Please wait a minute...
中国腐蚀与防护学报  2025, Vol. 45 Issue (4): 965-974     CSTR: 32134.14.1005.4537.2024.321      DOI: 10.11902/1005.4537.2024.321
  研究报告 本期目录 | 过刊浏览 |
高强铝合金焊接接头力学-电化学腐蚀行为与退化规律研究
胡娜1,2, 彭文山2(), 郭为民2, 刘天楠2, 段体岗2, 刘少通2
1 中国石油大学(华东) 新能源学院 青岛 266580
2 中国船舶集团有限公司第七二五研究所 海洋腐蚀与防护全国重点实验室 青岛 266237
Mechanical-electrochemical Corrosion Behavior and Degradation Regularity of High Strength Al-alloy Welded Joints
HU Na1,2, PENG Wenshan2(), GUO Weimin2, LIU Tiannan2, DUAN Tigang2, LIU Shaotong2
1 College of New Energy, China University of Petroleum (East China), Qingdao 266580, China
2 National Key Laboratory of Marine Corrosion and Protection, Luoyang Ship Material Research Institute, Qingdao 266237, China
引用本文:

胡娜, 彭文山, 郭为民, 刘天楠, 段体岗, 刘少通. 高强铝合金焊接接头力学-电化学腐蚀行为与退化规律研究[J]. 中国腐蚀与防护学报, 2025, 45(4): 965-974.
Na HU, Wenshan PENG, Weimin GUO, Tiannan LIU, Tigang DUAN, Shaotong LIU. Mechanical-electrochemical Corrosion Behavior and Degradation Regularity of High Strength Al-alloy Welded Joints[J]. Journal of Chinese Society for Corrosion and protection, 2025, 45(4): 965-974.

全文: PDF(17117 KB)   HTML
摘要: 

海洋腐蚀环境复杂,结构本身还受到应力等作用,导致海洋装备用高强度铝合金焊接接头的腐蚀和性能退化问题逐渐凸显。为了分析7系高强铝合金焊接接头在低温环境中的力学-电化学腐蚀行为,采用室内模拟方法研究了焊接接头在不同应力和不同浸泡时间下的腐蚀行为以及性能退化规律,并通过SEM、电化学测试、XPS、力学性能测试等方法,分析了焊接接头的腐蚀形貌、腐蚀产物及其性能退化情况。结果表明,随着应力和浸泡时间增加,高强铝合金焊接接头的腐蚀倾向性增强,其耐腐蚀性能逐渐下降。应力和浸泡时间增加,焊接接头腐蚀电位越负,电荷传递电阻变小,导致其电位变低,腐蚀敏感性变大。当受到拉应力超过25%σs时,随着预加拉应力增加,腐蚀产物中的氧元素含量占比不断提高,腐蚀产物膜被破坏,腐蚀更严重。随着应力和浸泡时间增加,焊接接头断后伸长率和断面收缩率均降低,应力腐蚀敏感性增强。

关键词 铝合金焊接接头低温应力腐蚀性能退化    
Abstract

The marine corrosive environment is complex, and the marine structure itself is also subjected to stress and other effects, which gradually highlights the corrosion and performance degradation problems of high-strength Al-alloy welded joints used in marine equipment. Herein, the corrosion behavior and performance degradation of welded joints of 7-series high-strength Al-alloy under different stresses, while immersion in Qingdao natural seawater at 5 ℃ for different times was studied via a lab simulation set, electrochemical measurement, universal test machine, SEM and XPS, in terms of the corrosion morphology, corrosion products, and degradation regularity of welded joints. The results show that as stress increases and immersion time prolongs, the corrosion tendency of high-strength Al-alloy welded joints increases, and their corrosion resistance gradually decreases; while the corrosion potential of the welded joint becomes more negative, the charge transfer resistance decreases, resulting in lower potential, higher corrosion sensitivity, and poorer corrosion resistance. When subjected to tensile stress exceeding 25%σs, as the pre stress increases, the proportion of oxygen in the corrosion products continues to increase, the corrosion product film is damaged, and the corrosion becomes more severe. With the increase of stress and immersion time, the elongation and cross-sectional shrinkage of the welded joint after fracture decrease, and thus the sensitivity to stress corrosion increases.

