Please wait a minute...
中国腐蚀与防护学报  2024, Vol. 44 Issue (1): 255-260     CSTR: 32134.14.1005.4537.2023.025      DOI: 10.11902/1005.4537.2023.025
  研究报告 本期目录 | 过刊浏览 |
微观组织对一种超轻高强镁锂合金耐蚀性的影响
谢云1, 刘婷1, 王雯1, 周佳琳1, 唐颂2()
1.南昌航空大学材料科学与工程学院 南昌 330063
2.南京理工大学材料科学与工程学院 南京 210094
Effect of Microstructure on Corrosion Resistance of a High-strength Ultralightweight Mg-Li Alloy
XIE Yun1, LIU Ting1, WANG Wen1, ZHOU Jialin1, TANG Song2()
1.School of Materials Science and Engineering, Nanchang Hangkong University, Nanchang 330063, China
2.School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
引用本文:

谢云, 刘婷, 王雯, 周佳琳, 唐颂. 微观组织对一种超轻高强镁锂合金耐蚀性的影响[J]. 中国腐蚀与防护学报, 2024, 44(1): 255-260.
Yun XIE, Ting LIU, Wen WANG, Jialin ZHOU, Song TANG. Effect of Microstructure on Corrosion Resistance of a High-strength Ultralightweight Mg-Li Alloy[J]. Journal of Chinese Society for Corrosion and protection, 2024, 44(1): 255-260.

全文: PDF(6269 KB)   HTML
摘要: 

借助X射线衍射(XRD)和扫描电子显微镜(SEM)研究了铸态Mg-15Li-6Al合金以及固溶处理后分别进行空冷和水冷等3种不同处理方式获得合金的相组成和形貌特征。采用浸泡实验和电化学实验对比研究了这3种不同状态合金在3.5%NaCl水溶液中的腐蚀行为。结果表明:3种不同状态合金的主要基体组织均为β-Li,且从铸态、固溶空冷态到固溶水冷态,合金中AlLi析出相逐渐减少,固溶水冷态合金基本由单相β-Li组成。3种不同状态合金耐蚀性由低到高的顺序为:铸态<固溶空冷态<固溶水冷态,且固溶水冷态合金相比铸态合金的腐蚀电位提高480 mV,腐蚀电流密度降低3个数量级。这主要是由于固溶处理使Al有效回溶到β-Li基体中,随后的快速冷却使AlLi相的析出受到抑制,减少了AlLi与β-Li两相间腐蚀微电偶对的数量,提高了合金的耐蚀性。

关键词 镁锂合金热处理耐蚀性显微组织    
Abstract

Mg-15Li-6Al alloy was prepared by vacuum induction melting and then the alloy was subjected to solution treatment plus air cooling or water cooling respectively. The phase constitution and microstructure of the alloys (as-cast, solution treatment plus air cooling or water cooling), were analyzed by means of X-ray diffraction analysis (XRD) and scanning electron microscope (SEM). In addition, the corrosion behavior of the three alloys was studied by gravimetric and electrochemical tests. The results show that the three-state alloys are all mainly composed of β-Li with a little of second phase AlLi, and the fractions of secondary AlLi precipitates in the alloys decrease in the following order: as-cast, solution treatment + air cooling and solution treatment + water cooling. The alloy after solution treatment plus water cooling is almost composed of single β-Li phase. On the contrary, the corrosion resistance of the three alloys follows the sequence: as-cast < solution treatment + air cooling < solution treatment + water cooling. Relative to the as-cast alloy, the free corrosion potential increases by 480 mV and the corrosion current density decreases by three orders of magnitude for the alloy solution subjected to solution treatment plus water cooling. The solution treatment makes more Al to dissolve back into β-Li, and subsequent fast cooling strongly suppresses the precipitation of AlLi. Therefore, the number of micro galvanic couple of AlLi and β-Li decreases, resulting in marked improvement of corrosion resistance.

