang F H, Meng L, et al. ZnO/Ag micro/nanospheres with enhanced photocatalytic and antibacterial properties synthesized by a novel continuous synthesis method [J]. RSC Adv., 2015, 5: 612
[1] 佟向瑜, 徐玮辰, 王秀通, 王优强, 段继周. 常用钛合金焊接接头显微组织结构及对材料性能的影响[J]. 中国腐蚀与防护学报, 2025, 45(5): 1161-1174.
[2] 王涛涛, 薛荣洁, 马晓伟, 万皓锋, 王冬朋, 刘珍光. 表面粗糙度以及NaOH溶液的浓度和温度对锆基非晶合金腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2025, 45(5): 1253-1264.
[3] 刘鹏鹤, 薛丽莉, 许立坤, 辛永磊, 郭明帅, 周帅, 段体岗. 钛基体阴极充氢处理对RuO2-IrO2-TiO2 阳极微观结构和性能的影响[J]. 中国腐蚀与防护学报, 2025, 45(5): 1277-1288.
[4] 张雄斌, 党恩, 于晓婧, 汤玉斐, 赵康. 油气田用马氏体不锈钢腐蚀性能研究现状与进展[J]. 中国腐蚀与防护学报, 2025, 45(4): 837-848.
[5] 周谦永, 赖漾, 李谦. 酸洗工艺对不同锡量二次冷轧镀锡板耐蚀性能的影响[J]. 中国腐蚀与防护学报, 2025, 45(4): 939-946.
[6] 胡娜, 彭文山, 郭为民, 刘天楠, 段体岗, 刘少通. 高强铝合金焊接接头力学-电化学腐蚀行为与退化规律研究[J]. 中国腐蚀与防护学报, 2025, 45(4): 965-974.
[7] 张珊珊, 刘元才, 徐铁伟, 杨发展. 成型方向及热处理对选区激光熔化Ti6Al4V合金腐蚀性能的影响[J]. 中国腐蚀与防护学报, 2025, 45(4): 995-1004.
[8] 李茂, 邓轲, 陈衍祥, 刘中豪, 李尚, 郭宇婷, 董选普, 曹华堂. N2 流量和靶基距对多弧离子镀沉积AlSiN纳米复合涂层的微观组织及耐腐蚀性能影响[J]. 中国腐蚀与防护学报, 2025, 45(4): 1041-1050.
[9] 陈宇强, 冉光林, 陆丁丁, 黄磊, 曾立英, 刘阳, 支倩. 循环强化对7075铝合金腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2025, 45(4): 1051-1060.
[10] 冉仁豪, 单慧琳, 张鹏杰, 汪冬梅, 斯佳佳, 徐光青, 吕珺. 表层镁合金化NdFeB磁体的制备及其耐腐蚀性能[J]. 中国腐蚀与防护学报, 2025, 45(4): 1117-1126.
[11] 蒋袁圆, 段宇炜, 王珩, 戈雪良. 聚脲-硅烷复合涂层对混凝土抗结冰性能的影响[J]. 中国腐蚀与防护学报, 2025, 45(4): 1135-1142.
[12] 魏然, 蒋全通, 孙琛, 王伟伟, 段继周, 侯保荣. 镁合金在海洋环境中的腐蚀与防护研究[J]. 中国腐蚀与防护学报, 2025, 45(3): 533-547.
[13] 陈丽, 冯佳, 孟凡帝, 王福会. 煤矸石改性环氧涂层的制备及其防腐性能研究[J]. 中国腐蚀与防护学报, 2025, 45(3): 643-652.
[14] 何奥成, 周祺艳, 肖唐, 屈展庆, 卢向雨, 陈松贵, 冯兴国. 几种混凝土用固态参比电极的综合性能对比研究[J]. 中国腐蚀与防护学报, 2025, 45(3): 773-779.
[15] 张洪江, 陈佳起, 谢微微, 刘仲轩, 董社英. 丙烯酸-益母草药渣复合碳点荧光型阻垢剂的设计及性能研究[J]. 中国腐蚀与防护学报, 2025, 45(3): 812-820.