Key wordsaluminum alloy    welded joints    low temperature    stress    corrosion    performance degradation
收稿日期: 2024-10-01      32134.14.1005.4537.2024.321
ZTFLH:  TG174  
通讯作者: 彭文山,E-mail:pengwenshan1386@126.con,研究方向为海洋腐蚀与防护、多相流冲蚀及环境损伤仿真
Corresponding author: PENG Wenshan, E-mail: pengwenshan1386@126.con
作者简介: 胡 娜,女,1999年生,硕士生
图1  高强铝合金焊接接头试样
图2  不同应力下高强铝合金焊接接头在低温海水中浸泡不同周期的宏观形貌
图3  不同应力下高强铝合金焊接接头在低温海水中浸泡不同周期后表面形貌
Pre-stressOAlZnMgCu
046.4545.720.854.450.17
25%σs41.8252.740.874.000.14
50%σs46.7347.411.973.030.38
表1  不同应力下高强铝合金焊接接头在低温海中浸泡20 d的EDS分析结果 (atomic fraction / %)
图4  不同应力下高强铝合金焊接接头在低温海水中浸泡不同周期的极化曲线
Immersion time / dPre-stressSelf-corrosion potential E0 / VSelf-corrosion current density I0 / A·cm-2
10-0.6520.395 × 10-6
25%σs-0.6932.023 × 10-6
50%σs-0.7544.467 × 10-6
50-0.7570.775 × 10-6
25%σs-0.8564.6 × 10-6
50%σs-0.8206.94 × 10-6
100-0.7660.983 × 10-6
25%σs-0.81315.58 × 10-6
50%σs-0.89715.37 × 10-6
200-0.8012.36 × 10-6
25%σs-0.83812.56 × 10-6
50%σs-0.84617.2 × 10-6
表2  不同应力下高强铝合金焊接接头在低温海水中浸泡不同周期极化拟合结果
图5  不同应力下高强铝合金焊接接头在低温海水中浸泡不同周期后的电化学阻抗谱
图6  EIS等效电路图
Immersion time / dPre-stressRs / Ω·cm2Rct / 103 Ω·cm2Rf / Ω·cm2
1010.178.8051.328
25%σs7.095.03729.45
50%σs12.742.76432.76
508.297.5773.659
25%σs10.324.2371.489
50%σs6.5540.8652.489
10013.33.850847.2
25%σs6.6793.78329.03
50%σs8.8341.453149.4
2007.813.4092200
25%σs8.5931.5643.391
50%σs6.7250.789538.9
表3  高强铝合金焊接接头低温海水条件下阻抗拟合结果
图7  高强铝合金焊接接头在低温海水浸泡后XPS能谱图
图8  低温海水中不同应力下高强铝合金焊接接头浸泡1和15 d后微观断口形貌
Immersion time / dPre-stressYield strength / MPaTensile strength / MPa
125%σs211270
50%σs175225
525%σs163241
50%σs150220
1525%σs150218
50%σs145178
表4  不同应力下铝合金焊接接头在低温海水中浸泡不同周期后的拉伸数据
Immersion time / dPre- stressPost-fracture elongation (δ) / %Section shrinkage (Ψ) / %
125%σs10.8511.383
50%σs10.1511.041
525%σs10.8110.564
50%σs9.2410.220
1525%σs9.8710.250
50%σs8.569.861
表5  不同应力下铝合金焊接接头在低温海水中浸泡不同周期后的断裂数据
[1] Liu H C, Fan L, Zhang H B, et al. Research progress of stress corrosion cracking of Ti-alloy in deep sea environments [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 175
[1] (柳皓晨, 范 林, 张海兵 等. 钛合金深海应力腐蚀研究进展 [J]. 中国腐蚀与防护学报, 2022, 42: 175)
doi: 10.11902/1005.4537.2021.050
[2] Brown A, Wright R, Mevenkamp L, et al. A comparative experimental approach to ecotoxicology in shallow-water and deep-sea holothurians suggests similar behavioural responses [J]. Aquat. Toxicol., 2017, 191: 10
doi: S0166-445X(17)30182-0 pmid: 28763776
[3] Kark S, Brokovich E, Mazor T, et al. Emerging conservation challenges and prospects in an era of offshore hydrocarbon exploration and exploitation [J]. Conserv. Biol., 2015, 29: 1573
doi: 10.1111/cobi.12562 pmid: 26219342
[4] Wu F M, Wang J T, Zhang Y K, et al. Research of electrochemical corrosion performance of aluminum alloy offshore drill served in deep ocean [J]. Mech. Electr. Eng. Technol., 2021, 50: 30
[4] (吴凤民, 王江涛, 张永康 等. 深海用铝合金海工钻杆抗电化学腐蚀性能的研究 [J]. 机电工程技术, 2021, 50: 30)
[5] Peng W S, Hou J, Yu H L, et al. Corrosion behaviors of aluminum alloys in different harbors [J]. Equip. Environ. Eng., 2019, 16: 8
[5] (彭文山, 侯 健, 余化龙 等. 不同港口海域铝合金腐蚀行为研究 [J]. 装备环境工程, 2019, 16: 8)
