Please wait a minute...
中国腐蚀与防护学报  2025, Vol. 45 Issue (5): 1161-1174     CSTR: 32134.14.1005.4537.2024.392      DOI: 10.11902/1005.4537.2024.392
  综合评述 本期目录 | 过刊浏览 |
常用钛合金焊接接头显微组织结构及对材料性能的影响
佟向瑜1,2, 徐玮辰1(), 王秀通1, 王优强2, 段继周1
1 中国科学院海洋研究所海洋关键材料重点实验室 中国科学院海洋环境腐蚀与生物污损重点实验室 青岛 266071
2 青岛理工大学机械与汽车工程学院 青岛 266525
Summary on Effect of Weling Techniques on Microstructure and Mechanical Properties of TC4 Ti-alloy Weld Joints
TONG Xiangyu1,2, XU Weichen1(), WANG Xiutong1, WANG Youqiang2, DUAN Jizhou1
1 Key Laboratory of Advanced Marine Materials, Key Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
2 School of Mechanical and Automotive Engineering, Qingdao University of Technology, Qingdao 266525, China
引用本文:

佟向瑜, 徐玮辰, 王秀通, 王优强, 段继周. 常用钛合金焊接接头显微组织结构及对材料性能的影响[J]. 中国腐蚀与防护学报, 2025, 45(5): 1161-1174.
Xiangyu TONG, Weichen XU, Xiutong WANG, Youqiang WANG, Jizhou DUAN. Summary on Effect of Weling Techniques on Microstructure and Mechanical Properties of TC4 Ti-alloy Weld Joints[J]. Journal of Chinese Society for Corrosion and protection, 2025, 45(5): 1161-1174.

全文: PDF(16656 KB)   HTML
摘要: 

钛合金不同的焊接工艺会影响其显微组织和性能。激光焊产生细小等轴晶,适量增加β相提高韧性和塑性,但过多会降低强度;MIG焊缝为柱状晶,适合连续焊接,但β相不均可能增加裂纹风险;TIG焊质量高,但焊缝树枝晶形态可能导致强度和塑性下降;电子束焊缝混合细小等轴晶和柱状晶,能提高强度和塑性,但对焊接环境要求高。焊接接头的显微组织不均匀性会导致局部腐蚀,β相含量会影响应力腐蚀开裂敏感性,焊缝缺陷和组织不均匀区域易萌生疲劳裂纹,细小均匀组织会提高疲劳寿命。优化焊接工艺对提高钛合金焊接接头质量和性能至关重要。

关键词 钛合金焊接接头显微组织力学性能耐腐蚀性疲劳性能    
Abstract

Different welding processes can affect the microstructure and mechanical properties of weld jionts for the common TC4 Ti-alloy. Laser welding produces fine equiaxed grains, and an appropriate increase in the β phase can enhance toughness and ductility, but too much can reduce strength; MIG welds consist of columnar grains, suitable for continuous welding, but the non-unniform distribution of β phase may increase the risk of cracking; TIG welding has high quality, but the dendritic morphology of the welds can lead to a decrease in strength and ductility; Electron beam welding combines fine equiaxed and columnar grains with improving strength and ductility, but has high requirements for the welding environment. The inhomogeneity of the microstructure in the weld joint can lead to localized corrosion, the content of β phase affects the susceptibility to stress corrosion cracking, weld defects and inhomogeneous regions are prone to initiate fatigue cracks, and fine and uniform microstructure can improve fatigue life. Optimizing the welding process is crucial for improving the quality and performance of titanium alloy welds.

