|
|
成型方向及热处理对选区激光熔化Ti6Al4V合金腐蚀性能的影响 |
张珊珊1,2, 刘元才1, 徐铁伟1( ), 杨发展1,2 |
1 青岛理工大学机械与汽车工程学院 青岛 266520 2 工业流体节能与污染控制教育部重点实验室 青岛 266520 |
|
Effect of Build-up Direction and Annealing on Corrosion Properties of Selected Laser Melting Ti6Al4V Alloy |
ZHANG Shanshan1,2, LIU Yuancai1, XU Tiewei1( ), YANG Fazhan1,2 |
1 School of Mechanical and Automotive Engineering, Qingdao University of Technology, Qingdao 266520, China 2 Key Lab of Industrial Fluid Energy Conservation and Pollution Control, Qingdao 266520, China |
引用本文:
张珊珊, 刘元才, 徐铁伟, 杨发展. 成型方向及热处理对选区激光熔化Ti6Al4V合金腐蚀性能的影响[J]. 中国腐蚀与防护学报, 2025, 45(4): 995-1004.
Shanshan ZHANG,
Yuancai LIU,
Tiewei XU,
Fazhan YANG.
Effect of Build-up Direction and Annealing on Corrosion Properties of Selected Laser Melting Ti6Al4V Alloy[J]. Journal of Chinese Society for Corrosion and protection, 2025, 45(4): 995-1004.
[1] |
Liu Y C, Xu T W, Zhang S S, et al. Effect of strontium content on micro arc oxidation coating and the apatite inducing ability of Ti-15Mo alloy [J]. Surf. Technol., 2022, 51(1): 287
|
[1] |
(刘元才, 徐铁伟, 张珊珊 等. 锶含量对Ti-15Mo合金微弧氧化膜层及其磷灰石诱导能力的影响 [J]. 表面技术, 2022, 51(1): 287)
|
[2] |
Ding H Y, Qiu P K, Han Y F, et al. Influence of post heat treatment on microstructure and mechanical property of Ti6Al4V parts produced by selective laser melting [J]. Mater. Sci. Forum, 2017, 898: 1312
|
[3] |
Konečná R, Kunz L, Bača A, et al. Resistance of direct metal laser sintered Ti6Al4V alloy against growth of fatigue cracks [J]. Eng. Fract. Mech., 2017, 185: 82
|
[4] |
Xu W, Brandt M, Sun S, et al. Additive manufacturing of strong and ductile Ti-6Al-4V by selective laser melting via in situ martensite decomposition [J]. Acta Mater., 2015, 85: 74
|
[5] |
Cecchel S, Ferrario D, Cornacchia G, et al. Development of heat treatments for selective laser melting Ti6Al4V alloy: Effect on microstructure, mechanical properties, and corrosion resistance [J]. Adv. Eng. Mater., 2020, 22: 2000359
|
[6] |
Vrancken B, Thijs L, Kruth J P, et al. Heat treatment of Ti6Al4V produced by selective laser melting: Microstructure and mechanical properties [J]. J. Alloy. Compd., 2012, 541: 177
|
[7] |
Sallica-Leva E, Caram R, Jardini A L, et al. Ductility improvement due to martensite α′ decomposition in porous Ti-6Al-4V parts produced by selective laser melting for orthopedic implants [J]. J. Mech. Behav. Biomed. Mater., 2016, 54: 149
doi: 10.1016/j.jmbbm.2015.09.020
pmid: 26458113
|
[8] |
Wu S Q, Lu Y J, Gan Y L, et al. Microstructural evolution and microhardness of a selective-laser-melted Ti-6Al-4V alloy after post heat treatments [J]. J. Alloy. Compd., 2016, 672: 643
|
[9] |
Huang W D, Chen X Y, Huang X, et al. Anisotropic study of Ti6Al4V alloy formed by selective laser melting [J]. JOM, 2021, 73: 3804
|
[10] |
Yan X C, Shi C B, Liu T K, et al. Effect of heat treatment on the corrosion resistance behavior of selective laser melted Ti6Al4V ELI [J]. Surf. Coat. Technol., 2020, 396: 125955
|
[11] |
Ju J, Zhao C L, Kang M D, et al. Effect of heat treatment on microstructure and tribological behavior of Ti-6Al-4V alloys fabricated by selective laser melting [J]. Tribol. Int., 2021, 159: 106996
|
[12] |