Key wordsMg-Li alloys    heat treatment    corrosion resistance    microstructure
收稿日期: 2023-02-08      32134.14.1005.4537.2023.025
ZTFLH:  TG146.2  
基金资助:国家自然科学基金青年基金(52101142);江苏省自然科学基金青年基金(BK20200503);江西省自然科学基金青年基金(20224BAB214018)
通讯作者: 唐颂,E-mail:stang12s@alum.imr.ac.cn,研究方向为轻质金属结构材料
Corresponding author: TANG Song, E-mail: stang12s@alum.imr.ac.cn
作者简介: 谢 云,男,1988年生,博士,副教授
图1  不同状态LA156合金的XRD谱
图2  不同状态LA156合金的微观组织
图3  不同状态LA156合金在3.5%NaCl溶液中浸泡40 h前后的宏观形貌
图4  不同状态LA156合金在3.5%NaCl溶液中浸泡40 h后的局部腐蚀形貌
图5  不同状态LA156合金在3.5%NaCl溶液中的腐蚀速率
图6  不同状态LA156合金在3.5%NaCl溶液中浸泡40 h后的XRD谱
图7  不同状态LA156合金在3.5%NaCl溶液中的极化曲线
Sample stateEcorr (vs. SCE) /VIcorr / A·cm-2
As-cast-1.570.90 × 10-3
Air cooling-1.461.50 × 10-4
Water cooling-1.091.48 × 10-6
表1  极化曲线拟合结果
图8  水冷态LA156合金与纯Mg及其它Mg(-Li)合金密度与腐蚀电流密度的比较
1 Peng X, Liu W C, Wu G H. Alloying and application of Mg-Li alloys: a review [J]. Chin. J. Nonferrous Met., 2021, 31: 3024
doi: 10.1016/S1003-6326(21)65712-6
1 彭 翔, 刘文才, 吴国华. 镁锂合金的合金化及其应用 [J]. 中国有色金属学报, 2021, 31: 3024
2 Tian G Y, Yan C M, Yang Z H, et al. Wang J S. Research progress on corrosion and protection of corrosion-resistant Mg-Li alloys [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 1255
2 田光元, 严程铭, 杨智皓 等. 耐腐蚀Mg-Li合金的腐蚀与防护及其性能研究进展 [J]. 中国腐蚀与防护学报, 2023, 43: 1255
doi: 10.11902/1005.4537.2022.300
3 Ma C J, Zhang D, Qin J N, et al. Aging behavior of Mg-Li-Al alloys [J]. Trans. Nonferrous Met. Soc. China, 1999, 9: 772
4 Li C Q, Xu D K, Wang B J, et al. Natural ageing responses of duplex structured Mg-Li based alloys [J]. Sci. Rep., 2017, 7: 40078
doi: 10.1038/srep40078 pmid: 28053318
5 Xu W Q, Birbilis N, Sha G, et al. A high-specific-strength and corrosion-resistant magnesium alloy [J]. Nat. Mater., 2015, 14: 1229
doi: 10.1038/nmat4435 pmid: 26480229
6 Yang Y, Peng X D, Wen H M, et al. Microstructure and mechanical behavior of Mg-10Li-3Al-2.5Sr alloy [J]. Mater. Sci. Eng., 2014, 611A: 1
7 Kang Z X, Lin K, Zhang J Y. Characterisation of Mg-Li alloy processed by solution treatment and large strain rolling [J]. Mater. Sci. Technol., 2016, 32: 498
doi: 10.1179/1743284715Y.0000000119
8 Xin T Z, Tang S, Ji F, et al. Phase transformations in an ultralight BCC Mg alloy during anisothermal ageing [J]. Acta Mater., 2022, 239: 118248
doi: 10.1016/j.actamat.2022.118248
9 Zhang Q F, Song L, Wang J, et al. Mechanical properties and corrosion behavior of an extruded dilute Mg-alloy Mg-0.5Bi-0.5Sn-0.5Ca [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 428
9 张全福, 宋 蕾, 王 建 等. 挤压态低合金化Mg-0.5Bi-0.5Sn-0.5Ca合金的力学性能及腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2023, 43: 428
doi: 10.11902/1005.4537.2022.084
10 Tian H Y, Dou Z, Jin Y J, et al. Research on the preparation and corrosion resistance of the low energy plasma electrolysis oxide coating of magnesium lithium alloy [J]. Surf. Technol., 2021, 50(6): 77
10 田昊阅, 窦 铮, 金雨佳 等. 镁锂合金低能耗等离子电解氧化膜层的制备与耐蚀性研究 [J]. 表面技术, 2021, 50(6): 77
11 Cao Y X, Wang M J, Zhou F, et al. Effect of KOH concentration on the growth process and corrosion resistance of micro-arc oxidation (MAO) coatings on LA103Z Mg-Li alloy [J]. Surf. Technol., 2021, 50(3): 348
