|
|
钛基体阴极充氢处理对RuO2-IrO2-TiO2 阳极微观结构和性能的影响 |
刘鹏鹤1,2, 薛丽莉1, 许立坤2( ), 辛永磊2, 郭明帅2, 周帅2, 段体岗2 |
1 哈尔滨工程大学材料科学与化学工程学院 哈尔滨 150001 2 中国船舶集团公司第七二五研究所 海洋腐蚀与防护全国重点实验室 青岛 266237 |
|
Effect of Hydrogen Pre-charging for Ti-substrate on Microstructure and Electrochemical Properties of Ti/RuO2-IrO2-TiO2 Anode |
LIU Penghe1,2, XUE Lili1, XU Likun2( ), XIN Yonglei2, GUO Mingshuai2, ZHOU Shuai2, DUAN Tigang2 |
1 College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China 2 National Key Laboratory of Marine Corrosion and Protection, Luoyang Ship Material Research Institute, Qingdao 266237, China |
引用本文:
刘鹏鹤, 薛丽莉, 许立坤, 辛永磊, 郭明帅, 周帅, 段体岗. 钛基体阴极充氢处理对RuO2-IrO2-TiO2 阳极微观结构和性能的影响[J]. 中国腐蚀与防护学报, 2025, 45(5): 1277-1288.
Penghe LIU,
Lili XUE,
Likun XU,
Yonglei XIN,
Mingshuai GUO,
Shuai ZHOU,
Tigang DUAN.
Effect of Hydrogen Pre-charging for Ti-substrate on Microstructure and Electrochemical Properties of Ti/RuO2-IrO2-TiO2 Anode[J]. Journal of Chinese Society for Corrosion and protection, 2025, 45(5): 1277-1288.
[1] |
Xu L K, Sun M X. Electrochemical Protection Technology for Marine Ships [M]. Beijing: National Defense Industry Press, 2022
|
[1] |
许立坤, 孙明先. 船舶电化学保护技术 [M]. 北京: 国防工业出版社, 2022
|
[2] |
Li C Y, Zhang G F, Fu H T. Development and application of electrolyzing seawater antifouling technique [J]. Dev. Appl. Mater., 1996, (1): 38
|
[2] |
李长彦, 张桂芳, 付洪田. 电解海水防污技术的发展及应用 [J]. 材料开发与应用, 1996, (1): 38
|
[3] |
Trasatti S. Electrocatalysis: Understanding the success of DSA® [J]. Electrochim. Acta, 2000, 45: 2377
|
[4] |
Hine F, Yasuda M, Noda T, et al. Electrochemical behavior of the oxide-coated metal anodes [J]. J. Electrochem. Soc., 1979, 126: 1439
|
[5] |
Zhao F, Wang D W, Guo Q Z, et al. Performance study of RGO-CNTs hybrid material modified RuO2-IrO2-SnO2/Ti anode [J]. J. Chin. Soc. Corros. Prot., 2025, 45: 787
|
[5] |
赵 菲, 王东伟, 郭泉忠 等. RGO-CNTs杂化材料改性RuO2-IrO2-SnO2/Ti阳极的性能研究 [J]. 中国腐蚀与防护学报, 2025, 45: 787
|
[6] |
Pouladvand I, Asl S K, Hoseini M G, et al. Characterization and electrochemical behavior of Ti/TiO2-RuO2-IrO2-SnO2 anodes prepared by sol-gel process [J]. J. Sol-Gel. Sci. Technol., 2019, 89: 553
|
[7] |
Zeng Y, Chen K N, Wu W, et al. Effect of IrO2 loading on RuO2-IrO2-TiO2 anodes: A study of microstructure and working life for the chlorine evolution reaction [J]. Ceram. Int., 2007, 33: 1087
|
[8] |
Hoseinieh S M, Ashrafizadeh F, Maddahi M H. A comparative investigation of the corrosion behavior of RuO2-IrO2-TiO2 coated titanium anodes in chloride solutions [J]. J. Electrochem. Soc., 2010, 157: E50
|
[9] |
Kameyama K, Tsukada K, Yahikozawa K, et al. Surface characterization of RuO2‐IrO2‐TiO2 coated titanium electrodes [J]. J. Electrochem. Soc., 1994, 141: 643
|
[10] |
Takasu Y, Sugimoto W, Nishiki Y, et al. Structural analyses of RuO2-TiO2/Ti and IrO2-RuO2-TiO2/Ti anodes used in industrial chlor-alkali membrane processes [J]. J. Appl. Electrochem., 2010, 40: 1789
|
[11] |
Panić V, Dekanski A, Mišković-stanković V B, et al. On the deactivation mechanism of RuO2-TiO2/Ti anodes prepared by the sol-gel procedure [J]. J. Electroanal. Chem., 2005, 579: 67
|
[12] |
