|
|
高强铝合金焊接接头力学-电化学腐蚀行为与退化规律研究 |
胡娜1,2, 彭文山2( ), 郭为民2, 刘天楠2, 段体岗2, 刘少通2 |
1 中国石油大学(华东) 新能源学院 青岛 266580 2 中国船舶集团有限公司第七二五研究所 海洋腐蚀与防护全国重点实验室 青岛 266237 |
|
Mechanical-electrochemical Corrosion Behavior and Degradation Regularity of High Strength Al-alloy Welded Joints |
HU Na1,2, PENG Wenshan2( ), GUO Weimin2, LIU Tiannan2, DUAN Tigang2, LIU Shaotong2 |
1 College of New Energy, China University of Petroleum (East China), Qingdao 266580, China 2 National Key Laboratory of Marine Corrosion and Protection, Luoyang Ship Material Research Institute, Qingdao 266237, China |
引用本文:
胡娜, 彭文山, 郭为民, 刘天楠, 段体岗, 刘少通. 高强铝合金焊接接头力学-电化学腐蚀行为与退化规律研究[J]. 中国腐蚀与防护学报, 2025, 45(4): 965-974.
Na HU,
Wenshan PENG,
Weimin GUO,
Tiannan LIU,
Tigang DUAN,
Shaotong LIU.
Mechanical-electrochemical Corrosion Behavior and Degradation Regularity of High Strength Al-alloy Welded Joints[J]. Journal of Chinese Society for Corrosion and protection, 2025, 45(4): 965-974.
[1] |
Liu H C, Fan L, Zhang H B, et al. Research progress of stress corrosion cracking of Ti-alloy in deep sea environments [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 175
|
[1] |
(柳皓晨, 范 林, 张海兵 等. 钛合金深海应力腐蚀研究进展 [J]. 中国腐蚀与防护学报, 2022, 42: 175)
doi: 10.11902/1005.4537.2021.050
|
[2] |
Brown A, Wright R, Mevenkamp L, et al. A comparative experimental approach to ecotoxicology in shallow-water and deep-sea holothurians suggests similar behavioural responses [J]. Aquat. Toxicol., 2017, 191: 10
doi: S0166-445X(17)30182-0
pmid: 28763776
|
[3] |
Kark S, Brokovich E, Mazor T, et al. Emerging conservation challenges and prospects in an era of offshore hydrocarbon exploration and exploitation [J]. Conserv. Biol., 2015, 29: 1573
doi: 10.1111/cobi.12562
pmid: 26219342
|
[4] |
Wu F M, Wang J T, Zhang Y K, et al. Research of electrochemical corrosion performance of aluminum alloy offshore drill served in deep ocean [J]. Mech. Electr. Eng. Technol., 2021, 50: 30
|
[4] |
(吴凤民, 王江涛, 张永康 等. 深海用铝合金海工钻杆抗电化学腐蚀性能的研究 [J]. 机电工程技术, 2021, 50: 30)
|
[5] |
Peng W S, Hou J, Yu H L, et al. Corrosion behaviors of aluminum alloys in different harbors [J]. Equip. Environ. Eng., 2019, 16: 8
|
[5] |
(彭文山, 侯 健, 余化龙 等. 不同港口海域铝合金腐蚀行为研究 [J]. 装备环境工程, 2019, 16: 8)
|
[6] |
Chen Z J, Zhou X J, Chen H. Corrosion behavior of riveted pair of 6A01 Al-alloy-/304 stainless steel-plate used for high-speed train [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 507
|
[6] |
(陈志坚, 周学杰, 陈 昊. 高速列车铆接件中6A01铝合金腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2022, 42: 507)
doi: 10.11902/1005.4537.2021.120
|
[7] |
Li C, Luo X, Zhang W. Research progress on corrosion and protection of typical warship metal materials [J]. Equip. Environ. Eng., 2023, 20: 80
|
[7] |
(李 川, 罗 茜, 张 薇. 典型舰船用金属材料腐蚀与防护研究进展 [J]. 装备环境工程, 2023, 20: 80)
|
[8] |
Hou Y, Tian Y, Zhao Z P, et al. Corrosion and protection of aluminum alloy for marine engineering [J]. Surf. Technol., 2022, 51: 1
