中国腐蚀与防护学报, 2025, 45(5): 1175-1186 DOI: 10.11902/1005.4537.2024.382

综合评述

在电解液中添加陶瓷颗粒对钛合金表面微弧氧化膜层改性的研究进展

何江海, 杨子钰, 刘琦, 马子骅, 何伟, 陈飞,

北京石油化工学院新材料与化工学院 北京 102617

Research Progress on Modification of Microarc Oxidation Coatings on Ti-alloy Surface by Adding Ceramic Particles to Electrolyte

HE Jianghai, YANG Ziyu, LIU Qi, MA Zihua, HE Wei, CHEN Fei,

School of New Materials and Chemical Engineering, Beijing Institute of Petrochemical Technology, Beijing 102617, China

通讯作者: 陈飞,E-mail:chenfei@bipt.edu.cn,研究方向为金属材料腐蚀与防护

收稿日期: 2024-11-26   修回日期: 2025-02-19  

基金资助: 北京市自然科学基金.  2202017

Corresponding authors: CHEN Fei, E-mail:chenfei@bipt.edu.cn

Received: 2024-11-26   Revised: 2025-02-19  

Fund supported: Natural Science Foundation of Beijing.  2202017

作者简介 About authors

何江海,男,2000年生,硕士生

摘要

钛合金微弧氧化(MAO)后在表面形成的涂层疏松多孔等物理缺陷,严重影响了钛合金相关性能及服役时间,针对这一问题,本文总结了利用二元化合物在电解液里的掺杂,提高钛合金MAO涂层的耐磨性、耐蚀性、高温抗氧化性、光催化性、抗菌性的相关性能研究。并在此基础上提出了未来二元化合物的掺杂来提高钛合金微弧氧化涂层性能的研究方向和思路,希望能为今后钛合金的研究提供参考和借鉴。

关键词: 微弧氧化 ; 钛合金 ; 缺陷 ; 二元化合物 ; 性能

Abstract

It is known that modification with micro arc oxidation (MAO) technique, the physical defects such as porosities or pinholes may commonly exist in the formed coatings on the Ti-alloy surface, which seriously affects the relevant properties and the service life-time of Ti-alloy parts or facilities, in view of this problem, herein it summarizes the research progress on the addition of binary compounds in the electrolyte to modify the relevant properties of MAO coatings on Ti-alloy in terms of the resistance to abrasion, corrosion and high temperature oxidation, as well as the photocatalytic and antimicrobial properties. Furthermore, the future research direction and ideas to create MAO coatings of peculiar performance for Ti-alloy, the utilizing different binary compounds with various function and particle size, even multiple binary compounds etc. are proposed, hoping to provide reference and reference for future research on titanium alloys.

Keywords: microarc oxidation ; Ti-alloy ; defects ; binary compounds ; properties

PDF (1151KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

何江海, 杨子钰, 刘琦, 马子骅, 何伟, 陈飞. 在电解液中添加陶瓷颗粒对钛合金表面微弧氧化膜层改性的研究进展. 中国腐蚀与防护学报[J], 2025, 45(5): 1175-1186 DOI:10.11902/1005.4537.2024.382

HE Jianghai, YANG Ziyu, LIU Qi, MA Zihua, HE Wei, CHEN Fei. Research Progress on Modification of Microarc Oxidation Coatings on Ti-alloy Surface by Adding Ceramic Particles to Electrolyte. Journal of Chinese Society for Corrosion and Protection[J], 2025, 45(5): 1175-1186 DOI:10.11902/1005.4537.2024.382

钛合金凭借其密度低、比强度高、耐蚀性好、弹性模量较低等特点,被广泛应用于医疗器械、骨植入材料、车辆工程、航空航天等领域[1~3]。部分钛合金在成分上的变化,使合金具有良好的生物相容性、超导性和形状记忆等特性,广泛应用于一些特殊行业[4~6]。然而,硬度低、耐磨性差等缺陷,严重限制使用寿命和服役安全性。表面处理技术能有效的解决钛合金所面临的缺陷,现如今常用的表面技术有微弧氧化[7,8]、电镀[9,10]、热喷涂[11,12]、溶胶-凝胶[13,14]、化学气相沉积[15]、电沉积[16]、激光熔覆[17]、堆焊和熔覆[18]等。但在实际应用过程中,需要考虑技术复杂程度,经济、环保、效率等方面因素。综合来看,微弧氧化(MAO)技术所用电解液大部分为碱性,对环境友好,并且可以加工各种形状的钛合金,操作简单等优势,被公认为是最具有前景的技术之一[19,20]。通过MAO在钛合金表面形成的陶瓷层均匀,涂层与基体结合力强、涂层的覆盖对基体产生一定的保护等优点,被广泛应用于钛合金表面处理。但通过MAO技术在钛合金表面形成的陶瓷层疏松多孔,腐蚀介质易通过微孔腐蚀基体,降低涂层的耐蚀性,疏松结构导致涂层硬度下降,降低涂层耐磨性,生成的MAO涂层性能单一等问题,严重限制钛合金广泛利用。因此,对涂层进行优化是必然的。二元化合物颗粒直径小,耐磨、耐蚀等性质,能有效的对涂层进行封孔、缩小孔径,参与成膜过程,优化相结构,改善涂层疏松多孔的缺陷,提高涂层的耐磨耐蚀性能。部分二元化合物拥有优异的抗菌性能、光学性能、高温抗氧化性能等性能,在电解液中的掺杂,通过MAO技术,可制备出多功能涂层,提高钛合金涂层的整体综合性能[21~23]

本文主要介绍了二元化合物在电解液中的掺杂来提高钛合金MAO涂层耐磨性、耐蚀性、高温抗氧化性、光催化性及抗菌性等方面性能,并对前人的研究进行分析和总结,并提出了作者的观点,希望对提高钛合金性能方面的研究有所帮助和借鉴。

1 MAO电解液中添加的二元化合物

常见的二元化合物有SiO2、ZrO2、ZnO2、Cu2O、SiC、TiO2、Er2O3、HfO2、MoS2、Nd2O3、TaC、ZnSr、BN等。通过在电解液中的掺杂,优化相结构,有助于提高钛合金MAO涂层的耐磨性能、耐蚀性能、抗氧化性、光催化性能等。下面从二元化合物种类、掺杂机理、团聚问题3方面进行分析。

1.1 二元化合物种类

MAO过程中可掺杂的二元化合物种类繁多,按作用大致可分为3种。(1) 增强相二元化合物,例如Al2O3、TiO2等,这类粒子借助MAO复杂的反应过程均匀的分散在陶瓷涂层中,通过优化相组成结构,成为涂层一部分,增强涂层的硬度、耐磨等力学性能,当涂层受到外力冲击时,由于这类粒子的掺杂强化了相结构,可以有效的阻碍位错运动的发生,进一步提高涂层抵抗变形的能力[24],提高涂层性能。(2) 活性二元化合物,例如稀土氧化物CeO2[25],这类粒子通过与腐蚀介质发生化学反应,在涂层表面形成一层保护膜,阻止腐蚀介质的进一步腐蚀,进而提高涂层耐蚀性。(3) 填充二元化合物,例如SiO2[26],这类粒子不参与相组成,通过借助MAO的能量,可以有效的均匀填充到微孔中,使涂层结构致密,微孔直径缩小,阻止腐蚀介质的介入,同时提高涂层厚度和结合强度,使涂层整体性能得到提高。

1.2 二元化合物的掺杂机理分析

MAO过程复杂,涉及的反应众多,目前没有明确的机制,二元化合物通过MAO掺杂到涂层中的机理大致分为3种。(1) 物理吸附与包裹,在MAO碱性电解液中,羟基的存在使二元化合物粒子表面附带负电荷,在MAO电场的作用下,带电粒子向试样表面移动,由于电解液中van der Waals力等物理作用[27],粒子会不断的吸附在涂层表面,随着MAO不断进行,涂层不断生长,粒子就被包裹在涂层中,通过这种不断的吸附与包裹掺杂到涂层中[28]。(2) 共沉积[29],在MAO过程中,基体表面会发生复杂的化学反应,基体产生金属离子,与电解液中的成分发生化学反应,形成涂层,然而带有一定量电荷二元化合物粒子会通过MAO和金属离子形成的二元化合物一起沉积在基体表面,参与相结构组成,成为涂层一部分。(3) 扩散[30],MAO在基体表面放电,创造高温高压环境,高温使涂层中的原子或离子活性增强,二元化合物粒子借助高温高压条件,增强扩散速度,在涂层中找到合适位置固定,进入到涂层中。