Chu L Y, Xu L K, Wu L B, et al. Effect of oxalic acid etching on morphology and electrocatalytic activity of oxide anodes [J]. Acta Metall. Sin., 2005, 41: 763
|
[12] |
初立英, 许立坤, 吴连波 等. 草酸浸蚀对氧化物阳极形貌及电催化性能的影响 [J]. 金属学报, 2005, 41: 763
|
[13] |
Baronetto D, Kodintsev I M, Trasatti S. Origin of ohmic losses at Co3O4/Ti electrodes [J]. J. Appl. Electrochem., 1994, 24: 189
|
[14] |
Shao D, Yan W, Li X L, et al. A highly stable Ti/TiH x /Sb-SnO2 anode: preparation, characterization and application [J]. Ind. Eng. Chem. Res., 2014, 53: 3898
|
[15] |
Wu S, Wang J L, Wang X B, et al. Mn3O4@C micro-flakes modified Ti/TiH2/β-PbO2 anode for accelerating oxygen evolution reaction in zinc electrowinning [J]. Mater. Res. Bull., 2024, 171: 112605
|
[16] |
Li J W, Li X C, Sui M L. Formation mechanism of hydride precipitation in commercially pure titanium [J]. J. Mater. Sci. Technol., 2021, 81: 108
doi: 10.1016/j.jmst.2021.01.009
|
[17] |
Wang Q Q, An X D, Zhu T, et al. Effect of electrochemical hydrogen charging on defect structure in titanium [J]. J. Alloy. Compd., 2021, 885: 160909
|
[18] |
Zhang W J, Yang F, Chen C P. Mechanical properties and hydrogen diffusion analysis of titanium alloy microstructure [J]. Dev. Appl. Mater., 2023, 38(3): 43
|
[18] |
张文娟, 杨 帆, 陈超鹏. 钛合金微结构力学性能和氢扩散分析 [J]. 材料开发与应用, 2023, 38(3): 43
|
[19] |
Munirathinam B, Narayanan R, Neelakantan L. Electrochemical and semiconducting properties of thin passive film formed on titanium in chloride medium at various pH conditions [J]. Thin Solid Films, 2016, 598: 260
|
[20] |
Wu W, Liu J, Liu Z Y, et al. Surface characterization of the commercially pure titanium after hydrogen charging and its electrochemical characteristics in artificial seawater [J]. J. Electroanal. Chem., 2018, 822: 23
|
[21] |
Liu S P, Zhang Z, Xia J, et al. Effect of hydrogen precharging on mechanical and electrochemical properties of pure titanium [J]. Adv. Eng. Mater., 2020, 22: 1901182
|
[22] |
Peng W S, Xing S H, Qian Y, et al. Effect of flowing seawater on corrosion characteristics of passivation film on TA2 pure-Ti pipes [J]. J. Chin. Soc. Corros. Prot., 2024, 44: 1038
|
[22] |
彭文山, 邢少华, 钱 峣 等. 流动海水冲刷下TA2纯钛管路钝化膜腐蚀特性研究 [J]. 中国腐蚀与防护学报, 2024, 44: 1038
doi: 10.11902/1005.4537.2023.292
|
[23] |
Takasu Y, Onoue S, Kameyama K, et al. Preparation of ultrafine RuO2-IrO2-TiO2 oxide particles by a sol-gel process [J]. Electrochim. Acta, 1994, 39: 1993
|
[24] |
Ardizzone S, Trasatti S. Interfacial properties of oxides with technological impact in electrochemistry [J]. Adv. Colloid Interface Sci., 1996, 64: 173
|
[25] |
Ardizzone S, Fregonara G, Trasatti S. “Inner” and “outer” active surface of RuO2 electrodes [J]. Electrochim. Acta, 1990, 35: 263
|
[26] |
Silva J F, Dias A C, Araújo P, et al. Electrochemical cell design for the impedance studies of chlorine evolution at DSA® anodes [J]. Rev. Sci. Instrum., 2016, 87: 085113
|
[27] |
Wang X D, Xu Y F, Rao H S, et al. Novel porous molybdenum tungsten phosphide hybrid nanosheets on carbon cloth for efficient hydrogen evolution [J]. Energy Environ. Sci., 2016, 9: 1468
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|