|
[8] |
(侯 悦, 田 原, 赵志鹏 等. 海洋工程用铝合金的腐蚀与防护研究进展 [J]. 表面技术, 2022, 51: 1)
|
[9] |
Qiao Z, Li Q Q, Liu X H, et al. Effect of nitrate and galvanic couple on crevice corrosion behavior of 7075-T651 Al-alloy in neutral NaCl solution [J]. J. Chin. Soc. Corros. Prot., 2024, 44: 1047
|
[9] |
(乔 泽, 李清泉, 刘晓航 等. 中性氯化钠溶液中硝酸根和电偶对7075-T651铝合金缝隙腐蚀行为影响研究 [J]. 中国腐蚀与防护学报, 2024, 44: 1047)
|
[10] |
Deng C M, Liu Z, Xia D H, et al. Localized corrosion mechanism of 5083-H111 Al alloy in simulated dynamic seawater zone [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 683
|
[10] |
(邓成满, 刘 喆, 夏大海 等. 5083-H111铝合金在模拟动态海水环境中的局部腐蚀机制 [J]. 中国腐蚀与防护学报, 2023, 43: 683)
doi: 10.11902/1005.4537.2023.140
|
[11] |
Peng W S, Duan T G, Ma L, et al. Corrosion behaviors of 5083 aluminum alloy in tropical marine environment [J]. Equip. Environ. Eng., 2023, 20: 77
|
[11] |
(彭文山, 段体岗, 马 力 等. 热带海洋环境中5083铝合金腐蚀行为研究 [J]. 装备环境工程, 2023, 20: 77)
|
[12] |
Beura V K, Karanth Y, Darling K, et al. Role of gradient nanograined surface layer on corrosion behavior of aluminum 7075 alloy [J]. npj Mater. Degrad., 2022, 6: 62
|
[13] |
Gharbi O, Kairy S K, De Lima P R, et al. Microstructure and corrosion evolution of additively manufactured aluminium alloy AA7075 as a function of ageing [J]. npj Mater. Degrad., 2019, 3: 40
|
[14] |
Li S, Dong H G, Shi L, et al. Corrosion behavior and mechanical properties of Al-Zn-Mg aluminum alloy weld [J]. Corros. Sci., 2017, 123: 243
|
[15] |
Lin Y J, Lin C S. Galvanic corrosion behavior of friction stir welded AZ31B magnesium alloy and 6N01 aluminum alloy dissimilar joints [J]. Corros. Sci., 2021, 180: 109203
|
[16] |
Sun X G, Xu X X, Wang Z H, et al. Study on corrosion fatigue behavior and mechanism of 6005A aluminum alloy and welded joint [J]. Anti-Corros. Meth. Mater., 2021, 68: 302
|
[17] |
Fleck P, Calleros D, Madsen M, et al. Retrogression and reaging of 7075 T6 aluminum alloy [J]. Mater. Sci. Forum, 2000, 331-337: 649
|
[18] |
Tsai T C, Chang J C, Chuang T H. Stress corrosion cracking of superplastically formed 7475 aluminum alloy [J]. Metall. Mater. Trans., 1997, 28A: 2113
|
[19] |
Robinson J S, Cudd R L. Electrical conductivity variations in X2096, 8090, 7010 and an experimental aluminium lithium alloy [J]. Mater. Sci. Forum, 2000, 331-337: 971
|
[20] |
Cooper K R, Young L M, Gangloff R P, et al. The electrode potential dependence of environment-assisted cracking of AA 7050 [J]. Mater. Sci. Forum, 2000, 331-337: 1625
|
[21] |
Birbilis N, Cavanaugh M K, Buchheit R G. Electrochemical behavior and localized corrosion associated with Al7Cu2Fe particles in aluminum alloy 7075-T651 [J]. Corros. Sci., 2006, 48: 4202
|
[22] |
Freixes M L, Zhou X Y, Zhao H, et al. Revisiting stress-corrosion cracking and hydrogen embrittlement in 7xxx-Al alloys at the near-atomic-scale [J]. Nat. Commun., 2022, 13: 4290