Key wordsTi-alloy    welded joint    microstructure    mechanical properties    corrosion resistance    fatigue performance
收稿日期: 2024-12-09      32134.14.1005.4537.2024.392
ZTFLH:  TG174  
基金资助:山东省特钢材料与装备创新创业共同体项目(2022TGGTT0103);山东省自然科学基金(ZR2023ME063)
通讯作者: 徐玮辰,E-mail:w.xu@qdio.ac.cn,研究方向为基础设施的局部腐蚀机理及防护
Corresponding author: XU Weichen, E-mail: w.xu@qdio.ac.cn
作者简介: 佟向瑜,男,1999年生
图1  激光焊焊接接头显微组织[21]
图2  TC4钛合金MIG焊焊接接头显微组织[38]
图3  TC4钛合金激光-MIG复合焊焊缝成形及显微组织特征[39]
图4  TC4钛合金TIG焊焊接接头显微组织[49]
图5  Ti-6246电子束焊接接头显微组织[56]
[1] Ren T M. The current status and development trends of titanium and titanium alloy applications abroad [J]. Rare Met. Mater. Eng., 1983, 12(4): 100
[1] 任铁梅. 国外钛和钛合金应用现状及发展动向 [J]. 稀有金属材料与工程, 1983, 12(4): 100
[2] Song D J, Niu L, Yang S L. Research on application technology of titanium alloy in marine pipeline [J]. Rare Met. Mater. Eng., 2020, 49: 1100
[2] 宋德军, 牛 龙, 杨胜利. 船舶海水管路钛合金应用技术研究 [J]. 稀有金属材料与工程, 2020, 49: 1100
[3] Li C G. Investigation on the application of titanium alloys in Boeing aircraft [J]. Aviat. Mater., 1984, (1): 47
[3] 李成功. 波音公司飞机钛合金应用情况考察 [J]. 航空材料, 1984, (1): 47
[4] Liu J Y, Dong L J, Zhang Y, et al. Research progress on sulfide stress corrosion cracking of dissimilar weld joints in oil and gas fields [J]. J. Chin. Soc. Corros. Prot., 2024, 44: 863
[4] 刘久云, 董立谨, 张 言 等. 油气田异种金属焊接接头硫化物应力腐蚀开裂研究进展 [J]. 中国腐蚀与防护学报, 2024, 44: 863
doi: 10.11902/1005.4537.2023.269
[5] Liao M X, Liu J, Dong B J, et al. Effect of salt spray environment on performance of 1Cr18Ni9Ti brazed joint [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 1312
[5] 廖敏行, 刘 俊, 董宝军 等. 盐雾环境对1Cr18Ni9Ti钎焊接头的影响研究 [J]. 中国腐蚀与防护学报, 2023, 43: 1312
doi: 10.11902/1005.4537.2022.385
[6] Zhang W F, Wang Y H, Li Y, et al. Phase transformation, microstructures and tensile properties of TA15 Titanium Alloy [A]. Proceedings of the 14th National Titanium and Titanium Alloy Academic Exchange Conference (Volume I) [C]. Shanghai, 2010
[6] 张旺峰, 王玉会, 李 艳 等. TA15钛合金的相变、组织与拉伸性能 [A]. 第十四届全国钛及钛合金学术交流会论文集(上册) [C]. 上海, 2010
[7] Lütjering G, Williams J C, Gysler A. Microstructure and mechanical properties of titanium alloys [A]. Microstructure and Mechanical Properties of Titanium Alloys [M]. 2000: 1
[8] Liu H J, Zhou L, Liu Q W. Microstructural characteristics and mechanical properties of friction stir welded joints of Ti-6Al-4V titanium alloy [J]. Mater. Design, 2010, 31: 1650
[9] Balasubramanian T S, Balakrishnan M, Balasubramanian V, et al. Influence of welding processes on microstructure, tensile and impact properties of Ti-6Al-4V alloy joints [J]. Trans. Nonferr. Met. Soc. China, 2011, 21: 1253
[10] Sun W J, Wang S L, Chen Y H, et al. Development of advanced welding technologies for titanium alloys [J]. Aeronaut. Manuf. Technol., 2019, 62: 63
[10] 孙文君, 王善林, 陈玉华 等. 钛合金先进焊接技术研究现状 [J]. 航空制造技术, 2019, 62: 63
[11] Chen Y B. Modern Laser Welding Technology [M]. Beijing: Science Press, 2005
[11] 陈彦宾. 现代激光焊接技术 [M]. 北京: 科学出版社, 2005
[12] Liu Y Y, Hu Y N, Wu S C. High-temperature mechanical behavior of laser welded near α Ti60 alloy [J]. J. Beijing Univ. Technol., 2024, 50(2): 123
[12] 刘宇云, 胡雅楠, 吴圣川. 激光焊接近α型Ti60合金高温力学行为 [J]. 北京工业大学学报, 2024, 50(2): 123
[13] Zhang S W, Wang J, Si H X, et al. Microstructure and mechanical properties of TC4 titanium alloy by autogenous laser welding [J]. Weld. Join., 2024, (6): 33
[13] 张世伟, 王 珏, 佀好学 等. TC4钛合金激光自熔焊焊接组织及性能 [J]. 焊接, 2024, (6): 33
[14] Xue A T, Lin X, Wang L L, et al. Achieving fully-equiaxed fine β-grains in titanium alloy produced by additive manufacturing [J]. Mater. Res. Lett., 2023, 11: 60
[15] Zhang M, Wang Q, Li J H, et al. Microstructure numerical simulation of weld pool in rapid solidification [J]. Trans. China Weld. Inst., 2013, 34(7): 1