[6] Chen Z J, Zhou X J, Chen H. Corrosion behavior of riveted pair of 6A01 Al-alloy-/304 stainless steel-plate used for high-speed train [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 507
[6] (陈志坚, 周学杰, 陈 昊. 高速列车铆接件中6A01铝合金腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2022, 42: 507)
doi: 10.11902/1005.4537.2021.120
[7] Li C, Luo X, Zhang W. Research progress on corrosion and protection of typical warship metal materials [J]. Equip. Environ. Eng., 2023, 20: 80
[7] (李 川, 罗 茜, 张 薇. 典型舰船用金属材料腐蚀与防护研究进展 [J]. 装备环境工程, 2023, 20: 80)
[8] Hou Y, Tian Y, Zhao Z P, et al. Corrosion and protection of aluminum alloy for marine engineering [J]. Surf. Technol., 2022, 51: 1
[8] (侯 悦, 田 原, 赵志鹏 等. 海洋工程用铝合金的腐蚀与防护研究进展 [J]. 表面技术, 2022, 51: 1)
[9] Qiao Z, Li Q Q, Liu X H, et al. Effect of nitrate and galvanic couple on crevice corrosion behavior of 7075-T651 Al-alloy in neutral NaCl solution [J]. J. Chin. Soc. Corros. Prot., 2024, 44: 1047
[9] (乔 泽, 李清泉, 刘晓航 等. 中性氯化钠溶液中硝酸根和电偶对7075-T651铝合金缝隙腐蚀行为影响研究 [J]. 中国腐蚀与防护学报, 2024, 44: 1047)
[10] Deng C M, Liu Z, Xia D H, et al. Localized corrosion mechanism of 5083-H111 Al alloy in simulated dynamic seawater zone [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 683
[10] (邓成满, 刘 喆, 夏大海 等. 5083-H111铝合金在模拟动态海水环境中的局部腐蚀机制 [J]. 中国腐蚀与防护学报, 2023, 43: 683)
doi: 10.11902/1005.4537.2023.140
[11] Peng W S, Duan T G, Ma L, et al. Corrosion behaviors of 5083 aluminum alloy in tropical marine environment [J]. Equip. Environ. Eng., 2023, 20: 77
[11] (彭文山, 段体岗, 马 力 等. 热带海洋环境中5083铝合金腐蚀行为研究 [J]. 装备环境工程, 2023, 20: 77)
[12] Beura V K, Karanth Y, Darling K, et al. Role of gradient nanograined surface layer on corrosion behavior of aluminum 7075 alloy [J]. npj Mater. Degrad., 2022, 6: 62
[13] Gharbi O, Kairy S K, De Lima P R, et al. Microstructure and corrosion evolution of additively manufactured aluminium alloy AA7075 as a function of ageing [J]. npj Mater. Degrad., 2019, 3: 40
[14] Li S, Dong H G, Shi L, et al. Corrosion behavior and mechanical properties of Al-Zn-Mg aluminum alloy weld [J]. Corros. Sci., 2017, 123: 243
[15] Lin Y J, Lin C S. Galvanic corrosion behavior of friction stir welded AZ31B magnesium alloy and 6N01 aluminum alloy dissimilar joints [J]. Corros. Sci., 2021, 180: 109203
[16] Sun X G, Xu X X, Wang Z H, et al. Study on corrosion fatigue behavior and mechanism of 6005A aluminum alloy and welded joint [J]. Anti-Corros. Meth. Mater., 2021, 68: 302
[17] Fleck P, Calleros D, Madsen M, et al. Retrogression and reaging of 7075 T6 aluminum alloy [J]. Mater. Sci. Forum, 2000, 331-337: 649
[18] Tsai T C, Chang J C, Chuang T H. Stress corrosion cracking of superplastically formed 7475 aluminum alloy [J]. Metall. Mater. Trans., 1997, 28A: 2113
[19] Robinson J S, Cudd R L. Electrical conductivity variations in X2096, 8090, 7010 and an experimental aluminium lithium alloy [J]. Mater. Sci. Forum, 2000, 331-337: 971
[20] Cooper K R, Young L M, Gangloff R P, et al. The electrode potential dependence of environment-assisted cracking of AA 7050 [J]. Mater. Sci. Forum, 2000, 331-337: 1625