1.3 二元化合物在电解液中分散问题

二元化合物粒子多数不溶于水,在电解液中易团聚,造成分散不均匀问题,极大限制了二元化合物粒子在提高钛合金MAO涂层的性能方面的应用,现如今解决团聚问题的方法大致分为3种。(1) 粒子表面改性,例如,利用水分子和羟基之间能够形成氢键这一理论,研究者通过在普通石墨烯上引入羟基等官能团,使氧化石墨烯(GO)可以较好均匀的分散在电解液中。对于不易改性的粒子而言,在电解液中加表面活性剂,表面活性剂会吸附在粒子上,通过静电斥力作用,使粒子均匀分散[31]。例如,十二烷基苯磺酸钠、羧甲基纤维素钠等。(2) 超声搅拌,利用空化效应,超声波在水中产生不断的高压低压区域和微小气泡,高低压区域的交替变化,使气泡碎裂产生冲击波和微射流,冲散团聚的粒子。搅拌使整个电解液运动,使分散更均匀,进而解决粒子团聚问题。(3) 原位合成,借助MAO复杂的反应过程,在基体表面原位合成二元化合物,有效避免粒子团聚。例如通过在电解液中加入钼酸钠和硫化钠[32],通过MAO,在基体表面发生化学反应,合成MoS2,有效避免粒子之间的相互接触,直接掺杂到MAO涂层中。

2 二元化合物掺杂对钛合金MAO膜层的影响

2.1 二元化合物对钛合金MAO组织形貌的影响

在钛合金的MAO过程中,通常会产生一些物理结构缺陷,例如微孔和裂纹。物理结构缺陷产生的主要原因是随着MAO的进行,电压和电流相互作用,基体表面产生大量气体,气体在逸出电解液进入到空气中时会产生通道,同时高温熔融物质也会沿着放电通道喷出,导致膜层表面产生微孔。随后,高温熔融物质与电解液接触并快速冷却,导致表面产生微小裂纹微孔[33]。二元化合物的掺杂可以显著影响MAO膜层的形貌,研究表明,与未添加颗粒的膜层相比,含有颗粒的膜层往往具有更小孔隙结构和更致密的组织。

(1) Fe3O4对钛合金MAO组织形貌的影响。姚忠平等[34]在硅酸盐电解液体系中加入铁氰化钾(K3[Fe(CN)6])。对膜层的表面形貌分析表明,膜层中发现金红石相TiO2(R-TiO2),和非晶态的Fe3O4膜层的表面粗糙度和平均孔尺寸相比,不含K3[Fe(CN)6]的MAO膜层得到不同程度的优化,微裂纹微孔均减小,相的成分发生了明显变化。

(2) ZrO2对钛合金MAO组织形貌的影响。张勤等[35]在Na2SiO3-NaH2PO4体系电解液中分别添加K2ZrF6和ZrO2,结果表明,两者都会使陶瓷膜的厚度增加,膜层表面粗糙度降低,大尺寸缺陷减少,膜层中的相由原来的金红石相TiO2和锐钛矿相TiO2转变为以金红石相TiO2和ZrO2相为主,使涂层的硬度、耐蚀性、耐磨性显著提高,同时,涂层还具备了一定的光催化性能和生物相容性等特殊性能,使钛合金将来在生物医用、环保等领域具有潜在的应用价值。曹飞等[36]在钛合金MAO电解液只添加ZrO2颗粒不添加K2ZrF6盐,结果显示涂层中的相没有变化,只有金红石相TiO2和锐钛矿相TiO2组成,不存在ZrO2相;当ZrO2加入量为1.25 g/L时,氧化膜厚度达到106 μm,其粗糙度也小于未加ZrO2的膜层的粗糙度,氧化膜形貌观察结果表明,ZrO2的加入可以有效填充膜层中的孔洞,并能减少裂纹,有利于获得更为致密的氧化膜,如图1所示。分析可知,K2ZrF6的掺杂,涂层中存在ZrO2相;ZrO2的掺杂,涂层中的相不发生改变,只有金红石相TiO2和锐钛矿相TiO2

图1

图1   在电解液中添加不同含量的ZrO2颗粒后钛合金MAO膜的表面与截面形貌[36]

Fig.1   Surface and cross-sectional morphologies of MAO films formed on Ti-alloy in the electrolytes containing different contents of ZrO2 particles: (a) 0 g/L, (b) 0.25 g/L, (c) 0.5 g/L, (d) 0.75 g/L, (e) 1.00 g/L, (f) 1.25 g/L[36]


(3) HfO2对钛合金MAO组织形貌的影响。王香洁等[37]在基础电解液中单独添加HfO2对钛合金进行MAO处理,研究表明,添加HfO2后,MAO膜层相组成是Al2TiO5、TiO2γ-Al2O3,整个涂层的相组成中不存在含Hf相,此时的HfO2作为一种不参与MAO涂层生成的添加剂,只存在于MAO微孔中,只起到缩小孔径和密封尺寸合适的微孔的作用,使膜层的致密性、厚度和均匀性都得到优化,提高膜层的整体表面形貌。

(4) GO对钛合金MAO组织形貌的影响。GO具有良好的自润滑作用,吕凯等[38]在电解液中添加0~1.00 g/L的GO制备MAO膜。结果表明,随着GO加入量的增加,涂层厚度从102.3 μm增至115.3 μm,粗糙度从56.7 μm减小到32.9 μm,微孔直径不断减小,在加入量为0.75和1.00 g/L时,微孔直径稳定于10~20 μm。对相组成进行分析表明,加入GO后,涂层的相成分中并不存在含碳相,只有金红石相TiO2含量略有增加。与上述的分析总结相呼应,二元化合物在电解液中的掺杂并不改变相组成。原子力显微镜(AFM)检测表明,未加入GO时,涂层的厚度差达到1600 μm,加入GO后,厚度差降至550 μm,膜层的粗糙度显著降低,涂层表面更光滑。最后,对于GO的加入,金红石相TiO2含量有所增加,作者并没有给出解释。金红石相TiO2含量的增加与GO独特的二维片层结构和较大的比表面积有关,在MAO过程中,钛离子和其他离子在GO片层周围聚集和反应,促进了相的成核和生长,从而使相的含量有所增加。

因此,通过上述的分析总结,未来对钛合金MAO涂层相组成结构的研究中,需要丰富涂层相组成,优化钛合金MAO相组织,二元化合物粒子掺杂不能使相发生变化,加入对应的盐可以有效的解决这一问题。通过MAO技术,基体表面会产生高温高压等复杂的环境,对应的盐在基体表面发生化学反应,生成二元化合物,随着基体附近的金属离子形成的二元化合物一起构成涂层的一部分,使相组成成分得到丰富,相组织形貌得到优化。对比上述的K3[Fe(CN)6]、氟锆酸钾(K2ZrF6)、ZrO2、HfO2,可知,K3[Fe(CN)6]和K2ZrF6的加入使得涂层的相组成中含有非晶态的铁氧化物Fe3O4、ZrO2相,而ZrO2、HfO2的加入,相组成成分没有变化,只有金红石相TiO2和锐钛矿相TiO2组成。

2.2 二元化合物对钛合金耐蚀性能的影响

MAO技术作为目前最具潜力的表面技术之一,被广泛应用于阀金属上,例如Ti、Mg、Al等金属,通过高压放电,在合金表面生成一层陶瓷层,由于该过程基体表面气体产生,生成的陶瓷涂层附带微洞,这些微洞的产生使钛合金暴露在腐蚀介质中,影响其耐蚀性。整个腐蚀过程大致分为3个阶段:腐蚀介质的渗透、腐蚀介质到达膜层与基体界面、以及基体腐蚀和腐蚀产物扩散。腐蚀介质的渗透这一阶段是提高钛合金耐蚀性的关键阶段,因此封孔及缩小孔径成为提高钛合金耐蚀性的重要一步。不少研究者探究了二元化合物添加剂对合金膜层耐蚀性能影响[39~44]表1展示了二元化合物对钛合金MAO膜层耐蚀性能的影响。在耐蚀性的研究过程中,通常用腐蚀电位(Ecorr)与腐蚀电流密度(Icorr)来体现钛合金的耐蚀程度,涂层良好的耐蚀性展现出的是高的Ecorr和低的Icorr[45]

表1   在电解液中添加二元化合物粒子对钛合金MAO膜层在3.5%NaCl溶液中耐蚀性的影响

Table 1  Effects of binary compound particles added in the electrolytes on the corrosion resistances of MAO films of Ti-alloy in 3.5%NaCl solution

SubstratesParticlesSize of particlesEcorr without particles / VEcorr with particles / VIcorr without particlesA·cm-2Icorr with particlesA·cm-2Refs.
TC4ZrO20.5-1 μm-0.2237-2.4 × 10-9[36]
Ti6Al4VMoS2< 2 μm-0.3830.0389.6 × 10-84.2 × 10-9[46]
TC4SiC400 nm--9.1 × 10-54.1 × 10-6[47]
TC4TaC1 μm-0.220.121.1 × 10-62.7 × 10-8[48]
Ti6Al4VZrO2/TiO21 μm-0.4470.1131.5 × 10-75.7 × 10-8[49]
Ti6Al4VGO/HA-0.290.615.0 × 10-81.6 × 10-8[50]
Ti6Al4VAlN--0.7311-0.38176.9 × 10-62.8 × 10-9[51]