[15] 张 敏, 汪 强, 李继红 等. 焊接熔池快速凝固过程的微观组织演化数值模拟 [J]. 焊接学报, 2013, 34(7): 1
[16] Wen P, Zheng S Q, Kenji S, et al. Experimental research on laser narrow gap welding with filling hot wire [J]. Chin. J. Lasers, 2011, 38: 1103004
[16] 温 鹏, 郑世卿, 荻崎贤二 等. 填充热丝激光窄间隙焊接的实验研究 [J]. 中国激光, 2011, 38: 1103004
[17] Ma J K, Li J J, Wang Z J, et al. Bonding zone microstructure and mechanical properties of forging-additive hybrid manufactured Ti-6Al-4V alloy [J]. Acta Metall. Sin., 2021, 57: 1246
[17] 马健凯, 李俊杰, 王志军 等. 锻造-增材复合制造Ti-6Al-4V合金结合区显微组织及力学性能 [J]. 金属学报, 2021, 57: 1246
doi: 10.11900/0412.1961.2020.00416
[18] Zhang S W, Cong B Q, Zeng Z, et al. Tailoring weldability for microstructures in laser-welded near-α titanium alloy: insights on mechanical properties [J]. Metals, 2024, 14: 690
[19] Hong X M, Wang Y Q, Li N, et al. Effect of aging on microstructures and localized corrosion of Custom455 martensitic age-hardening stainless steel [J]. J. Chin. Soc. Corros. Prot., 2024, 44: 1285
[19] 洪孝木, 王永强, 李 娜 等. 时效处理对马氏体时效硬化不锈钢显微组织和局部腐蚀性能的影响 [J]. 中国腐蚀与防护学报, 2024, 44: 1285
doi: 10.11902/1005.4537.2023.365
[20] Li X X, Xu D S, Yang R. CPFEM study of high temperature tensile behavior of duplex titanium alloy [J]. Chin. J. Mater. Res., 2019, 33: 241
doi: 10.11901/1005.3093.2018.514
[20] 李学雄, 徐东生, 杨 锐. 钛合金双态组织高温拉伸行为的晶体塑性有限元研究 [J]. 材料研究学报, 2019, 33: 241
doi: 10.11901/1005.3093.2018.514
[21] Li G W, Wang Y S, Liang Y H, et al. Microstructure and mechanical properties of laser welded Ti-6Al-4V (TC4) titanium alloy joints [J]. Opt. Laser Technol., 2024, 170: 110320
[22] Hrabe N, White R, Lucon E. Effects of internal porosity and crystallographic texture on Charpy absorbed energy of electron beam melting titanium alloy (Ti-6Al-4V) [J]. Mater. Sci. Eng., 2019, 742A: 269
[23] Chang H, Zhou L, Zhang T J. Review of solid phase transformation in titanium alloys [J]. Rare Met. Mater. Eng., 2007, 36: 1505
[24] Miao Y G, Wang Q L, Li C W, et al. Characterization of laser arc hybrid welding process for medium-thick titanium alloy plate [J]. Trans. China Weld. Inst., 2022, 43(8): 42
[24] 苗玉刚, 王清龙, 李春旺 等. 中厚板钛合金激光-CMT复合焊接工艺特性分析 [J]. 焊接学报, 2022, 43(8): 42
doi: 10.12073/j.hjxb.20220330002
[25] Fan Z C, Feng H W. Study on selective laser melting and heat treatment of Ti-6Al-4V alloy [J]. Results Phys., 2018, 10: 660
[26] Huang W, Wang S G, Li L Z, et al. Laser beam welding of titanium alloy and microstructure and mechanical properties of welded joint [J]. Dev. Appl. Mater., 2019, 34(2): 20
[26] 黄 炜, 王少刚, 李立泽 等. 钛合金激光焊及其接头的显微组织与力学性能 [J]. 材料开发与应用, 2019, 34(2): 20
[27] Kovačócy P, Šimeková B, Kovaříková I, et al. Investigation of the microstructure and mechanical characteristics of disk laser-welded Ti-6Al-4V alloy joints [J]. J. Mater. Eng. Perform., 2020, 29: 593
[28] Fang X Y, Liu H, Zhang J X. Microstructure and mechanical properties of pulsed laser beam welded Ti-2Al-1.5Mn titanium alloy joints [J]. J. Mater. Eng. Perform., 2014, 23: 1973
[29] He Y F, Chen D G, Zhang L, et al. Study on microstructure and properties of TC4 titanium alloy MIG welding joints after heat treatment [J]. Iron Steel Vanadium Titanium, 2021, 42(6): 164
[29] 何逸凡, 陈东高, 张 龙 等. TC4钛合金MIG焊接头热处理后组织性能研究 [J]. 钢铁钒钛, 2021, 42(6): 164
[30] Peng Y, Zhang J M, Yang G K, et al. Multi-pass butt welding of thick TA5 titanium-alloy plates by MIG: Microstructure and properties [J]. Mater. Today Commun., 2024, 39: 108965
[31] Cao C, Liu P W, Zou Y Q, et al. Microstructure and mechanical properties of additively manufactured Ti-6Al-4V alloy based on large area, high-resolution EBSD mapping [J]. J. Mater. Res. Technol., 2024, 33: 2812
