|
|
基于接地材料功能需求的耐蚀铸铁表面改性研究 |
陆添爱, 蒋文昊, 吴伟, 张俊喜( ) |
上海电力大学 上海市电力材料防护与新材料重点实验室 上海 200090 |
|
Surface Modification of Corrosion-resistant Cast Iron Based on Functional Requirements of Grounding Materials |
LU Tianai, JIANG Wenhao, WU Wei, ZHANG Junxi( ) |
Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, Shanghai University of Electric Power, Shanghai 200090, China |
引用本文:
陆添爱, 蒋文昊, 吴伟, 张俊喜. 基于接地材料功能需求的耐蚀铸铁表面改性研究[J]. 中国腐蚀与防护学报, 2024, 44(6): 1443-1453.
Tianai LU,
Wenhao JIANG,
Wei WU,
Junxi ZHANG.
Surface Modification of Corrosion-resistant Cast Iron Based on Functional Requirements of Grounding Materials[J]. Journal of Chinese Society for Corrosion and protection, 2024, 44(6): 1443-1453.
1 |
Zhang C, Liao Y X, Gao X, et al. Research advances of soil corrosion of grounding grids [J]. Micromachines, 2021, 12: 513
|
2 |
Zhang B, He J L, Jiang Y K. Safety performance of large grounding grid with fault current injected from multiple grounding points [J]. IEEE Trans. Ind. Appl., 2015, 51: 5116
|
3 |
Hu H Z, Luo R C, Fang M G, et al. A new optimization design for grounding grid [J]. Int. J. Electr. Power Energy Syst., 2019, 108: 61
|
4 |
Zhou M, Wang J G, Liu Y, et al. Causes, forms and remedies of substation grounding grid corrosion [A]. Proceedings of the 2008 International Conference on High Voltage Engineering and Application [C]. Chongqing, China, 2008: 186
|
5 |
Bian Y F, Tang W M, Zhang J, et al. Soil corrosion characteristics of Q235 steel grounding material used in power grid in Anhui Province [J]. J. Chin. Soc. Corros. Prot., 2024, 44: 130
|
5 |
(卞亚飞, 汤文明, 张 洁 等. 安徽省电网接地材料Q235钢的土壤腐蚀特性及规律性研究 [J]. 中国腐蚀与防护学报, 2024, 44: 130)
|
6 |
Barbalat M, Lanarde L, Caron D, et al. Electrochemical study of the corrosion rate of carbon steel in soil: evolution with time and determination of residual corrosion rates under cathodic protection [J]. Corros. Sci., 2012, 55: 246
|
7 |
Abdel-Salam M, Ahmed A, Nayel M, et al. Surface potential and resistance of grounding grid systems in homogeneous soil [J]. Electr. Power Compon. Syst., 2007, 35: 1093
|
8 |
Lv K C, Xu S, Liu L L, et al. Comparative study on the corrosion behaviours of high-silicon chromium iron and Q235 steel in a soil solution [J]. Int. J. Electrochem. Sci., 2020, 15: 5193
|
9 |
Datta A J, Taylor R, Will G, et al. An investigation of earth grid performance using graphene-coated copper [J]. IEEE Access, 2015, 3: 1042
|
10 |
Bertling S, Wallinder I O, Kleja D B, et al. Long-term corrosion-induced copper runoff from natural and artificial patina and its environmental impact [J]. Environ. Toxicol. Chem., 2006, 25: 891
pmid: 16566176
|
11 |
Gao Y B, Du X G, Wang Q W, et al. Corrosion behavior of copper in a simulated grounding condition in electric power grid [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 435
|
11 |
(高义斌, 杜晓刚, 王启伟 等. 铜在电网接地工况下的腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2023, 43: 435)
doi: 10.11902/1005.4537.2022.098
|
12 |
Guo Y B, Tan H, Wang D G, et al. Effects of alternating stray current on the corrosion behaviours of buried Q235 steel pipelines [J]. Anti-Corros. Methods Mater., 2017, 64: 599
|
13 |
Zhu Z P, Shi C, Zhang Y, et al. The effects of Cl- and direct stray current on soil corrosion of three grounding grid materials [J]. Anti-Corros. Methods Mater., 2020, 67: 73
|
14 |
Denison I A, Romanoff M. Corrosion of galvanized steel in soils [J]. J. Res. Natl. Bur. Stand., 1952, 49: 299
|
15 |
Zhang H, Yang Z, Tao D, et al. Effect of low carbon equivalent on microstructure and properties of gray cast iron [J]. Hot Work. Technol., 2023, 52(1): 52
|
15 |