新窗口打开| 下载CSV


(1) MoS2对钛合金耐蚀性能的影响。Chen等[46]的研究表明,在电解液中加入MoS2微粒,添加量为4 g/L时,有较好的封孔及缩小孔径的效果,电化学3结果显示Icorr值下降了2个数量级,Ecorr值相比基体提高了0.421 V,涂层具有较高的电阻和较低的腐蚀速率。在电偶实验中,涂层的电势和电流也有所下降,综合电化学和电偶实验表明,膜层的耐蚀性相比基体发生明显提高。

(2) SiC对钛合金耐蚀性能的影响。常海等[47]在基础电解液中加入纳米SiC,实验结果表明,SiC的加入有效抑制MAO涂层表面裂纹的产生,增加涂层厚度,降低涂层的阳极电流密度,提高MAO涂层的耐蚀性能,有效的增加了TC4钛合金的开路电位及自腐蚀电位,延长TC4钛合金的使用寿命。谢延楠[52]在电解液中加入700和400 nm的两种不同粒径的粒子,结果表明,SiC浓度为3 g/L时,掺杂400 nm的SiC粒子涂层表面的孔隙率低,自腐蚀电位正移1 V,腐蚀电流降低约50%,耐蚀效果更好,在低于3 g/L时,两种粒径的SiC耐蚀效果相差不大。整个研究过程中,缺乏对700 nm SiC粒子的浓度与耐蚀性之间的具体浓度探究,今后可补充该方面的实验数据。通过该研究可知,在电解液中掺杂二元化合物来优化涂层的性能时,粒子的尺寸与涂层表面的微孔存在一定关系,在今后研究中不仅需要考虑粒子的浓度,还有必要关注粒子粒径对膜层带来的影响。

(3) TaC对钛合金耐蚀性能的影响。丁智松等[48]在硅酸盐系电解液中添加1 μm左右的TaC微粒,实验结果表明,添加2 g/L TaC微粒制得的MAO涂层的Ecorr为0.10 V,Icorr约为10-8 A·cm-2,未添加TaC微粒制得的MAO层Ecorr约为-0.22 V,Icorr约为10-6 A·cm-2,腐蚀电压提高了0.32 V,腐蚀电流降低了2个数量级,耐蚀性明显提高。

最后,通过分析MoS2、SiC、TaC粒子粒径与耐蚀性数据和表1数据可知,在没有改变相组成的前提下,在电解液中加入微米级粒子对提高钛合金MAO涂层耐蚀的效果明显比添加纳米级粒子效果更好。促成这种效果的差异与MAO表面微米级孔径有关,微米级粒子与微米级孔径相切合,更有利于封孔和缩小孔径。未来对于二元化合物提高钛合金耐蚀性方面研究,可根据MAO涂层的微孔直径,确定所需要掺杂的微米级粒子,减小因粒子的选择给实验带来的不便。

(4) MoS2对钛合金耐蚀性能的影响。在对钛合金进行耐蚀性的研究中,常常需要评估膜层在一个较长周期内的耐腐蚀性,需要测出膜层的阻抗谱(EIS),得出膜层长周期的耐蚀性。在整个阻抗谱中,容抗弧、相位角、阻抗等数据反应合金的耐蚀性能。Chen等[46]在电解液里加入MoS2,在粒子浓度探究中发现,当MoS2的浓度为4 g/L时,不论是容抗环还是阻抗都优于其他组,耐蚀性得到提升(图2),在对Nyquist图进行分析时发现,Nyquist图由两个阻抗弧组成,这表明涂层具有两个时间常数,外部多孔疏松层的高频区相位角时间常数和内部致密层的低频时间常数,表明该钛合金具有至少有两层保护,从侧面揭示了MAO膜的多层结构。

图2

图2   电解液中添加MoS2所制备的MAO涂层在3.5% (质量分数) NaCl溶液中的EIS谱和拟合曲线[46]

Fig.2   EIS and fitting curves of MAO coating formed in the electrolyte containing MoS2 particles in 3.5% (mass fraction) NaCl solution: (a, b) Nyquist plots, (c) Bode impedance plots, (d) Bode phase angle plots[46]


(5) AlN和TiC对钛合金耐蚀性能的影响。韩林萍[51]通过优化基础电解液,制备出致密度和厚度好的MAO涂层,在优化后电解液中添加AlN和TiC颗粒,通过不断实验探究,得出AlN和TiC颗粒的添加含量为分别为6和4 g/L时,两者使涂层的腐蚀电流都降低了接近3个数量级,耐蚀性相比基体明显提高。在该研究中,作者只在优化的电解液中单独加AlN和TiC,进行单独探究,缺乏说服力。未来研究者可在此基础上将AlN和TiC一同掺杂在优化的电解液中,探究耐蚀性,弥补该实验的缺陷,形成实验的闭环,使得实验更加严谨。两者的一同掺杂将有望大幅度提高钛合金的耐蚀性能,延长钛合金的使用寿命。

2.3 二元化合物对钛合金耐磨性能的影响

对钛合金进行MAO,可以在合金表面形成MAO陶瓷层,在一定程度上提高了钛合金的耐磨性,但提高的性能有限。在耐磨性的研究中,通过降低摩擦系数、提高陶瓷层表面硬度、增加厚度以及减小孔隙率等方法,提高涂层耐磨性能。在如今的研究领域中,对于提高陶瓷层耐磨性主要关注在摩擦系数和表面硬度这两个参数,通过降低摩擦系数和提高表面硬度两个方面发挥协同效应[53],以达到优异的耐磨性能。二元化合物的掺杂可增加陶瓷层厚度及硬度,降低摩擦系数,从而提高钛合金的耐磨性能。表2为二元化合物掺杂对钛合金陶瓷层硬度及摩擦系数的影响,与不含二元化合物的涂层相比,拥有二元化合物的涂层耐磨性明显提高。

表2   二元化合物添加对钛合金的MAO膜层硬度及摩擦系数的影响

Table 2  Effects of additions of binary compound particles in the electrolytes on the hardnesses and friction coefficients of MAO coatings on Ti-alloy

SubstratesParticlesDurometerFriction coefficientsRefs.
TC4ZrO2-0.35[35]
Ti6Al4VTaC965HV0.148[49]
TC11Er2O3(486.9 ± 11.8)HV0.5[54]
TC11Nd2O3-0.6[55]
Ti6Al4VSiC(443.5 ± 15.8)HV0.38[56]
TC4BN/ZrO2-0.45[57]
Ti6Al4VMoS2/TiO2(360 ± 15)HV0.49[58]
TB8BN-0.6[59]
TC4Al2O31261HV0.63[60]
TC4Cu2O-0.3[61]
TC4GO-0.36[62]

新窗口打开| 下载CSV


(1) Er2O3对钛合金耐磨性能的影响。张云龙等[54]向硅酸钠基础电解液中掺杂稀土Er2O3微粒,当Er2O3掺杂量为0.9 g/L时,涂层表面的孔隙率从(45.0 ± 2.6)%降到(26.2 ± 3.1)%,涂层的厚度为(5.76 ± 0.16) μm,且致密性和连续性最好,MAO膜层的硬度提升27.96%,表面粗糙度降到0.325 μm,磨损体积减小28.57%,附着力提升54.3%。生成的MAO涂层的摩擦系数最小,约为0.5。上述各参数显示,整个涂层的耐磨性相比基体发生显著提升。

(2) Nd2O3对钛合金耐磨性能的影响。程赵辉等[55]研究了Nd2O3在电解液里的掺杂,研究结果表明,随着Nd2O3浓度的增加,膜层厚度先增大后减小。当Nd2O3浓度大于1 g/L时,Nd2O3颗粒无法有效沉积入膜层中,原因是过高浓度的Nd2O3颗粒可能会影响膜层的生长速率[63],当浓度为1 g/L时,膜层的摩擦系数降到0.6,相比其他涂层耐磨性最好。

(3) SiC对钛合金耐磨性能的影响。王雪和于秀涛[56]在基础电解液中加入SiC,研究结果表明,当SiC浓度在5.0~7.5 g/L之间,整个膜层的硬度接近460HV,摩擦系数降至0.38,膜层的耐磨性较好。在整个实验过程中对磨损机理进行研究,涂层仅表现为磨粒磨损。