[32] Kang Y. Effects of welding current on microstructure and elements diffusion of Ti3Al/TC11 alloy weld seam [J]. Heat Treat. Met., 2014, 39(3): 75
[32] 康 彦. 焊接电流对Ti3Al/TC11合金焊缝区组织及合金元素扩散的影响 [J]. 金属热处理, 2014, 39(3): 75
[33] Wang J L, Gan Z H, Chen Y M, et al. Influence of different cooling rates on microstructure of Ti-6Al-4V titanium alloy thermal simulation specimens [J]. Trans. China Weld. Inst., 2011, 32(8): 93
[33] 王锦林, 甘章华, 陈义明 等. 不同冷却速度对Ti-6Al-4V钛合金热模拟试样组织的影响 [J]. 焊接学报, 2011, 32(8): 93
[34] Mu C Y. Microstructure and grain size of TC4 titanium alloy welded joints under different welding processes [J]. Foundry Technol., 2015, 36: 1267
[34] 穆春艳. 不同焊接工艺下TC4钛合金焊接接头的晶粒尺寸和微观组织变化 [J]. 铸造技术, 2015, 36: 1267
[35] Li J, Wang H, Qu S Y, et al. Effect of welding thermal cycle parameters in the heat affected zone of steel EH40 for on the microstructure and properties high heat input welding [J]. J. Univ. Sci. Technol. Beijing, 2012, 34: 788
[35] 李 静, 王 华, 曲圣昱 等. 焊接热循环参数对大线能量焊接用钢EH40热影响区组织和性能的影响 [J]. 北京科技大学学报, 2012, 34: 788
[36] Zhang J, Zhou X Q. Study on the major parameters of Q345 welding thermal cycle based on Simufact [J]. Electr. Weld. Mach., 2015, 45(9): 167
[36] 张 建, 周训谦. 基于Simufact的Q345焊接热循环主要参数研究 [J]. 电焊机, 2015, 45(9): 167
[37] Wang J H, Wei S Z, Rao W J, et al. Microstructure characteristics of Ti/Al interface using CA-MIG heating processing [J]. China Metall., 2022, 32(3): 55
[37] 王建宏, 魏守征, 饶文姬 等. CA-MIG热源处理下钛/铝异质合金界面显微组织特性 [J]. 中国冶金, 2022, 32(3): 55
doi: 10.13228/j.boyuan.issn1006-9356.20210883
[38] He Y F, Chen D G, Zhang L, et al. Research on microstructure and properties of TC4 titanium ahoy MIG welded joints after heat treatment [J]. Iron Steel Vanadium Titanium, 2021, 42(6): 164
[38] 何逸凡, 陈东高, 张 龙 等. TC4钛合金MIG焊接头热处理后组织性能研究 [J]. 钢铁钒钛, 2021, 42(6): 164
[39] Ma Y, Han X H, Li G Q, et al. Microstructure and properties of laser-MIG hybrid welded TC4 titanium alloy joints [J]. Electr. Weld. Mach., 2023, 53(8): 93
[39] 马 寅, 韩晓辉, 李刚卿 等. TC4钛合金激光-MIG复合焊接头组织性能 [J]. 电焊机, 2023, 53(8): 93
[40] Jeyaprakash N, Haile A, Arunprasath M. The parameters and equipments used in TIG welding: A review [J]. Int. J. Eng. Sci., 2015, 4(2): 11
[41] Zhang H, Zu G Q, Wang D C, et al. Research on TIG welding organizational and performance of TC4 forge alloy [J]. Iron Steel Vanadium Titanium, 2024, 45(5): 63
[41] 张 航, 祖国庆, 王大臣 等. TC4钛合金锻态板材TIG焊后组织与性能研究 [J]. 钢铁钒钛, 2024, 45(5): 63
[42] Liu Q Y, Wu D, Wang Q Z, et al. Progress and perspectives of joints defects of laser-arc hybrid welding: A review [J]. Int. J. Adv. Manuf. Technol., 2024, 130: 111
[43] Zhang M, Huang C, Guo Y F, et al. Numerical simulation and analysis of microstructure evolution of TC4 alloy weld pool [J]. Chin. J. Nonferr. Met., 2020, 30: 1876
[43] 张 敏, 黄 超, 郭宇飞 等. TC4合金焊接熔池微观组织演变的数值模拟与分析 [J]. 中国有色金属学报, 2020, 30: 1876
[44] Mou G, Hua X M, Xu X B, et al. Comparative study on welding procedure and performance of 8 mm thick TC4 titanium alloy with TIG and MIG [J]. Electr. Weld. Mach., 2020, 50(4): 70
[44] 牟 刚, 华学明, 徐小波 等. 8 mm厚TC4钛合金TIG、MIG焊接工艺及性能对比研究 [J]. 电焊机, 2020, 50(4): 70
[45] Du J H, Liu H B, Wang F, et al. Solidification microstructure reconstruction and its effects on phase transformation, grain boundary transformation mechanism, and mechanical properties of TC4 alloy welded joint [J]. Metall. Mater. Trans., 2024, 55A: 1193
[46] Akhonin S V, Yu Belous V, Selin R V, et al. Influence of TIG welding thermal cycle on temperature distribution and phase transformation in low-cost titanium alloy [J]. IOP Conf. Ser. Earth Environ. Sci., 2021, 688: 012012
[47] Kazempour-Liasi H, Tajally M, Abdollah-Pour H. A study on microstructure and phase transformation in the weld fusion zone of TIG-Welded IN939 with IN625 and IN718 as filler metal [J]. Metall. Mater. Trans., 2020, 51A: 2163