11 曹雅心, 王梦杰, 周 凡 等. KOH浓度对LA103Z镁锂合金微弧氧化成膜过程及膜层耐蚀性的影响 [J]. 表面技术, 2021, 50(3): 348
12 Wang B J, Jiang C L, Li C Q, et al. Research progress on corrosion behavior of magnesium-lithium alloys [J]. J. Aeronaut. Mater., 2019, 39(1): 1
12 王保杰, 姜春龙, 李传强 等. 镁锂合金腐蚀行为研究进展 [J]. 航空材料学报, 2019, 39(1): 1
13 Song Y W, Shan D Y, Chen R S, et al. Corrosion characterization of Mg-8Li alloy in NaCl solution [J]. Corros. Sci., 2009, 51: 1087
14 Li C Q, Tong Z P, He Y B, et al. Comparison on corrosion resistance and surface film of pure Mg and Mg-14Li alloy [J]. Trans. Nonferrous Met. Soc. China, 2020, 30: 2413
doi: 10.1016/S1003-6326(20)65388-2
15 Zeng Z R, Zhou M R, Esmaily M, et al. Corrosion resistant and high-strength dual-phase Mg-Li-Al-Zn alloy by friction stir processing [J]. Commun. Mater., 2022, 3: 18
16 Gu M, Wei G, Zhao J, et al. Influence of yttrium addition on the corrosion behaviour of as-cast Mg-8Li-3Al-2Zn alloy [J]. Mater. Sci. Technol., 2017, 33: 864
17 Morishige T, Obata Y, Goto T, et al. Effect of Al composition on the corrosion resistance of Mg-14 mass% Li system alloy [J]. Mater. Trans., 2016, 57: 1853
doi: 10.2320/matertrans.M2016247
18 Tang S, Xin T Z, Xu W Q, et al. Precipitation strengthening in an ultralight magnesium alloy [J]. Nat. Commun., 2019, 10: 1003
doi: 10.1038/s41467-019-08954-z pmid: 30824695
19 Xin T Z, Zhao Y H, Mahjoub R, et al. Ultrahigh specific strength in a magnesium alloy strengthened by spinodal decomposition [J]. Sci. Adv., 2021, 7: eabf3039
doi: 10.1126/sciadv.abf3039
20 Peng X, Wu G H, Liu W C, et al. Corrosion mechanism and surface protection of Mg-Li alloy [J]. Chin. J. Nonferrous Met., 2022, 32: 1
doi: 10.1016/S1003-6326(21)65776-X
20 彭 翔, 吴国华, 刘文才 等. Mg-Li合金的腐蚀机理与表面防护 [J]. 中国有色金属学报, 2022, 32: 1
21 Sun Q, Tian H, Li Z Z, et al. Solubility of CO2 in water and NaCl solution in equilibrium with hydrate. Part I: experimental measurement [J]. Fluid Phase Equilib., 2016, 409: 131
doi: 10.1016/j.fluid.2015.09.033
22 Huang X M, Zhang C H, Zhang M L. Corrosion behavior of pure Mg and Mg-Li alloy in 3.5%NaCl of pH = 7 [J]. J. Aeronaut. Mater., 2008, 28(3): 71
22 黄晓梅, 张春红, 张密林. 纯镁和镁锂合金在中性 3.5%NaCl溶液中的腐蚀行为 [J]. 航空材料学报, 2008, 28(3): 71
23 Zhou M, Liu C M, Gao Y H, et al. Corrosion behavior of Cu-containing AZ31 magnesium alloy [J]. Chin. J. Nonferrous Met., 2019, 29: 18
23 周 苗, 刘楚明, 高永浩 等. 含铜AZ31镁合金的腐蚀行为 [J]. 中国有色金属学报, 2019, 29: 18
24 Fu X Y, Jia R L, Zhang G L, et al. Effects of rare earths on corrosion behavior of AZ91 Mg alloy [J]. Chin. J. Nonferrous Met., 2021, 31: 1798
24 付晓雨, 贾瑞灵, 张贵龙 等. 稀土对AZ91镁合金腐蚀行为的影响 [J]. 中国有色金属学报, 2021, 31: 1798
25 Liu X Q, Wang X J, Guo E Y, et al. Influence of deformation on the corrosion behavior of LZ91 Mg-Li alloy [J]. Int. J. Miner. Metall. Mater., 2023, 30: 72
doi: 10.1007/s12613-022-2466-8
26 Meng T Y, Zhang T, Li Y, et al. Corrosion behavior of Mg-Al and Mg-Li alloy sheet in NaCl solution [J]. J. Univ. Sci. Technol. Liaoning, 2016, 39: 446
26 孟天宇, 张 涛, 李 月 等. Mg-Al和Mg-Li镁合金板在NaCl水溶液中的腐蚀行为 [J]. 辽宁科技大学学报, 2016, 39: 446
[1] 孙硕, 代珈铭, 宋影伟, 艾彩娇. 挤压态EW75稀土镁合金在沈阳工业大气环境中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2024, 44(1): 141-150.