[21] Birbilis N, Cavanaugh M K, Buchheit R G. Electrochemical behavior and localized corrosion associated with Al7Cu2Fe particles in aluminum alloy 7075-T651 [J]. Corros. Sci., 2006, 48: 4202
[22] Freixes M L, Zhou X Y, Zhao H, et al. Revisiting stress-corrosion cracking and hydrogen embrittlement in 7xxx-Al alloys at the near-atomic-scale [J]. Nat. Commun., 2022, 13: 4290
doi: 10.1038/s41467-022-31964-3 pmid: 35879282
[23] Jones K, Hoeppner D W. Pit-to-crack transition in pre-corroded 7075-T6 aluminum alloy under cyclic loading [J]. Corros. Sci., 2005, 47: 2185
[24] Turnbull A, Horner D A, Connolly B J. Challenges in modelling the evolution of stress corrosion cracks from pits [J]. Eng. Fract. Mech., 2009, 76: 633
[25] Dollah M. The study of stress corrosion cracking in aluminum alloy 7075 (W) under tensile loading by eddy current measurement [J]. Appl. Mech. Mater., 2011, 83: 216
[26] Tsai W T, Duh J B, Yeh J J, et al. Effect of pH on stress corrosion cracking of 7050-T7451 aluminum alloy in 3.5wt%NaCl solution [J]. Corrosion, 1990, 46: 444
[27] Hua T S, Song R G, Zong Y, et al. Corrosion behavior of 7050 aluminum alloy after micro-arc oxidation under constant load in NaCl solution with different pH values [J]. Surf. Technol., 2020, 49: 269
[27] (花天顺, 宋仁国, 宗 玙 等. 恒载荷下的微弧氧化后7050铝合金在不同pH值NaCl溶液中的腐蚀行为 [J]. 表面技术, 2020, 49: 269)
[28] Meng X Q. Experimental study on stress corrosion and corrosion fatigue behavior of aluminum alloy materials [D]. Shanghai: Shanghai Jiao Tong University, 2012
[28] (孟祥琦. 铝合金材料的应力腐蚀及腐蚀疲劳特性实验研究 [D]. 上海: 上海交通大学, 2012)
[29] He Z, Bai B, Zhang X M, et al. Stress corrosion behavior of 6061 aluminum alloy for aviation under constant load [J]. Corros. Prot., 2023, 44: 64
[29] (何 祯, 拜 斌, 张小明 等. 航空用6061铝合金恒载荷应力腐蚀行为 [J]. 腐蚀与防护, 2023, 44: 64)
[30] Zheng C B, Li C L, Yi G, et al. Corrosion behavior of two kinds of high strength aluminum alloys in simulated marine atmospheric environment [J]. Mater. Prot., 2014, 47: 38
[30] (郑传波, 李春岭, 益 帼 等. 高强铝合金6061和7075在模拟海洋大气环境中的腐蚀行为 [J]. 材料保护, 2014, 47: 38)
[31] Wang J. Study of 7075 alloy atmospheric corrosion test in the marine environment [D]. Shenyang: Shenyang Aerospace University, 2011
[31] (王 洁. 7075铝合金海洋环境大气腐蚀试验研究 [D]. 沈阳: 沈阳航空航天大学, 2011)
[32] Zhang L W, Zheng L, Zhu L, et al. Stress corrosion testing of 7A52 aluminum alloy and 25CrMnSiA steel weldments in marine atmospheric environment [J]. Equip. Environ. Eng., 2017, 14: 109
[32] (张伦武, 郑 林, 朱 蕾 等. 7A52铝合金及25CrMnSiA钢焊接件海洋大气应力腐蚀试验研究 [J]. 装备环境工程, 2017, 14: 109)
[33] Wang X H. Characterization and detection of stainless steel and aluminum alloy during stress corrosion cracking in typical environment [D]. Tianjin: Tianjin University, 2015
[33] (王学慧. 不锈钢和铝合金在典型环境中的应力腐蚀特征与检测方法 [D]. 天津: 天津大学, 2015)
[34] Xu T, Zhang C Z, Lu K L, et al. Microstructure, mechanical properties and stress dependence of corrosion resistance for MIG welded 7075 aluminum joint [J]. Trans. China Weld. Inst., 2021, 42: 51
[34] (徐 腾, 张春芝, 鲁宽亮 等. 7075铝合金MIG焊接头金相组织、力学性能和耐蚀性的应力敏感性 [J]. 焊接学报, 2021, 42: 51)
[1] 岳锐, 刘咏咏, 杨丽景, 朱兴隆, 陈权昕, 阿那尔, 张青科, 宋振纶. 激光重熔对生物可降解Zn-0.4Mn合金微观结构和性能的影响[J]. 中国腐蚀与防护学报, 2025, 45(4): 1127-1134.