[48] Wu W, Gao H M, Cheng G F, et al. Grain growth in heat affected zone of fine grained titanium alloy [J]. Trans. China Weld. Inst., 2008, 29(10): 57
[48] 吴 巍, 高洪明, 程广福 等. 细晶粒钛合金热影响区晶粒长大规律 [J]. 焊接学报, 2008, 29(10): 57
[49] Hou J J, Yu J, Dong J H. Study on microstructure and mechanical properties of TC4 titanium alloy welded joint by TIG welding [J]. Weld. Technol., 2011, 40(4): 15
[49] 侯继军, 余 军, 董俊慧. TC4钛合金TIG焊接头组织及力学性能 [J]. 焊接技术, 2011, 40(4): 15
[50] Węglowski M S, Błacha S, Phillips A. Electron beam welding-techniques and trends-review [J]. Vacuum, 2016, 130: 72
[51] Yang S Y, Yang T, Cheng X W. Research status of electron beam welding of titanium alloy [J]. Met. Funct. Mater., 2019, 26(4): 1
[51] 杨素媛, 杨 婷, 程兴旺. 电子束焊接钛合金的组织与力学行为研究现状 [J]. 金属功能材料, 2019, 26(4): 1
[52] Wen J Z, Bu W D, Li J P, et al. Study on microstructure and properties of thick TC4 alloy joints welded by electron beam [J]. Hot Work. Technol., 2016, 45(17): 66
[52] 温锦志, 卜文德, 李建萍 等. 厚板TC4钛合金电子束焊接头组织和力学性能研究 [J]. 热加工工艺, 2016, 45(17): 66
[53] Wu H Q, Feng J C, He J S, et al. Effects of electron beam heat input mode on microstructure of Ti-6Al-4V [J]. Trans. China Weld. Inst., 2004, 25(5): 41
[53] 吴会强, 冯吉才, 何景山 等. 电子束焊接热输入对Ti-6Al-4V组织结构的影响 [J]. 焊接学报, 2004, 25(5): 41
[54] Wu B, Li J W, Tang Z Y. Study on the electron beam welding process of ZTC4 titanium alloy [J]. Rare Met. Mater. Eng., 2014, 43: 786
[55] Zhang Q Y, Li J W, Lu Y H, et al. Welding shape and microstructure of TA15 titanium alloy welding joint welded by electron beam [J]. Phys. Test. Chem. Anal., 2012, 48(1): 11
[55] 张庆云, 李晋炜, 陆业航 等. TA15钛合金电子束焊缝形貌及显微组织 [J]. 理化检验-物理分册, 2012, 48(1): 11
[56] Wang G Q, Chen Z Y, Li J W, et al. Microstructure and mechanical properties of electron beam welded titanium alloy Ti-6246 [J]. J. Mater. Sci. Technol., 2018, 34: 570
doi: 10.1016/j.jmst.2016.10.007
[57] Wang S G, Wu X Q. Investigation on the microstructure and mechanical properties of Ti-6Al-4V alloy joints with electron beam welding [J]. Mater. Design (1980-2015), 2012, 36: 663
[58] Zhang F Y, Deng J L, Jiang C P, et al. Study on microstructure and mechanical properties of electron beam welding and TIG welding of TC4 [J]. Hot Work. Technol., 2012, 41(7): 105
[58] 张凤英, 邓娟丽, 姜超平 等. TC4钛合金电子束焊与TIG焊焊接接头的组织性能对比研究 [J]. 热加工工艺, 2012, 41(7): 105
[59] Cheng G F. Grain growth and microstructure tranformation in the heat affect zone of gas tungsten arc welding of fine grain TC4 alloy [D]. Harbin: Harbin Institute of Technology, 2008
[59] 程广福. 细晶粒TC4钛合金TIG焊HAZ晶粒长大及组织转变规律 [D]. 哈尔滨: 哈尔滨工业大学, 2008
[60] Zhou S L, Tao J, Zhao H T, et al. Influence of grain size on microstructure and mechanical properties of Ti Alloy in TIG [J]. J. Aeronaut. Mater., 2011, 31(5): 34
[60] 周水亮, 陶 军, 赵海涛 等. 晶粒尺寸对钛合金TIG焊接接头组织及力学性能的影响 [J]. 航空材料学报, 2011, 31(5): 34
[61] He Z B. Research on the Structure and properties of welding joint for alloy Al-Mg-(Sc, Zr) [J]. Light Alloy Fabricat. Technol., 2006, 34(8): 44
[61] 何振波. Al-Mg(Sc, Zr)合金焊接接头组织与性能试验研究 [J]. 轻合金加工技术, 2006, 34(8): 44
[62] Lu W W, Chen Y H, Huang Y D, et al. Microstructure and mechanical property analysis about NiTiNb laser welding joint around heat treatment [J]. Chin. J. Lasers, 2014, 41: 1003001
[62] 陆巍巍, 陈玉华, 黄永德 等. NiTiNb激光焊接接头退火前后的显微组织和力学性能分析 [J]. 中国激光, 2014, 41: 1003001
[63] Yang S T. A brief discussion on the formation mechanism of Widmanstätten structure and its impact on material properties [J]. J. Henan Sci. Technol., 2014, (4): 76
[63] 杨胜涛. 浅谈魏氏组织形成机理及对材料性能影响 [J]. 河南科技, 2014, (4): 76
[64] Bhattacharyya D, Viswanathan G B, Denkenberger R, et al. The role of crystallographic and geometrical relationships between α and β phases in an α/β titanium alloy [J]. Acta Mater., 2003, 51: 4679