(4) BN和ZrO2对钛合金耐磨性能的影响。随着研究的深入,两种二元化合物的掺杂逐渐出现,王伟[57]将两种不同属性的二元化合物掺杂到膜层中,实验结果显示,BN颗粒的单独掺杂,MAO膜层的自润滑性显著提高,ZrO2颗粒的单独掺杂,膜层的硬度提高,最后通过MAO技术使二者一同掺杂到膜层中,整个膜层的厚度,耐磨性,膜层的光滑度和均匀性都优于单独掺杂和不掺杂的膜层。

(5) Cu2O对钛合金耐磨性能的影响。为了拓展钛合金的应用领域,研究了钛合金MAO涂层在具有腐蚀介质的水溶液中的耐磨性能。高巍等[61]在电解液中添加不同浓度的Cu2O微粒,在模拟海水中对涂层的摩擦磨损实验,实验结果表明,加入6 g/L Cu2O微粒制备MAO膜层的摩擦系数降至0.3,膜层均匀,涂层在模拟海水的腐蚀介质中表现出优异的抗磨损性能。该研究缺乏在模拟海水中耐磨机理的分析,今后需加大对该方面的研究,将有利于扩大钛合金在海洋领域中的发展。

(6) TaC对钛合金耐磨性能的影响。Ta由于抗氧化性能强,具有较高的硬度和强度,逐渐进入到研究者视野,丁智松等[49]在基础电解液种加入1 μm左右的TaC微粒,研究结果表明,当质量浓度为2 g/L时,表面形貌更为致密,硬度提高了约83.2%,在模拟海水中的摩擦系数由0.2降到了0.148,由磨粒磨损转变为粘着磨损。通过上述对模拟海水中的研究,将为钛合金在海洋环境中的应用奠定基础。

(7) GO对钛合金耐磨性能的影响。在众多对钛合金MAO涂层耐磨性的研究中,对于磨损机理没有明确解释。陈永楠等[61]在硅酸盐电解液体系中添加5 g/L的GO,通过对该研究分析,明确解释了石墨烯对表面孔结构的调控机理,解释了GO对涂层磨损过程。如图3所示,在整个磨损过程中,涂层先发生磨粒磨损,后发生粘着磨损。在摩擦磨损过程中,涂层表面的硬质凸起被剥落形成大量的磨粒,在压应力作用下磨粒被压入膜层表面,同时在切应力作用下磨粒向前推进形成犁沟,表现为典型的磨粒磨损(图3ac)。随着摩擦磨损的进行,磨痕平滑,没有犁沟和裂纹的出现,转变为粘着磨损(图3bd)。磨损方式转变为粘着磨损,一方面是由于GO在层片间引入含氧官能团,提高了层片间距,降低了层片间的相互作用力,导致了较低的剪切强度,并且在摩擦表面迁移过程中,在摩擦副表面形成物理沉积膜,压应力与切应力的共同作用造成层间滑动,使得与摩擦副间形成连续的润滑膜,提高膜层的减摩性能。另一方面,膜层表面出现原位自封孔现象,相较于不含GO膜层,含GO膜层表面光滑无微孔,使得与摩擦副间形成的GO薄膜更加连续均匀,使耐磨性能提高。

图3

图3   电解液中添加不同含量的GO颗粒表面膜层的磨痕SEM形貌[64]

Fig.3   Abrasion SEM morphology of the surface film layer of GO particles with different contents added to the electrolyte: (a, c) 0 g/L, (b, d) 5 g/L[64]


目前对涂层摩擦磨损的研究更多的是关注在硬度、摩擦系数、磨损量等具体参数,对于掺杂物质是如何提高涂层的耐磨性几乎没有给出一个详细解释。掺杂物质是通过改变涂层相结构、还是通过改变表面形貌、还是通过特殊官能图的引入改变磨损方式等,多数研究章并没有明确。对于未来钛合金在耐磨性能方面的研究,希望有更多的关注在机理分析和摩擦磨损方式上,不单单在具体的参数上,这将有利于钛合金在耐磨性能方面更长远的发展。

2.4 二元化合物对钛合金膜层其他性能的影响

性能决定应用,要拓宽钛合金的应用领域,还需要去挖掘其他性能,现如今对于钛合金MAO涂层其他性能的研究大致分以下几个方面。

(1) Nd2O3对钛合金涂层高温抗氧化性影响。程赵辉等[55]研究了钛合金涂层的高温抗氧化性能,在基础电解液中添加1 g/L Nd2O3后,在800 ℃氧化50 h,MAO层氧化涂层增重0.139 mg/cm2,相比不含Nd2O3的涂层,增重减少2.139 mg/cm2,由于涂层表面Nd2O3的存在,有效阻滞了氧向基体的扩散,使MAO涂层的高温抗氧化性得到明显改善,如图4所示。王超[64]在电解液中加入ZrO2探究涂层的高温抗氧化性能,与掺杂Nd2O3涂层相比,掺杂ZrO2涂层的高温抗氧化性能更优,该涂层在800 ℃条件下氧化75 h,整个涂层的增重几乎为0,制备出的含ZrO2的涂层热导率低。该膜层所产生的热障性可以降低基体所承受的温度,有效的保护了高温条件下的Ti6Al4V基体,这将为钛合金在航空航天领域的研究提供一种新思路。

图4

图4   添加不同含量的Nd2O3MAO层800 ℃氧化50 h的氧化增重及其对应的宏观形貌[55]

Fig.4   Mass gains and corresponding macroscopic morphologies of TC11 alloy without and with MAO treatments in the electrolytes containing different concentrations of Nd2O3 after oxidation at 800 ℃ for 50 h[55]


(2) Eu2O3对钛合金涂层光学性能的影响。近年来,TiO2薄膜作为一种具有实用价值的光催化剂受到了广泛关注[65],随着半导体行业的迅速发展,如何增强钛合金的光学性能,成为一个亟需解决的问题。Wang等[66]通过在电解液中加入稀土元素Eu,用MAO技术制备了TiO2/Eu2O3复合薄膜,结果表明Eu2O3中的Eu3+具有不完整的4f轨道和空的5d轨道,容易产生多电子组态,可以有效抑制光电子与空穴的复合。此外,Eu3+的基态能量与激发态能量接近,增强了基层电子在可见光照射下从基态向激发态的跃迁,进而在可见光范围内表现出较高的吸收,制备出的TiO2/Eu2O3复合膜其光催化性能比未添加Eu2O3的复合膜提高2倍,如图5~7所示。与Eu2O3相似的稀土氧化物还有La2O3、Ce2O3等,现如今关于这方面的研究报道还很少。

图5

图5   MAO制备的TiO2薄膜和TiO2/Eu2O3复合薄膜的紫外-可见光谱[66]

Fig.5   UV-Vis spectra of TiO2 and TiO2/Eu2O3 MAO films[66]


图6

图6   MAO制备的TiO2薄膜和TiO2/Eu2O3复合薄膜的光电流强度[66]

Fig.6   Photogenerated current intensities of TiO2 and TiO2/Eu2O3 MAO films[66]


图7

图7   MAO制备的TiO2薄膜及TiO2/Eu2O3复合薄膜的光催化活性[66]

Fig.7   Photocatalytic activities of TiO2 and TiO2/Eu2O3 MAO films[66]


(3) Cu2O和ZnO对钛合金涂层抗菌性能的影响。钛合金MAO涂层本身具备了一定的抗菌性,由于涂层中含有锐钛矿相TiO和Ti的其他氧化物,经过光的催化作用,TiO2表面出现电子和空穴,产生羟基自由基,自由基作为强氧化剂,破坏微生物活性,进而达到抗菌效果[67]。但涂层本身具备的抗菌能力有限,Zhao等[68]在基础电解质中加入纳米级的Cu2O和ZnO二元化合物达到了优异的抗菌效果,对二者的抗菌机理研究表明,将样品暴露于大肠杆菌中,Cu2O在介质中会分解出Cu+,破坏细胞膜功能,进而达到杀菌效果。对于ZnO的抗菌机理可分为3种,光催化抑菌机制、金属离子溶解抑菌机制、活性氧抑菌机制,对于是哪种机制目前还没有具体明确,普遍认为是3种机制的协同作用[69]来达到抗菌效果。

3 总结和展望

本文根据二元化合物对涂层的作用,从涂层相结构,涂层表面保护,涂层内部微孔的填充3个方面将二元化合物进行分类。之后对二元化合物的掺杂机理进行详细的分析与总结。对于掺杂过程中常遇到的团聚问题做出了回答。最后对钛合金MAO涂层的相的组成、耐蚀性、耐磨性、高温抗氧化性、光学性能、抗菌性进行展开。通过金属盐在电解液中的添加,在基体表面原位合成二元化合物,可丰富相组成,进一步减小涂层表面存在的物理缺陷。利用二元化合物本身的粒径达到封孔及缩小孔径的作用,降低孔隙率,提高涂层耐蚀性能。通过减小摩擦系数,提高涂层硬度,进而提升涂层的整体耐磨性能。由于二元化合物本身具备的抗高温,抗氧化的性质,对掺杂后的涂层进行相关性能测试,得到了高温抗氧化性能涂层。通过稀土元素Eu的掺杂,使钛合金MAO涂层具备一定的光学性能。在电解液中添加抗菌效果好的Cu2O和ZnO,得到的涂层具备优异的抗菌性能。

随着时代的发展,MAO成膜过程、反应过程仍没有一个成熟的机理,未来需要从更多的方面加大对该方面的研究。在未来对于二元化合物提高钛合金MAO涂层性能的研究中,一方面,稀土元素拥有优异的光学性、较强磁性、耐高温、耐腐蚀、催化活性高等性能,可加大稀土元素的掺杂研究,拓宽涂层性能。另一方面,调整二元化合物粒子粒径满足涂层表面微孔尺寸进行掺杂,减小表面缺陷,提高性能。最后,尝试不同种类二元化合物的相互掺杂,挖掘出钛合金MAO涂层的新性能,开发出多功能新型涂层,满足市场需求,扩大钛合金的应用领域。

参考文献

Huang P H, Wang Y H.