[2] 张维智, 冯思乔, 宋霄鹏, 刘艾华, 唐德志, 闫茂成, 韩恩厚. 聚合物驱集输管道微生物腐蚀行为实验研究[J]. 中国腐蚀与防护学报, 2025, 45(4): 1098-1106.
[3] 夏渊, 廉兵杰, 程佳, 李文. 聚天冬氨酸酯聚脲胺基组分分子结构对涂层微观结构及腐蚀介质扩散行为影响的分子动力学模拟研究[J]. 中国腐蚀与防护学报, 2025, 45(4): 975-982.
[4] 李维鹏, 罗坤杰, 王惠生, 陈嘉诚, 韩姚磊, 庞晓露, 彭群家, 乔利杰. 沉淀相对镍基718合金高温高压水环境应力腐蚀裂纹萌生行为影响研究[J]. 中国腐蚀与防护学报, 2025, 45(4): 947-955.
[5] 柳森, 胡家元, 温小涵, 朱仁政, 李延伟, 杨小佳. 典型沿海地区五种电网材料在大气环境下的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2025, 45(4): 1107-1116.
[6] 张雄斌, 党恩, 于晓婧, 汤玉斐, 赵康. 油气田用马氏体不锈钢腐蚀性能研究现状与进展[J]. 中国腐蚀与防护学报, 2025, 45(4): 837-848.
[7] 麻衡, 王中学, 逄昆, 张庆普, 崔中雨. 低合金钢中腐蚀活性夹杂物诱发局部腐蚀萌生行为研究[J]. 中国腐蚀与防护学报, 2025, 45(4): 1005-1013.
[8] 李顺平, 党莹, 洪晓峰, 宁方强. 水化学对690镍基合金高温高压水腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2025, 45(4): 1035-1040.
[9] 张国庆, 余直霞, 王岳松, 王智, 金正宇, 刘宏伟. 海上超临界二氧化碳环境中含水率和温度对A106钢腐蚀行为影响研究[J]. 中国腐蚀与防护学报, 2025, 45(4): 1061-1069.
[10] 李秋博, 苏一喆, 吴伟, 张俊喜. 自源性磁场对Cu大气腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2025, 45(4): 956-964.
[11] 雷涛, 陈绍高, 刘秀利, 范金龙, 郑兴文. 乙二醇冷却液的劣化检测及增材制造AlSi10Mg铝合金在其中的腐蚀行为[J]. 中国腐蚀与防护学报, 2025, 45(4): 1014-1024.
[12] 杨淞普, 黄诗雨, 李刚, 林一, 郭娜, 刘涛, 董丽华. 极地航行船舶用高强钢的磨损腐蚀交互作用机制[J]. 中国腐蚀与防护学报, 2025, 45(4): 894-904.
[13] 高云霞, 何琨, 张瑞谦, 梁雪, 王先平, 方前锋. 氧含量对国产FeCrAl基合金长周期腐蚀性能的影响[J]. 中国腐蚀与防护学报, 2025, 45(4): 1081-1088.
[14] 丁智超, 张树国, 肖晓春, 汪迪, 李文杰, 姜丽红. 半固态7075铝合金搅拌摩擦焊接头晶间腐蚀行为研究[J]. 中国腐蚀与防护学报, 2025, 45(4): 1089-1097.
[15] 段敬民, 董勇, 缪东美, 杨玉婧, 毛凌波, 章争荣. 热处理工艺对Al0.5CoCrFeNi高熵合金在不同介质下腐蚀行为及力学性能的影响[J]. 中国腐蚀与防护学报, 2025, 45(4): 983-994.