[65] Cheng S P, Su J H, Chen X W, et al. Effect of forging technology on microstructure and properties of TA10 titanium alloy [J]. J. Henan Univ. Sci. Technol. (Nat. Sci.), 2017, 38(3): 6
[65] 程帅朋, 苏娟华, 陈学文 等. 锻造工艺对TA10钛合金组织性能的影响 [J]. 河南科技大学学报(自然科学版), 2017, 38(3): 6
[66] Hansen N. Hall-Petch relation and boundary strengthening [J]. Scrip. Mater., 2004, 51: 801
[67] Yang J, Huang S S, Yin H, et al. Inhomogeneity analyses of microstructure and mechanical properties of TC21 titanium alloy variable cross-section die forgings for aviation [J]. Acta Metall. Sin., 2024, 60: 333
doi: 10.11900/0412.1961.2022.00313
[67] 杨 杰, 黄森森, 尹 慧 等. 航空用TC21钛合金变截面模锻件的显微组织和力学性能不均匀性分析 [J]. 金属学报, 2024, 60: 333
[68] Weiss L, Zollinger J, Sallamand P, et al. Mechanical properties and microstructural study of homogeneous and heterogeneous laser welds in α, β, and α + β titanium alloys [J]. Weld. World, 2019, 63: 53
[69] Guo W, Jia Q, Li R T, et al. The superplastic deformation behavior and phase evolution of Ti-6Al-4V alloy at constant tensile velocity [J]. High Temp. Mater. Processes, 2017, 36: 351
[70] Abbasi K, Beidokhti B, Sajjadi S A. Microstructure and mechanical properties of Ti-6Al-4V welds using α, near-α and α + β filler alloys [J]. Mater. Sci. Eng., 2017, 702A: 272
[71] Haden C V, Collins P C, Harlow D G. Yield strength prediction of titanium alloys [J]. JOM, 2015, 67: 1357
[72] Akman E, Demir A, Canel T, et al. Laser welding of Ti6Al4V titanium alloys [J]. J. Mater. Process. Technol., 2009, 209: 3705
[73] Liu J G, Zheng J Y, Fu B, et al. Thermo-mechanical study of TIG welding of Ti-6Al-4V for residual stresses considering solid state phase transformation [J]. Metals, 2023, 13: 1001
[74] Yoon S, Ueji R, Fujii H. Microstructure and texture distribution of Ti-6Al-4V alloy joints friction stir welded below β-transus temperature [J]. J. Mater. Process. Technol., 2016, 229: 390
[75] Zhou W, Chew K G. Effect of welding on impact toughness of butt-joints in a titanium alloy [J]. Mater. Sci. Eng., 2003, 347A: 180
[76] Yang X G, Li S L, Qi H Y. Ti-6Al-4V welded joints via electron beam welding: microstructure, fatigue properties, and fracture behavior [J]. Mater. Sci. Eng., 2014, 597A: 225
[77] Cui S W, Shi Y H, Zhu T, et al. Microstructure, texture, and mechanical properties of Ti-6Al-4V joints by K-TIG welding [J]. J. Manuf. Processes, 2019, 37: 418
[78] Ali I, Suhail M, Alothman Z A, et al. Recent advances in syntheses, properties and applications of TiO2 nanostructures [J]. RSC Adv., 2018, 8: 30125
[79] Gao F Y, Gao Q, Jiang P, et al. Microstructure and mechanical properties of Ti6321 alloy welded joint by EBW [J]. Int. J. Lightw. Mater. Manuf., 2018, 1: 265
[80] Diao Y H, Zhang K M. Microstructure and corrosion resistance of TC2 Ti alloy by laser cladding with Ti/TiC/TiB2 powders [J]. Appl. Surf. Sci., 2015, 352: 163
[81] Kain V. Stress corrosion cracking (SCC) in stainless steels [A]. Stress Corrosion Cracking [C]. Woodhead Publishing, 2011: 199
[82] Li W J, Zhang H X, Zhang H Q, et al. Effect of temperature on stress corrosion behavior of Ti-alloy Ti80 in sea water [J]. J. Chin. Soc. Corros. Prot., 2022, 43: 111
[82] 李文桔, 张慧霞, 张宏泉 等. 温度对钛合金应力腐蚀行为的影响 [J]. 中国腐蚀与防护学报, 2022, 43: 111
[83] Guo Z, Li H, Cui Z Y, et al. Comparative study on stress corrosion behavior of A100 ultrahigh-strength steel beneath dynamic thin electrolyte layer and in artificial seawater environments [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 1303
[83] 郭 昭, 李 晗, 崔中雨 等. A100钢在动态薄液膜和人工海水环境中的应力腐蚀行为对比研究 [J]. 中国腐蚀与防护学报, 2023, 43: 1303