Alkali separation-ammonium ferric sulfate titration method for determining titanium in titanium-vanadium alloys

[J]. Gold, 2023, 44(7): 125

[本文引用: 1]

Song B, An M Y, Wang H Y, et al.

Effect of cooling method after solution on microstructure and mechanical properties of new near-β Ti alloy Ti-5321

[J]. J. Liaocheng Univ. (Nat. Sci. Ed.), 2024, 37(3): 53

宋 博, 安明宇, 王红阳 .

固溶冷却方式对新型高强近β钛合金Ti-5321微观组织及力学性能的影响

[J]. 聊城大学学报(自然科学版), 2024, 37(3): 53

Sun Y, Sun Y, Yang Y, et al.

Constitutive equation and thermal processing map of thermal compression for TC21 titanium alloy

[J]. Forging Stamp. Technol., 2023, 48: 241

[本文引用: 1]

Guo J, Lin C G, Cai S, et al.

Record-high superconductivity in niobium-titanium alloy

[J]. Adv. Mater., 2019, 31: 1807240

[本文引用: 1]

Yeung K W K, Chan R Y L, Lam K O, et al.

In vitro and in vivo characterization of novel plasma treated nickel titanium shape memory alloy for orthopedic implantation

[J]. Surf. Coat. Technol., 2007, 202: 1247

Xin G Q, Wu C Y, Cao H Y, et al.

Superhydrophobic TC4 alloy surface fabricated by laser micro-scanning to reduce adhesion and drag resistance

[J]. Surf. Coat. Technol., 2020, 391: 125707

[本文引用: 1]

Xue K, Tan P H, Zhao Z H, et al.

In vitro degradation and multi-antibacterial mechanisms of β-cyclodextrin@curcumin embodied Mg(OH)2/MAO coating on AZ31 magnesium alloy

[J]. J. Mater. Sci. Technol., 2023, 132: 179

[本文引用: 1]

Xia Q X, Li X, Yao Z P, et al.

Investigations on the thermal control properties and corrosion resistance of MAO coatings prepared on Mg-5Y-7Gd-1Nd-0.5Zr alloy

[J]. Surf. Coat. Technol., 2021, 409: 126874

[本文引用: 1]

Singh C, Tiwari S K, Singh R.

Development of corrosion-resistant electroplating on AZ91 Mg alloy by employing air and water-stable eutectic based ionic liquid bath

[J]. Surf. Coat. Technol., 2021, 428: 127881

[本文引用: 1]

Meng X, Wang J L, Zhang J, et al.

Electroplated super-hydrophobic Zn-Fe coating for corrosion protection on magnesium alloy

[J]. Trans. Nonferrous Met. Soc. China, 2022, 32: 3250

[本文引用: 1]

Marzbanrad B, Razmpoosh M H, Toyserkani E, et al.

Role of heat balance on the microstructure evolution of cold spray coated AZ31B with AA7075

[J]. J. Magnes. Alloy., 2021, 9: 1458

DOI      [本文引用: 1]

A promising solid-state coating mechanism based on the cold spray technique provides highly advantageous conditions on thermal-sensitive magnesium alloys. To study the effect of heat balance in cold spray coating on microstructure, experiments were designed to successfully coat AA7075 on AZ31B with two different heat balance conditions to yield a coated sample with tensile residual stress and a sample with compressive residual stress in both coating and substrate. The effects of coating temperature on the microstructure of magnesium alloy and the interfaces of coated samples were then analyzed by SEM, EBSD, TEM in high- and low-heat input coating conditions. The interface of the AA7075 coating and magnesium alloy substrate under both conditions consists of a narrow-band layer with very fine grains, followed by columnar grains of magnesium that have grown perpendicular to the interface. At higher temperatures, this layer became wider. No intermetallic phase was detected at the interface under either condition. It is shown that the microstructure of the substrate was affected by coating temperature, leading to stress relief, dynamic recrystallization and even dynamic grain growth of magnesium under high temperature. Reducing the heat input and increasing the heat transfer decreased microstructural changes in the substrate. (C) 2021 Chongqing University. Publishing services provided by Elsevier B.V. on behalf of KeAi Communications Co. Ltd.

Palanisamy K, Gangolu S, Antony J M, et al.

Effects of HVOF spray parameters on porosity and hardness of 316L SS coated Mg AZ80 alloy

[J]. Surf. Coat. Technol., 2022, 448: 128898

[本文引用: 1]

Liu Y P, Cheng X, Wang X Y, et al.

Micro-arc oxidation-assisted sol-gel preparation of calcium metaphosphate coatings on magnesium alloys for bone repair

[J]. Mater. Sci. Eng., 2021, 131C: 112491

[本文引用: 1]

Pereira G S, Ramirez O M P, Avila P R T, et al.

Cerium conversion coating and sol-gel coating for corrosion protection of the WE43 Mg alloy

[J]. Corros. Sci., 2022, 206: 110527

[本文引用: 1]

Wang X H, Huang L Q, Niu L J, et al.

The impacts of growth temperature on morphologies, compositions and optical properties of Mg-doped ZnO nanomaterials by chemical vapor deposition

[J]. J. Alloy. Compd., 2015, 622: 440

[本文引用: 1]

Fattah-Alhosseini A, Chaharmahali R, Babaei K.

Effect of particles addition to solution of plasma electrolytic oxidation (PEO) on the properties of PEO coatings formed on magnesium and its alloys: A review

[J]. J. Magnes. Alloy., 2020, 8: 799

DOI      [本文引用: 1]

The plasma electrolytic oxidation (PEO) procedure is utilized in order to amend the surface properties of Mg and its alloys. This procedure creates a ceramic coating on the surface applying high-voltage. The presence of deep pores and porosities in the surface that affect the corrosion resistance of the coatings is one of the PEO procedure limitations. One of the useful methods to decrease porosities of coating and improve its final properties is changing electrolyte conditions based on the presence of micro- and nanoparticles. The present paper reviews the mechanisms of particle adsorption and composition in PEO thin films in addition to the effect of particle addition on the microstructure, composition and corrosion behavior of coatings that were applied on magnesium alloys. (c) 2020 Published by Elsevier B.V. on behalf of Chongqing University.

Jiang L P, Cui X F, Jin G, et al.

Synthesis and microstructure, properties characterization of Ni-Ti-Cu/Cu-Al functionally graded coating on Mg-Li alloy by laser cladding

[J]. Appl. Surf. Sci., 2022, 575: 151645

[本文引用: 1]

Gao B.

Experiment research on laser cladding repairing technology based on multiple-cladding

[D]. Shanghai: Shanghai Jiao Tong University, 2010

[本文引用: 1]

高 宾.

基于复合堆焊的激光熔覆修复技术的实验研究

[D]. 上海: 上海交通大学, 2010

[本文引用: 1]

Fan X L, Li C Y, Wang Y B, et al.

Corrosion resistance of an amino acid-bioinspired calcium phosphate coating on magnesium alloy AZ31

[J]. J. Mater. Sci. Technol., 2020, 49: 224

[本文引用: 1]

Chaharmahali R, Fattah-Alhosseini A, Babaei K.