Liang Z L, Sun Z G, Zhang W S, et al. The effect of heat treatment on microstructure evolution and tensile properties of selective laser melted Ti6Al4V alloy [J]. J. Alloy. Compd., 2019, 782: 1041
|
[13] |
Tammas-Williams S, Zhao H, Léonard F, et al. XCT analysis of the influence of melt strategies on defect population in Ti-6Al-4V components manufactured by selective electron beam melting [J]. Mater. Charact., 2015, 102: 47
|
[14] |
Liu Y C, Xu T W, Zhang S S, et al. Effect of annealing and build direction on the tensile properties of selective laser melted and annealed Ti6Al4VE alloy [J]. Adv. Eng. Mater., 2022, 2201552
|
[15] |
Gai X. Investigation on corrosion behavior of Ti-6Al-4V alloy fabricated by electron beam melting [D]. Hefei: University of Science and Technology of China, 2021
|
[15] |
(盖 欣. 电子束选区熔化制备Ti-6Al-4V合金腐蚀性能研究 [D]. 合肥: 中国科学技术大学, 2021)
|
[16] |
El-Taib Heakal F, Ghoneim A A, Mogoda A S, et al. Electrochemical behaviour of Ti-6Al-4V alloy and Ti in azide and halide solutions [J]. Corros. Sci., 2011, 53: 2728
|
[17] |
Gong X J, Cui Y J, Wei D X, et al. Building direction dependence of corrosion resistance property of Ti-6Al-4V alloy fabricated by electron beam melting [J]. Corros. Sci., 2017, 127: 101
|
[18] |
Song G L, Atrens A, Dargusch M. Influence of microstructure on the corrosion of diecast AZ91D [J]. Corros. Sci., 1998, 41: 249
|
[19] |
Man C, Dong C F, Liu T T, et al. The enhancement of microstructure on the passive and pitting behaviors of selective laser melting 316L SS in simulated body fluid [J]. Appl. Surf. Sci., 2019, 467-468: 193
|
[20] |
Li T S, Liu L, Zhang B, et al. An investigation on the continuous and uniform thin membrane passive film formed on sputtered nanocrystalline stainless steel [J]. Corros. Sci., 2016, 104: 71
|
[21] |
Han J, Zhang Z, Song Y M, et al. Preparation, microstructure and properties of high-performance gradient nanostructured pure Ti plate by USSR [J]. J. Mech. Eng., 2024, 60(6): 227
|
[21] |
(韩 静, 张 政, 宋元明 等. 高性能梯度纳米钛板的超声表面深滚压制备及组织性能研究 [J]. 机械工程学报, 2024, 60(6): 227)
|
[22] |
Tang J, Luo H Y, Qi Y M, et al. Effect of nano-scale martensite and β phase on the passive film formation and electrochemical behaviour of Ti-10V-2Fe-3Al alloy in 3.5%NaCl solution [J]. Electrochim. Acta, 2018, 283: 1300
|
[23] |
Toptan F, Alves A C, Carvalho Ó, et al. Corrosion and tribocorrosion behaviour of Ti6Al4V produced by selective laser melting and hot pressing in comparison with the commercial alloy [J]. J. Mater. Process. Technol., 2019, 266: 239
|
[24] |
Zhou X, Xu D K, Geng S J, et al. Mechanical properties, corrosion behavior and cytotoxicity of Ti-6Al-4V alloy fabricated by laser metal deposition [J]. Mater. Charact., 2021, 179: 111302
|
[25] |
Liu Y C, Xu T W, Sun B Q, et al. Effect of strontium-doped coating prepared by microarc oxidation and hydrothermal treatment on apatite induction ability of Ti13Nb13Zr alloy in vitro [J]. J. Mater. Res., 2022, 37: 2675
|
[26] |
Lu Z J, Macdonald D D. Transient growth and thinning of the barrier oxide layer on iron measured by real-time spectroscopic ellipsometry [J]. Electrochim. Acta, 2008, 53: 7696
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|