[84] Zhu R L, Zhang Z M, Wang J Q, et al. Review on SCC crack growth behavior of dissimilar metal welds for nuclear power reactors [J]. J. Chin. Soc. Corros. Prot., 2015, 35: 189
[84] 朱若林, 张志明, 王俭秋 等. 核电异种金属焊接接头的应力腐蚀裂纹扩展行为研究进展 [J]. 中国腐蚀与防护学报, 2015, 35: 189
[85] Fang W P, Xiao T, Zhang Y P, et al. Stress corrosion crack sensitivity of ultra-thick TC4 titanium alloy electron beam welding joints [J]. Trans. China Weld. Inst., 2019, 40(12): 121
[85] 房卫萍, 肖 铁, 张宇鹏 等. 超厚板TC4钛合金电子束焊接接头应力腐蚀敏感性 [J]. 焊接学报, 2019, 40(12): 121
doi: 10.12073/j.hjxb.2019400324
[86] Zhang H X, Zhang F, Hao F Y, et al. Stress corrosion behavior and mechanism of Ti6321 alloy with different microstructures in stimulated deep-sea environment [J]. Corros. Sci., 2024, 233: 112059
[87] Gao F Y, Sun Z J, Yang S L, et al. Stress corrosion characteristics of electron beam welded titanium alloys joints in NaCl solution [J]. Mater. Charact., 2022, 192: 112126
[88] Thomas D J. Analyzing the failure of welded steel components in construction systems [J]. J. Fail. Anal. Prev., 2018, 18: 304
[89] Zhang W Y, Jiang W C, Zhao X, et al. Fatigue life of a dissimilar welded joint considering the weld residual stress: experimental and finite element simulation [J]. Int. J. Fatigue, 2018, 109: 182
[90] Song K J, Wei Y H, Dong Z B, et al. Numerical simulation of β to α phase transformation in heat affected zone during welding of TA15 alloy [J]. Comp. Mater. Sci., 2013, 72: 93
[91] Li X Z, Hu S B, Xiao J Z, et al. Effect of microstructure heterogeneity on fatigue crack growth of TA15 electron beam welded joint [J]. Chin. J. Nonferr. Met., 2010, 20: 2313
[91] 李行志, 胡树兵, 肖建中 等. 组织不均匀性对TA15电子束焊接接头疲劳裂纹扩展的影响 [J]. 中国有色金属学报, 2010, 20: 2313
[92] Liu X Y. Study on mechanical properties and fatigue fracture behavior of TC4 titanium alloy structural parts [D]. Baotou: Inner Mongolia University of Science & Technology, 2023
[92] 刘馨宇. TC4钛合金结构件力学性能及疲劳断裂行为研究 [D]. 包头: 内蒙古科技大学, 2023
[93] Morita T, Shinada K, Kawakami K, et al. Influence of short-time duplex heat treatment on fatigue strength of Ti-6Al-4Valloy [J]. J. Soc. Mater. Sci. Jpn, 2007, 56: 345
[93] 森田辰郎, 信田康介, 川嵜一博 等. Ti-6Al-4V合金の疲労強度に及ぼす短時間2段階熱処理の影響 [J]. 材料, 2007, 56: 345
[94] Ren L N, Zhang Q B, Lei X W, et al. Effect of laser heat input on microstructure and fatigue behavior of TC17 titanium alloy laser welded joint [J]. Rare Met. Mater. Eng., 2024, 53: 1836
[94] 任利娜, 张群兵, 雷晓维 等. 激光线能量对TC17钛合金焊接接头组织和疲劳性能的影响(英文) [J]. 稀有金属材料与工程, 2024, 53: 1836
[95] Li T L. Investigation of fatigue cracking behavior of TC18 titanium alloy [D]. Shenyang: Northeastern University, 2013
[95] 李天龙. TC18钛合金疲劳开裂损伤行为的研究 [D]. 沈阳: 东北大学, 2013
[96] Ji P. Study on the microstructure and properties of Al-Mg-Mn-Zr-Er alloy friction stir welding joints [D]. Harbin: Harbin Engineering University, 2019
[96] 吉 朋. Al-Mg-Mn-Zr-Er合金搅拌摩擦焊接头组织与性能的研究 [D]. 哈尔滨: 哈尔滨工程大学, 2019
[97] Wang P. Atomistic simulation of fracture and coupled grain boundary motion in nanocrystals [D]. Wuhan: Huazhong University of Science and Technology, 2017
[97] 王 鹏. 纳米晶材料断裂和耦合晶界运动的分子动力学模拟 [D]. 武汉: 华中科技大学, 2017
[98] Zhang M, Zhang J, McDowell D L. Microstructure-based crystal plasticity modeling of cyclic deformation of Ti-6Al-4V [J]. Int. J. Plast., 2007, 23: 1328
[99] Wang D L. Microstructure and properties of TC4 titanium alloy/316L stainless steel MIG welded joint [D]. Dalian: Dalian University of Technology, 2023
[99] 王大力. TC4钛合金/316L不锈钢MIG焊接头微观组织及性能研究 [D]. 大连: 大连理工大学, 2023
[100] Babu B, Lindgren L E. Dislocation density based model for plastic deformation and globularization of Ti-6Al-4V [J]. Int. J. Plast., 2013, 50: 94
[1] 何江海, 杨子钰, 刘琦, 马子骅, 何伟, 陈飞. 在电解液中添加陶瓷颗粒对钛合金表面微弧氧化膜层改性的研究进展[J]. 中国腐蚀与防护学报, 2025, 45(5): 1175-1186.