Surface characterization and corrosion behavior of calcium phosphate (Ca-P) base composite layer on Mg and its alloys using plasma electrolytic oxidation (PEO): A review

[J]. J. Magnes. Alloy., 2021, 9(1): 21

DOI      [本文引用: 1]

Magnesium has been known as an appropriate biological material on account of its good biocompatibility and biodegradability properties in addition to advantageous mechanical properties. Mg and its alloys are of poor corrosion resistance. Its high corrosion rate leads to its quick decomposition in the corrosive ambiance and as a result weakening its mechanical properties and before it is repaired, it will vanish. The corrosion and degradation rate must be controlled in the body to advance the usage of Mg and its alloys as implants. Different techniques have been utilized to boost biological properties. Plasma electrolytic oxidation (PEO) can provide porous and biocompatible coatings for implants among various techniques. Biodegradable implants are generally supposed to show enough corrosion resistance and mechanical integrity in the body environment. Much research has been carried out in order to produce PEO coatings containing calcium phosphate compounds. Calcium phosphates are really similar to bone mineral composition and present great biocompatibility. The present study deals with the usage of calcium phosphates as biocompatible coatings applied on Mg and its alloys to study the properties and control the corrosion rate. (C) 2020 Published by Elsevier B.V. on behalf of Chongqing University.

Rakoch A G, Monakhova E P, Khabibullina Z V, et al.

Plasma electrolytic oxidation of AZ31 and AZ91 magnesium alloys: Comparison of coatings formation mechanism

[J]. J. Magnes. Alloy., 2020, 8: 587

DOI      [本文引用: 1]

The growth kinetics of PEO coatings on AZ31 and AZ91 magnesium alloys were studied and correlated with their structure, compositions (phase and elemental) and corrosion resistance. It was established that the coatings have a two- (outer and anodic) or three-layer structure (outer, inner and anodic) depending on the treatment time. Briefly, at short treatment time only an anodic layer and outer layer exists. Growth of the outer PEO layer takes place due to the micro discharges, which occur in vertical pores and voids with spherical cross-section. If the time is increasing, and electrolyte inside of the pores is heating-up, etching of the Mg substrate and oxide film becomes more dominant and horizontal pores in the interface between coating and metal are formed. In the pores new anodic layer will form and at this time the formation of the third inner layer starts. The growth of the inner layer happens via the anodic film as a result of micro discharge ignition in the horizontal pores, accompanied by formation of plasma in numerous micro-voids of this layer. The coatings formed on AZ91 alloy are denser, than those on AZ31, which is related to the difference in the rates of inner layer growth and dissolving of oxides which are located at the bottom of the horizontal pores. Because of the lower Al content, the AZ31 substrate itself and the also the oxide films are less stable and tend to dissolve at a higher rate compared to AZ91.

Wang L S, Jiang J H, Liu H, et al.

Microstructure characterization and corrosion behavior of Mg-Y-Zn alloys with different long period stacking ordered structures

[J]. J. Magnes. Alloy., 2020, 8: 1208

Wang X, Yan H G, Hang R Q, et al.

Enhanced anticorrosive and antibacterial performances of silver nanoparticles/polyethyleneimine/MAO composite coating on magnesium alloys

[J]. J. Mater. Res. Technol., 2021, 11: 2354

DOI      [本文引用: 1]

A multi-functional composite coating was fabricated on magnesium (Mg) AZ31 alloy through micro-arc oxidation (MAO) combined with self-assembly technology. Polyethyleneimine (PEI) as a medium was assembled on MAO coating based on the chemical bonding and electrostatic interactions. Adhered PEI successfully mediates the self assembly of functional silver nanoparticles (Ag NPs) with a formation of Ag NPs/PEI/MAO (APM) composite coating. The morphology and microstructure of as-prepared APM coating were characterized by using of different technologies (e.g. scanning electron microscopy, energy dispersive X-ray spectroscopy, X-ray diffraction and X-ray photoelectron spectroscopy). Its corrosion behavior in simulated body fluid and the corresponding antibacterial performance against Staphylococcus aureus (S. aureus) were also investigated. The potentiodynamic polarization results showed that the corrosion current density of APM coated AZ31 decreased more than three orders of magnitude in comparison with that of uncoated AZ31, indicating an enhanced anticorrosive ability. Electrochemical impedance spectroscopy results further revealed that the improvement of corrosion resistance was attributed to a synergistic effect of Ag NPs/PEI and MAO. The hydrogen evolution tests confirmed that APM coating provided AZ31 an excellent corrosion protection during a relatively long term. And the antibacterial research showed that APM coated AZ31 had a great antibacterial activity. This study presents a promising approach to fabricate a multifunctional composite coating on Mg alloy, which improves the anticorrosive performance of the substrate and endows it an antibacterial activity to meet a better demand in the applications. (c) 2021 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Lin T Y.

Regulation of interfacial gradient of bimodal organization of titanium alloys and the mechanism of its influence on strength and plasticity

[D]. Guiyang: Guizhou University, 2024

[本文引用: 1]

林廷艺.

钛合金双态组织界面梯度调控及其对强塑性影响机制研究

[D]. 贵阳: 贵州大学, 2024

[本文引用: 1]

Wu G L, Yen C E, Hsu W C, et al.

Incorporation of cerium oxide nanoparticles into the micro-arc oxidation layer promotes bone formation and achieves structural integrity in magnesium orthopedic implants

[J]. Acta Biomater., 2025, 191: 80

[本文引用: 1]

Krishtal M M, Ivashin P V, Polunin A V.

The effect of dispersity of silicon dioxide nanoparticles added to electrolyte on the composition and properties of oxide layers formed by plasma electrolytic oxidation on magnesium 9995A

[J]. Mater. Lett., 2019, 241: 119

DOI      [本文引用: 1]

The oxide layers formed by plasma electrolytic (micro-arc) oxidation on technical grade magnesium 9995A in electrolytes with 25, 35 and 50 nm dispersed silicon dioxide nanoparticles were investigated. The positive effect of 25 nm size nanoparticles on wear properties and corrosion resistance of the oxide layer was demonstrated. The dispersed 35 nm nanoparticles virtually do not affect the oxide layer properties, while the 50 nm size nanoparticles significantly impair the properties. (C) 2019 Elsevier B.V.

Bai X.

Study on the synergistic lubrication effect of micro arc oxidation coating on titanium alloy surface and lubricating oil additives

[D]. Ji'nan: Qilu University of Technology, 2024

[本文引用: 1]

白 霄.

钛合金表面微弧氧化涂层与润滑油添加剂协同润滑作用的研究

[D]. 济南: 齐鲁工业大学, 2024

[本文引用: 1]

Zhan Z W, Zhang Q, Liu X H, et al.

Effect of CeO2 particles on growth behavior and wear/corrosion resistance of micro-arc oxidation coating on 7075 aluminum alloy

[J]. Surf. Technol., 2024, 53: 17

[本文引用: 1]

詹中伟, 张 骐, 刘小辉 .

CeO2颗粒对7075铝合金微弧氧化膜生长行为及耐磨/耐蚀性能的影响

[J]. 表面技术, 2024, 53: 17

[本文引用: 1]

Yang Y Q.

Preparation and performance regulation of electroless plating polyalloy coatings on micro-arc oxidized titanium

[D]. Qinhuangdao: Yanshan University, 2024

[本文引用: 1]

杨永强.

微弧氧化钛表面多元化学镀膜层制备与性能调控研究

[D]. 秦皇岛: 燕山大学, 2024

[本文引用: 1]

Yang C C, Liu L, Liu C H, et al.

Study on the interfacial cohesive performance of nano-SiO2 grafted basalt fiber with asphalt

[J]. Chem. Ind. Eng. Progress, 2024, 15: 16

[本文引用: 1]

杨程程, 柳 力, 刘朝晖 .

纳米SiO2接枝玄武岩纤维与沥青界面粘结性能研究

[J]. 化工进展, 2024, 15: 16

[本文引用: 1]

Xiao J X.

Structure and classification, phase behavior of cationic surfactants, toxicity, applications, and interactions with other surfactants and interactions with other surfactants and various macromolecules

[J]. Chem. Daily Use Eng., 2024, 47(11): 1

[本文引用: 1]

肖进新.

阳离子表面活性剂的结构及分类、相行为、毒性、应用以及与其他表面活性剂和各类大分子的相互作用

[J]. 日用化学品工程, 2024, 47(11): 1

[本文引用: 1]

Pu Z.

Preparation process of MoS2/TiO2 micro-arc oxide film grown on the surface of TC4 titanium alloy

[D]. Xi'an: Chang'an University, 2019

[本文引用: 1]

蒲 哲.

TC4钛合金表面原位生长MoS2/TiO2微弧氧化膜层制备工艺研究

[D]. 西安: 长安大学, 2019

[本文引用: 1]

An J H, Qi Y M, Peng Z J, et al.

Preparation and corrosion resistance of MgF coating containing Si C nanoparticles on AZ31 magnesium alloy

[J]. China Surf. Eng., 2020, 33(1): 24

[本文引用: 1]

安景花, 齐玉明, 彭振军 .

AZ31镁合金表面含纳米SiC氟化镁膜层的制备及耐腐蚀性能

[J]. 中国表面工程, 2020, 33(1): 24

[本文引用: 1]

Yao Z P, Chen C J, Wang J K, et al.