[2] 蒋光锐, 刘广会, 商婷. 热处理对ZnAlMg镀层组织与耐腐蚀性能的影响[J]. 中国腐蚀与防护学报, 2024, 44(1): 246-254.
[3] 商婷, 蒋光锐, 刘广会, 秦汉成. 热处理对Zn-6%Al-3%Mg镀层微观组织与耐蚀性的影响[J]. 中国腐蚀与防护学报, 2023, 43(6): 1413-1418.
[4] 商强, 满成, 逄昆, 崔中雨, 董超芳, 崔洪芝. 后热处理对不同含碳量SLM-316L不锈钢晶间腐蚀行为的作用机制研究[J]. 中国腐蚀与防护学报, 2023, 43(6): 1273-1283.
[5] 杨海峰, 袁志钟, 李健, 周乃鹏, 高峰. Ni含量对铜时效易焊接钢在模拟热带海洋大气环境下的腐蚀行为影响[J]. 中国腐蚀与防护学报, 2023, 43(5): 1022-1030.
[6] 陈肖寒, 白杨, 王志超, 陈从棕, 张勇, 崔显林, 左娟娟, 王同良. 低表面处理环氧防腐底漆的制备及其耐蚀性研究[J]. 中国腐蚀与防护学报, 2023, 43(5): 1126-1132.
[7] 罗维华, 王海涛, 于林, 许实, 刘朝信, 郭宇, 王廷勇. Zn含量对Al-Zn-In-Mg牺牲阳极电化学性能的影响[J]. 中国腐蚀与防护学报, 2023, 43(5): 1071-1078.
[8] 刘超, 陈天奇, 李晓刚. 低合金钢中夹杂物诱发局部腐蚀萌生机制的研究进展[J]. 中国腐蚀与防护学报, 2023, 43(4): 746-754.
[9] 肖檬, 王勤英, 张兴寿, 西宇辰, 白树林, 董立谨, 张进, 杨俊杰. 激光淬火对AISI 4130钢微观组织结构及腐蚀、磨损行为的影响机制[J]. 中国腐蚀与防护学报, 2023, 43(4): 713-724.
[10] 吴嘉豪, 吴量, 姚文辉, 袁媛, 谢治辉, 王敬丰, 潘复生. Mg-Gd-Y-Zn-Mn合金不同微弧氧化表面MgAlLa层状双羟基金属氧化物复合涂层的性能研究[J]. 中国腐蚀与防护学报, 2023, 43(4): 693-703.
[11] 夏晓健, 万芯媛, 陈云翔, 韩纪层, 陈奕扬, 严康骅, 林德源, 陈天鹏, 左晓梅, 孙宝壮, 程学群. 两种热处理工艺对3Cr钢腐蚀行为影响及机理研究[J]. 中国腐蚀与防护学报, 2023, 43(3): 656-662.
[12] 梁超雄, 梁小红, 韩培德. 新热处理工艺调控B元素分布对S31254超级奥氏体不锈钢第二相析出和耐蚀性能的影响[J]. 中国腐蚀与防护学报, 2023, 43(3): 639-646.
[13] 汪涵敏, 黄峰, 袁玮, 张佳伟, 王昕煜, 刘静. 新型Cu-Mo耐候钢在模拟海洋大气环境中的腐蚀行为[J]. 中国腐蚀与防护学报, 2023, 43(3): 507-515.
[14] 毛训聪, 陈乐平, 彭聪. Ca-P涂层和Sr-P涂层对脉冲磁场下凝固的Mg-Zn-Zr-Gd合金耐蚀性的影响[J]. 中国腐蚀与防护学报, 2023, 43(3): 647-655.
[15] 张小丽, 寻懋年, 梁小红, 张彩丽, 韩培德. 含Ce S31254超级奥氏体不锈钢析出相析出行为及耐蚀性[J]. 中国腐蚀与防护学报, 2023, 43(2): 384-390.