[2] 李萍, 时慧杰, 裴继斌, 王子健, 曹铁山, 程从前, 赵杰. 纳秒激光辐照对17-4PH不锈钢电化学腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2025, 45(5): 1417-1424.
[3] 胡娜, 彭文山, 郭为民, 刘天楠, 段体岗, 刘少通. 高强铝合金焊接接头力学-电化学腐蚀行为与退化规律研究[J]. 中国腐蚀与防护学报, 2025, 45(4): 965-974.
[4] 张珊珊, 刘元才, 徐铁伟, 杨发展. 成型方向及热处理对选区激光熔化Ti6Al4V合金腐蚀性能的影响[J]. 中国腐蚀与防护学报, 2025, 45(4): 995-1004.
[5] 李茂, 邓轲, 陈衍祥, 刘中豪, 李尚, 郭宇婷, 董选普, 曹华堂. N2 流量和靶基距对多弧离子镀沉积AlSiN纳米复合涂层的微观组织及耐腐蚀性能影响[J]. 中国腐蚀与防护学报, 2025, 45(4): 1041-1050.
[6] 冉仁豪, 单慧琳, 张鹏杰, 汪冬梅, 斯佳佳, 徐光青, 吕珺. 表层镁合金化NdFeB磁体的制备及其耐腐蚀性能[J]. 中国腐蚀与防护学报, 2025, 45(4): 1117-1126.
[7] 岳锐, 刘咏咏, 杨丽景, 朱兴隆, 陈权昕, 阿那尔, 张青科, 宋振纶. 激光重熔对生物可降解Zn-0.4Mn合金微观结构和性能的影响[J]. 中国腐蚀与防护学报, 2025, 45(4): 1127-1134.
[8] 燕冰川, 曾云鹏, 张宁, 史显波, 严伟. 石油管材用含Cu钢焊接接头的微生物腐蚀研究[J]. 中国腐蚀与防护学报, 2025, 45(2): 479-488.
[9] 翟熙伟, 刘士一, 王丽, 贾瑞灵, 张慧霞. 载荷对5383铝合金焊接接头电化学腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2025, 45(2): 515-522.
[10] 刘国强, 冯长杰, 辛丽, 马天宇, 常皓, 潘钰璇, 朱圣龙. 钛合金表面Ti-Al-Si扩散涂层的制备和显微结构[J]. 中国腐蚀与防护学报, 2025, 45(1): 69-80.
[11] 赵立佳, 崔新宇, 王吉强, 熊天英. 冷喷涂B4C/Al复合涂层在硼酸溶液中的腐蚀行为[J]. 中国腐蚀与防护学报, 2025, 45(1): 164-172.
[12] 李晗晔, 张志超, 王群昌, 古岩, 陈泽浩, 杨莎莎, 梅飞强. 钛合金表面碱洗及水洗留痕形成机制与腐蚀过程控制[J]. 中国腐蚀与防护学报, 2025, 45(1): 244-248.
[13] 张雅妮, 王思敏, 樊冰. TC4钛合金在O2 + CO2 气氛的高温高压模拟水沉积液中表面形成的钝化膜研究[J]. 中国腐蚀与防护学报, 2024, 44(6): 1518-1528.
[14] 赵骞, 张洁, 毛锐锐, 缪春辉, 卞亚飞, 滕越, 汤文明. Q235钢结构件表面热镀锌层的应力腐蚀及其机理[J]. 中国腐蚀与防护学报, 2024, 44(5): 1305-1315.
[15] 吴进怡, 柴柯, 李晓琳, 尚瑾, 李强, 吴耀华. 海水环境因素对网纹藤壶金星幼虫附着的影响机制[J]. 中国腐蚀与防护学报, 2024, 44(5): 1316-1322.