Preparation and phenol degradation performance of Fenton catalysts with iron oxide film layers on titanium alloy surface

[J]. Chin. J. Inorg. Chem., 2017, 33: 1797

[本文引用: 1]

姚忠平, 陈昌举, 王建康 .

钛合金表面铁氧化物膜层类Fenton催化剂制备及降解苯酚性能

[J]. 无机化学学报, 2017, 33: 1797

[本文引用: 1]

Zhang Q, Li Y H, Liu X.

Properties of ZrO2/TiO2 composite ceramic coating on TC4 titanium alloy

[J]. Trans. Mater. Heat Treatment, 2014, 35(9): 199

[本文引用: 2]

张 勤, 李玉海, 刘 馨.

TC4钛合金表面ZrO2/TiO2复合陶瓷膜的性能

[J]. 材料热处理学报, 2014, 35(9): 199

[本文引用: 2]

Cao F, K, Zhang Y P, et al.

Study on corrosion resistance of micro arc oxidation coating on Ti5111 alloy filled with ZrO2 particles

[J]. Hot Work. Technol., 2020, 49(8): 84

[本文引用: 4]

曹 飞, 吕 凯, 张雅萍 .

ZrO2颗粒填充Ti5111合金微弧氧化膜的耐蚀性研究

[J]. 热加工工艺, 2020, 49(8): 84

[本文引用: 4]

Wang X J, Wang P, Liu Y, et al.

Effect of adding HfO2 on the properties of micro-arc oxidation film on titanium alloy

[J]. Rare Met.Mater. Eng., 2023, 52: 3452

[本文引用: 1]

王香洁, 王 平, 刘 毅 .

添加HfO2对钛合金微弧氧化膜层特性的影响

[J]. 稀有金属材料与工程, 2023, 52: 3452

[本文引用: 1]

K, Zhang R F, Chen W D, et al.

Effect of graphene oxide on wear and corrosion characteristics of micro arc oxidation coating on titanium alloy

[J]. Rare Met. Mater. Eng., 2022, 51: 4103

[本文引用: 1]

吕 凯, 张瑞芳, 陈伟东 .

氧化石墨烯对钛合金微弧氧化膜耐磨损与腐蚀性影响

[J]. 稀有金属材料与工程, 2022, 51: 4103

[本文引用: 1]

Ma N, Huang J M, Su J, et al.

Effects of MgO nanoparticles on corrosion and wear behavior of micro-arc oxide coatings formed on AZ31B magnesium alloy

[J]. Mater. Rep., 2018, 32: 2768

[本文引用: 1]

马 妞, 黄佳木, 苏 俊 .

MgO纳米颗粒对AZ31B镁合金微弧氧化涂层耐磨和耐蚀性的影响

[J]. 材料导报, 2018, 32: 2768

[本文引用: 1]

Wang X Y, Ju P F, Lu X P, et al.

Influence of Cr2O3 particles on corrosion, mechanical and thermal control properties of green PEO coatings on Mg alloy

[J]. Ceram. Int., 2022, 48: 3615

Zhang Y, Xu B, Chen Z N, et al.

Effect of graphene addition on the properties of micro of graphene addition on the properties of micro-arc oxidation coating on arc oxidation coating on AZ31B magnesium alloy

[J]. Ordnance Mater. Sci. Eng., 2022, 45(6): 153

张 艳, 许 波, 陈志楠 .

石墨烯添加剂对AZ31B镁合金微弧氧化膜层性能的影响

[J]. 兵器材料科学与工程, 2022, 45(6): 153

Pezzato L, Angelini V, Brunelli K, et al.

Tribological and corrosion behavior of PEO coatings with graphite nanoparticles on AZ91 and AZ80 magnesium alloys

[J]. Trans. Nonferrous Met. Soc. China, 2018, 28: 259

Liang X B, Li X G, Zhang K, et al.

Micro-arc oxidation coatings formed on VW75 Mg alloy with Al2O3 nano-additive

[J]. Chin. J. Rare Met., 2021, 45: 812

梁锡炳, 李兴刚, 张 奎 .

纳米Al2O3添加剂对VW75稀土镁合金微弧氧化膜层的影响

[J]. 稀有金属, 2021, 45: 812

Daroonparvar M, Mat Yajid M A, Kumar Gupta R, et al.

Antibacterial activities and corrosion behavior of novel PEO/nanostructured ZrO2 coating on Mg alloy

[J]. Trans. Nonferrous Met. Soc. China, 2018, 28: 1571

[本文引用: 1]

Huang K, Wang G M, Qing H W, et al.

Effect of Cu content on electrical resistivity, mechanical properties and corrosion resistance of AlCu x NiTiZr0.75 high entropy alloy films

[J]. Vacuum, 2022, 195: 110695

[本文引用: 1]

Chen X W, Li M L, Zhang D F, et al.

Corrosion resistance of MoS2-modified titanium alloy micro-arc oxidation coating

[J]. Surf. Coat. Technol., 2022, 433: 128127

[本文引用: 5]

Chang H, Guo X G, Wen L, et al.

Influence of SiC nanoparticles on microstructure and corrosion behavior of microarc oxidation coatings formed on TC4 alloy

[J]. J. Mater. Eng., 2019, 47(3): 109

DOI      [本文引用: 2]

A microarc oxidation (MAO) coating was fabricated on the surface of TC4 alloy by adding SiC nano-particle into the base electrolyte. The influence of nanoparticles on the microstructure and corrosion behavior of MAO coatings was investigated. The results show that the introduction of SiC nanoparticles into the base electrolyte makes the coating thickness of MAO coating increased, from 9.2, 12.8, 12.4<em>&mu;</em>m to 12.0, 14.9, 20.0<em>&mu;</em>m, respectively, under the conditions of 550, 600V and 650V. The surface roughness of the coating (2.65, 3.34<em>&mu;</em>m and 3.61<em>&mu;</em>m) fabricated in SiC-containing solution increases with increasing the applied voltage. The introduction of SiC nanoparticles can effectively inhibit the microcracks in the coating, the coating thickness increase, and reduce the anodic current density, and thus the corrosion property of MAO coating increases. The OCP(open circuit potential) and corrosion potential increase by MAO coating.

常 海, 郭雪刚, 文 磊 .

SiC纳米颗粒对TC4钛合金微弧氧化涂层组织结构及耐蚀性能的影响

[J]. 材料工程, 2019, 47(3): 109

[本文引用: 2]

Ding Z S, Gao W, Wei J P, et al.

Effects of TaC microparticles on structure and properties of micro-arc oxidation coating on Ti-6Al-4V alloy

[J]. Acta Phys. Sin., 2022, 71: 331

[本文引用: 2]

丁智松, 高 巍, 魏敬鹏 .

TaC微粒对Ti-6Al-4V合金微弧氧化层结构和性能的影响

[J]. 物理学报, 2022, 71: 331

[本文引用: 2]

Wang R Y, He X J, Gao Y E, et al.

Antimicrobial property, cytocompatibility and corrosion resistance of Zn-doped ZrO2/TiO2 coatings on Ti6Al4V implants

[J]. Mater. Sci. Eng., 2017, 75C: 7

[本文引用: 3]

Li M Z, Zhao Z C, Wu M B, et al.

Fabrication and performance of GO/HA/MAO composite coating on titanium alloy surface

[J]. China Surf. Eng., 2020, 33(2): 97

[本文引用: 1]

李明泽, 赵子聪, 吴敏宝 .

钛合金表面GO/HA/MAO复合膜层的制备及其性能

[J]. 中国表面工程, 2020, 33(2): 97

[本文引用: 1]

Han L P.

Effect of ceramic particles on the structure and properties of MAO film of titanium alloy

[D]. Zhengzhou: North China University of Water Resources and Hydropower, 2018

[本文引用: 2]

韩林萍.

陶瓷颗粒对钛合金微弧氧化膜结构与性能的影响

[D]. 郑州: 华北水利水电大学, 2018

[本文引用: 2]

Xie Y N.

Preparation and properties of SiC particles reinforced micro-arc oxidation layer on titanium alloy

[D]. Dalian: Dalian Maritime University, 2019

[本文引用: 1]

谢延楠.

SiC复合钛合金微弧氧化膜的制备与研究

[D]. 大连: 大连海事大学, 2019

[本文引用: 1]

Lu X P, Blawert C, Huang Y D, et al.

Plasma electrolytic oxidation coatings on Mg alloy with addition of SiO2 particles

[J]. Electrochim. Acta, 2016, 187: 20

[本文引用: 1]

Zhang Y L, Dong X Y, Zhai Z Y, et al.

Microstructure and wear resistance of MAO coatings of TC4 alloy with different Er2O3 Doping amounts

[J]. Chin. J. Rare Met., 2024, 48: 1120

[本文引用: 2]

张云龙, 董鑫焱, 翟梓棫 .