(张 宏, 杨 忠, 陶 栋 等. 低碳当量对灰铸铁组织和性能的影响 [J]. 热加工工艺, 2023, 52(1): 52)
|
16 |
Wu D H, Wang H L, Zhang B M. Alloying of cast iron and classification of alloy cast iron [J]. Foundry Eng., 2020, 44(3): 10
|
16 |
(吴德海, 王怀林, 张伯明. 铸铁的合金化及合金铸铁的分类 [J]. 铸造工程, 2020, 44(3): 10)
|
17 |
Wang Y F, Xiong J, Sun L, et al. Research status in corrosion resistant cast iron under marine environment [J]. Hot Work. Technol., 2008, 37(22): 95
|
17 |
(王艳芬, 熊 计, 孙 兰 等. 海洋环境下耐蚀铸铁的研究现状 [J]. 热加工工艺, 2008, 37(22): 95)
|
18 |
Deng D W, Niu T T, Liu H Y, et al. Microstructure evolution and corrosion property of medium-carbon alloy steel after high-temperature carburization process [J]. Surf. Rev. Lett., 2016, 23: 1650038
|
19 |
Zhao Y C, He R F, Zhang B, et al. Research progress of ion implantation composite surface modification technology [J]. Surf. Technol., 2024, 53(5): 18
|
19 |
(赵燕春, 何瑞芳, 张 斌 等. 离子注渗复合表面改性技术研究进展 [J]. 表面技术, 2024, 53(5): 18)
|
20 |
Nie X H, Wang G F, Zhao J L, et al. Corrosion process and mechanism analysis of the HFW pipe in NS4 and Yingtan soil simulated solution [J]. Welded Pipe Tube, 2014, 37(7): 18
|
20 |
(聂向晖, 王高峰, 赵金兰 等. HFW焊管在NS4及鹰潭土壤模拟溶液中的腐蚀及机理分析 [J]. 焊管, 2014, 37(7): 18)
|
21 |
Wang Q W, Zhang J X, Gao Y, et al. Galvanic effect and alternating current corrosion of steel in acidic red soil [J]. Metals, 2022, 12: 296
|
22 |
Yang Y, Yan M F, Zhang Y X, et al. Self-lubricating and anti-corrosion amorphous carbon/Fe3C composite coating on M50NiL steel by low temperature plasma carburizing [J]. Surf. Coat. Technol., 2016, 304: 142
|
23 |
Yang G R, Song W M, Sun X M, et al. The high temperature property of Ni/WC infiltrated composite layer on cast iron substrate [J]. Adv. Mater. Res., 2010, 97-101: 1295
|
24 |
Du B S, Mi C X, Wang X, et al. Effect of austenitizing temperature on friction and wear properties of austempered ductile iron [J]. Heat Treat. Met., 2023, 48(11): 149
|
24 |
(杜宝帅, 米春旭, 王 鑫 等. 奥氏体化温度对等温淬火球墨铸铁摩擦磨损性能的影响 [J]. 金属热处理, 2023, 48(11): 149)
|
25 |
de Souza Lamim T, Bernardelli E A, Binder C, et al. Plasma carburizing of sintered pure iron at low temperature [J]. Mater. Res., 2015, 18: 320
|
26 |
Pradhan S K, Nayak B B, Mohapatra B K, et al. Micro raman spectroscopy and electron probe microanalysis of graphite spherulites and flakes in cast iron [J]. Metall. Mater. Trans., 2007, 38A: 2363
|
27 |
Gao M Q, Qu Y D, Li G L, et al. Cementites decomposition of a pearlitic ductile cast iron during graphitization annealing heat treatment [J]. J. Iron Steel Res. Int., 2017, 24: 838
|
28 |
Schneider A, Inden G. Carbon diffusion in cementite (Fe3C) and Hägg carbide (Fe5C2) [J]. Calphad, 2007, 31: 141
|
29 |
Cui J, Lu M K, Li H L, et al. Corrosion behavior and mechanism of vermicular graphite cast iron in neutral salt spray [J]. Surf. Technol., 2020, 49(6): 267
|
29 |
(崔 静, 路梦柯, 李虎林 等. 蠕墨铸铁中性盐雾腐蚀行为及机理研究 [J]. 表面技术, 2020, 49(6): 267)
|
30 |
Ku J H. Strengthening cast iron by use of rare earth elements [J]. Foreign Locomot. Rolling Stock Technol., 2010, (3): 28
|
30 |
(堀江皓. 使用稀土元素实现铸铁高强度化的方法 [J]. 国外机车车辆工艺, 2010, (3): 28)
|
31 |
Lan X W, Dong J H. Research on the alkali corrosion resistance property of low alloy cast iron containing rare earth [J]. Chin. Rare Earths, 2010, 31(4): 1
|
31 |
(兰孝文, 董俊慧. 加稀土低合金铸铁耐碱腐蚀性能研究 [J]. 稀土, 2010, 31(4): 1)
|
32 |
Gao Y W, Kong X L, Li P M, et al. Effect of discharge temperature during annealing at 750oC on microstructure and properties of QT450-10 nodular cast iron [J]. Heat Treat. Met., 2022, 47(1): 261
|
32 |
(高永旺, 孔祥玲, 李鹏明 等. 750℃退火出炉温度对QT450-10球墨铸铁组织与性能的影响 [J]. 金属热处理, 2022, 47(1): 261)
doi: 10.13251/j.issn.0254-6051.2022.01.043
|
33 |