doi: 10.1038/s41467-022-31964-3
pmid: 35879282
|
[23] |
Jones K, Hoeppner D W. Pit-to-crack transition in pre-corroded 7075-T6 aluminum alloy under cyclic loading [J]. Corros. Sci., 2005, 47: 2185
|
[24] |
Turnbull A, Horner D A, Connolly B J. Challenges in modelling the evolution of stress corrosion cracks from pits [J]. Eng. Fract. Mech., 2009, 76: 633
|
[25] |
Dollah M. The study of stress corrosion cracking in aluminum alloy 7075 (W) under tensile loading by eddy current measurement [J]. Appl. Mech. Mater., 2011, 83: 216
|
[26] |
Tsai W T, Duh J B, Yeh J J, et al. Effect of pH on stress corrosion cracking of 7050-T7451 aluminum alloy in 3.5wt%NaCl solution [J]. Corrosion, 1990, 46: 444
|
[27] |
Hua T S, Song R G, Zong Y, et al. Corrosion behavior of 7050 aluminum alloy after micro-arc oxidation under constant load in NaCl solution with different pH values [J]. Surf. Technol., 2020, 49: 269
|
[27] |
(花天顺, 宋仁国, 宗 玙 等. 恒载荷下的微弧氧化后7050铝合金在不同pH值NaCl溶液中的腐蚀行为 [J]. 表面技术, 2020, 49: 269)
|
[28] |
Meng X Q. Experimental study on stress corrosion and corrosion fatigue behavior of aluminum alloy materials [D]. Shanghai: Shanghai Jiao Tong University, 2012
|
[28] |
(孟祥琦. 铝合金材料的应力腐蚀及腐蚀疲劳特性实验研究 [D]. 上海: 上海交通大学, 2012)
|
[29] |
He Z, Bai B, Zhang X M, et al. Stress corrosion behavior of 6061 aluminum alloy for aviation under constant load [J]. Corros. Prot., 2023, 44: 64
|
[29] |
(何 祯, 拜 斌, 张小明 等. 航空用6061铝合金恒载荷应力腐蚀行为 [J]. 腐蚀与防护, 2023, 44: 64)
|
[30] |
Zheng C B, Li C L, Yi G, et al. Corrosion behavior of two kinds of high strength aluminum alloys in simulated marine atmospheric environment [J]. Mater. Prot., 2014, 47: 38
|
[30] |
(郑传波, 李春岭, 益 帼 等. 高强铝合金6061和7075在模拟海洋大气环境中的腐蚀行为 [J]. 材料保护, 2014, 47: 38)
|
[31] |
Wang J. Study of 7075 alloy atmospheric corrosion test in the marine environment [D]. Shenyang: Shenyang Aerospace University, 2011
|
[31] |
(王 洁. 7075铝合金海洋环境大气腐蚀试验研究 [D]. 沈阳: 沈阳航空航天大学, 2011)
|
[32] |
Zhang L W, Zheng L, Zhu L, et al. Stress corrosion testing of 7A52 aluminum alloy and 25CrMnSiA steel weldments in marine atmospheric environment [J]. Equip. Environ. Eng., 2017, 14: 109
|
[32] |
(张伦武, 郑 林, 朱 蕾 等. 7A52铝合金及25CrMnSiA钢焊接件海洋大气应力腐蚀试验研究 [J]. 装备环境工程, 2017, 14: 109)
|
[33] |
Wang X H. Characterization and detection of stainless steel and aluminum alloy during stress corrosion cracking in typical environment [D]. Tianjin: Tianjin University, 2015
|
[33] |
(王学慧. 不锈钢和铝合金在典型环境中的应力腐蚀特征与检测方法 [D]. 天津: 天津大学, 2015)
|
[34] |
Xu T, Zhang C Z, Lu K L, et al. Microstructure, mechanical properties and stress dependence of corrosion resistance for MIG welded 7075 aluminum joint [J]. Trans. China Weld. Inst., 2021, 42: 51
|
[34] |
(徐 腾, 张春芝, 鲁宽亮 等. 7075铝合金MIG焊接头金相组织、力学性能和耐蚀性的应力敏感性 [J]. 焊接学报, 2021, 42: 51)
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|