Er2O3微粒掺杂对TC4钛合金微弧氧化涂层组织和耐磨性的影响

[J]. 稀有金属, 2024, 48: 1120

[本文引用: 2]

Cheng Z H, Yang W, Zhang Y, et al.

Effect of Nano Nd2O3 on the wear resistance and high temperature oxidation resistance of micro-arc oxidation coating on TC11 titanium alloy

[J]. Mater. Prot., 2023, 56(7): 38

[本文引用: 5]

程赵辉, 杨 巍, 张 勇 .

纳米Nd2O3对TC11钛合金微弧氧化层耐磨性及高温抗氧化性能的影响

[J]. 材料保护, 2023, 56(7): 38

[本文引用: 5]

Wang X, Yu X T.

Effects of SiC content on the composite membrane structure and friction properties of Ti-6Al-4V alloy for internal combustion engine

[J]. Mater. Sci. Eng. Powder Metall., 2020, 25: 458

[本文引用: 2]

王 雪, 于秀涛.

SiC含量对内燃机用Ti-6Al-4V合金复合膜组织和摩擦性能的影响

[J]. 粉末冶金材料科学与工程, 2020, 25: 458

[本文引用: 2]

Wang W.

Study on the friction and wear performance of MAO BN、ZrO2 composite coating on TC4 Alloy

[D]. Nanchang: Nanchang Aviation University, 2015

[本文引用: 2]

王 伟.

TC4钛合金微弧氧化/ZrO2、BN复合膜摩擦磨损性能研究

[D]. 南昌: 南昌航空大学, 2015

[本文引用: 2]

Wang J C, You X Q, Zheng Y C, et al.

Research and development status of partichlate reinforced metal matrix composites

[J]. Cement. Carbide, 2003, 20: 51

[本文引用: 1]

王基才, 尤显卿, 郑玉春 .

颗粒增强金属基复合材料的研究现状及展望

[J]. 硬质合金, 2003, 20: 51

[本文引用: 1]

Liu Y C, Sun Q S, Liu Z Y, et al.

Effect of adding boron nitride on micro arc oxidation coatings and wear resistance of the TB8 titanium alloy

[J]. J. Qingdao Technol. Univ., 2020, 41(6): 102

[本文引用: 1]

刘元才, 孙启胜, 刘志远 .

氮化硼对TB8钛合金微弧氧化膜及其耐磨性的影响

[J]. 青岛理工大学学报, 2020, 41(6): 102

[本文引用: 1]

Jiang D X, Fu Y, Zhang J W, et al.

Preparation and properties of alumina ceramic film on Ti-alloy surface

[J]. J. Chin. Soc. Corros. Prot., 2019, 39: 469

[本文引用: 1]

姜冬雪, 付 颖, 张峻巍 .

钛合金表面Al2O3陶瓷膜制备及性能研究

[J]. 中国腐蚀与防护学报, 2019, 39: 469

DOI      [本文引用: 1]

采用多弧离子镀技术在TC4钛合金表面制备了厚度约40 μm的纯Al层,然后在恒流模式下对其进行不同时间的微弧氧化处理,以获得耐磨的Al<sub>2</sub>O<sub>3</sub>陶瓷膜。采用扫描电镜、X射线衍射仪、显微硬度计、摩擦磨损试验机和拉伸试验机对钛合金镀铝层微弧氧化膜的微观组织结构、显微硬度、耐磨性和结合力进行了观察和测量。结果表明:微弧氧化陶瓷层主要由γ-Al<sub>2</sub>O<sub>3</sub>和α-Al<sub>2</sub>O<sub>3</sub>以及少量的非晶相SiO<sub>2</sub>组成,膜层均匀、致密。随着微弧氧化时间的延长,Al<sub>2</sub>O<sub>3</sub>陶瓷层厚度增加,镀铝层厚度减小。微弧氧化3 h时,Al<sub>2</sub>O<sub>3</sub>膜致密层硬度达到1261 HV。氧化4 h,Al<sub>2</sub>O<sub>3</sub>陶瓷层厚达60~70 μm,镀铝层几乎全部氧化,钛合金基材亦发生轻微氧化;但是,基体钛合金的氧化反而导致Al<sub>2</sub>O<sub>3</sub>膜层内形成贯穿裂纹等缺陷,膜层硬度下降,膜层与钛合金基材的结合强度降低。Al<sub>2</sub>O<sub>3</sub>陶瓷膜的摩擦系数较钛合金基材的有所降低,磨损量明显降低。Al<sub>2</sub>O<sub>3</sub>陶瓷膜/镀铝层/钛合金体系结合强度大于40 MPa,最高可达68 MPa。

Gao W, Liu J N, Wei J P, et al.

Structure and properties of Cu2O doped micro arc oxidation coating on TC4 titanium alloy

[J]. Chin. J. Mater. Res., 2022, 36: 409

DOI      [本文引用: 3]

The microarc oxidation coating doped with coprous oxide was prepared on the surface of TC4 Ti-alloy by adding different amount of cuprous oxide particles into the electrolyte. The microstructure and properties of the cuprous oxide doped microarc oxidation coating were investigated by means of scanning electron microscope (SEM), X-ray diffractometer (XRD), X-ray photoelectron spectroscope (XPS) and microhardness tester. The results show that the surface of the microarc oxidation coating doped with cuprous oxide is porous, but the number and size of micropores are small. However the doped Cu oxides are present in the coating in two forms, namely copper oxide and cuprous oxide. Compared with the microarc oxidation coating without doping of cuprous oxide, the wear resistance and antibacterial performance of microarc oxidation coating doped with different amount of cuprous oxide are significantly improved in artifitial seawater, but their corrosion resistance degraded.

高 巍, 刘江南, 魏敬鹏 .

TC4钛合金表面氧化亚铜掺杂微弧氧化层的结构和性能

[J]. 材料研究学报, 2022, 36: 409

[本文引用: 3]

Chen Y N, Guo Z W, Yang Z H, et al.

Study on self-sealing pore effect of GO/TiO2 coating controlled by graphene oxide

[J]. Rare Met. Mater. Eng., 2021, 50: 3621

[本文引用: 1]

陈永楠, 郭紫薇, 杨泽慧 .

氧化石墨烯调控GO/TiO2陶瓷膜层自封孔效应研究

[J]. 稀有金属材料与工程, 2021, 50: 3621

[本文引用: 1]

Hu J, Zhao Y, Tao Y C, et al.

Effect of neodymium oxide on properties of micro-arc oxidation coating formed on 2A12 aluminium alloy

[J]. Mater. Prot., 2022, 55(3): 73

[本文引用: 1]

胡 杰, 赵 月, 陶业成 .

氧化钕对2A12铝合金微弧氧化膜层性能的影响

[J]. 材料保护, 2022, 55(3): 73

[本文引用: 1]

Wang C.

Preparation of ZrO2/TiO2 micro-arc oxidation composite ceramic coatings on Ti6Al4V and study on high-temperature oxidation behavior

[D]. Xi'an: Chang'an University, 2015

[本文引用: 3]

王 超.

Ti6Al4V表面TiO2/ZrO2微弧氧化复合陶瓷层的制备及高温氧化行为研究

[D]. 西安: 长安大学, 2015

[本文引用: 3]

Zhao B, Shen Y H, Zhou Y J, et al.

Progress on preparation and application of carbon quantum dots/TiO2 composite photocatalysts

[J]. Technol. Dev. Chem. Ind., 2024, 53(6): 47

[本文引用: 1]

赵 斌, 沈谊豪, 周雨洁 .

碳量子点/TiO2复合光催化剂的制备和应用进展

[J]. 化工技术与开发, 2024, 53(6): 47

[本文引用: 1]

Wang Y Q, Jiang X D, Pan C X, et al.

In situ” preparation of a TiO2/Eu2O3 composite film upon Ti alloy substrate by micro-arc oxidation and its photo-catalytic property

[J]. J. Alloy. Compd., 2012, 538: 16

[本文引用: 7]

Akatsu T, Yamada Y, Hoshikawa Y, et al.

Multifunctional porous titanium oxide coating with apatite forming ability and photocatalytic activity on a titanium substrate formed by plasma electrolytic oxidation

[J]. Mater. Sci. Eng., 2013, 33C: 4871

[本文引用: 1]

Zhao D, Lu Y H, Wang Z, et al.

Antifouling properties of micro arc oxidation coatings containing Cu2O/ZnO Nanoparticles on Ti6Al4V

[J]. Int. J. Refract. Met. Hard Mater., 2016, 54: 417

[本文引用: 1]

Li Z J, Zhang F H, Meng L, et al.

ZnO/Ag micro/nanospheres with enhanced photocatalytic and antibacterial properties synthesized by a novel continuous synthesis method

[J]. RSC Adv., 2015, 5: 612

[本文引用: 1]

/