Zhang H J, Chen L S. Corrosion shape and corrosion mechanism of pearlite [J]. Shanxi Metall., 2011, 34(4): 10
|
33 |
(张贺佳, 陈连生. 珠光体片层腐蚀形态与机理 [J]. 山西冶金, 2011, 34(4): 10)
|
34 |
Xiao Z W, Dang B. Effect of heat deformation heating temperature on microstructure evolution and hardness of GCr15SiMn cementite [J]. Intern. Combust. Engine Parts, 2022, (16): 106
|
34 |
(肖政旺, 党 波. 加热温度对GCr15SiMn渗碳体组织的影响 [J]. 内燃机与配件, 2022, (16): 106)
|
35 |
Ochoa N, Mardaras E, González-Martínez R, et al. Pseudo-passive films on cast irons: a strategy to mitigate corrosion by acting directly on microstructure [J]. Corros. Sci., 2022, 206: 110480
|
36 |
Yada K, Watanabe O. Reactive flow simulation of vacuum carburizing by acetylene gas [J]. Comput. Fluids, 2013, 79: 65
|
37 |
Ren Z. Research progress of metal dusting mechanisms and countermeasures [J]. Corros. Prot. Petrochem. Ind., 2021, 38(4): 1
|
37 |
(任 重. 金属粉化机理及应对措施的研究进展 [J]. 石油化工腐蚀与防护, 2021, 38(4): 1)
|
38 |
Ni H W, Cang D Q, Jiang J P. Effect of reaction temperature and gas composition on formation of iron carbide [J]. Res. Iron Steel, 1999, 27(6): 22
|
38 |
(倪红卫, 苍大强, 姜钧普. 反应温度、气氛对碳化铁制备过程的影响 [J]. 钢铁研究, 1999, 27(6): 22)
|
39 |
Li Q C, Lin D S, Yang X P, et al. In situ observation of graphitization of cementite in ductile cast iron during heating [J]. Trans. Mater. Heat Treat., 2011, 32(10): 80
|
39 |
(李青春, 林大帅, 杨晓平 等. 球墨铸铁加热过程中渗碳体石墨化的原位观察 [J]. 材料热处理学报, 2011, 32(10): 80)
|
40 |
Dai Y, Wu X, Yang F, et al. Corrosion and wear properties of carburized layer on TC6 titanium alloy in different environments [J]. China Surf. Eng., 2020, 33(2): 47
|
40 |
(代 燕, 吴 旋, 杨 峰 等. TC6钛合金渗碳层在不同介质环境中的腐蚀磨损性能 [J]. 中国表面工程, 2020, 33(2): 47)
|
41 |
Li M C, Lin H C, Cao C N. Study on soil corrosion of carbon steel by Electrochemical impedance spectroscopy (EIS) [J]. J. Chin. Soc. Corros. Prot., 2000, 20: 111
|
41 |
(李谋成, 林海潮, 曹楚南. 碳钢在土壤中腐蚀的电化学阻抗谱特征 [J]. 中国腐蚀与防护学报, 2000, 20: 111)
|
42 |
Oliveira V M C A, Aguiar C, Vazquez A M, et al. Improving corrosion resistance of Ti-6Al-4V alloy through plasma-assisted PVD deposited nitride coatings [J]. Corros. Sci., 2014, 88: 317
|
43 |
Che M J, Zhou S X, Du X J, et al. Influence of tempering temperature on corrosion resistance of EH890 marine engineering steel [J]. Heat Treat. Met., 2022, 47(10): 147
doi: 10.13251/j.issn.0254-6051.2022.10.024
|
43 |
(车马俊, 周生璇, 杜晓洁 等. 回火温度对EH890海洋工程用钢耐蚀性能的影响 [J]. 金属热处理, 2022, 47(10): 147)
doi: 10.13251/j.issn.0254-6051.2022.10.024
|
44 |
Gao Z Y, Jiang B, Fan Z B, et al. Corrosion behavior of typical grounding materials in artificial alkaline soil solution [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 191
|
44 |
(高智悦, 姜 波, 樊志彬 等. 典型接地材料在碱性土壤模拟液中的腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2023, 43: 191)
doi: 10.11902/1005.4537.2022.061
|
45 |
Siriwardane H, Pringle O A, Newkirk J W, et al. Microstructure and physical properties of iron carbide films formed by plasma enhanced chemical vapor deposition [J]. Thin Solid Films, 1996, 287: 8
|
46 |
Kuang D, Cheng Y F. Understand the AC induced pitting corrosion on pipelines in both high pH and neutral pH carbonate/bicarbonate solutions [J]. Corros. Sci., 2014, 85: 304
|
47 |
Qiao C, Shen L F, Hao L, et al. Corrosion kinetics and patina evolution of galvanized steel in a simulated coastal-industrial atmosphere [J]. J. Mater. Sci. Technol., 2019, 35: 2345
doi: 10.1016/j.jmst.2019.05.039
|
48 |
Zhang Z L, Zou J, Dan Y H, et al. Analysis the influence of corrosion layer on the grounding performance of grounding electrodes [J]. IET Gener. Transm. Distrib., 2020, 14: 2602
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|