Please wait a minute...
中国腐蚀与防护学报  2024, Vol. 44 Issue (6): 1435-1442     CSTR: 32134.14.1005.4537.2024.049      DOI: 10.11902/1005.4537.2024.049
  研究报告 本期目录 | 过刊浏览 |
T2铜合金和Q235钢在模拟北山地下水环境中的电偶腐蚀行为研究
庞洁1,2, 刘相局1(), 刘娜珍1(), 侯保荣1
1.中国科学院海洋研究所 海洋环境腐蚀与生物污损重点实验室 青岛 266071
2.中国科学院大学 北京 100101
Galvanic Corrosion of T2 Cu-alloy and Q235 Steel in Simulated Beishan Groundwater Environment
PANG Jie1,2, LIU Xiangju1(), LIU Nazhen1(), HOU Baorong1
1. Key Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
2. University of Chinese Academy of Sciences, Beijing 100101, China
引用本文:

庞洁, 刘相局, 刘娜珍, 侯保荣. T2铜合金和Q235钢在模拟北山地下水环境中的电偶腐蚀行为研究[J]. 中国腐蚀与防护学报, 2024, 44(6): 1435-1442.
Jie PANG, Xiangju LIU, Nazhen LIU, Baorong HOU. Galvanic Corrosion of T2 Cu-alloy and Q235 Steel in Simulated Beishan Groundwater Environment[J]. Journal of Chinese Society for Corrosion and protection, 2024, 44(6): 1435-1442.

全文: PDF(4232 KB)   HTML
摘要: 

通过电化学测试实验和腐蚀产物分析研究了T2铜合金和Q235钢在北山地下水模拟液(溶质为Na2SO4和NaCl)和不同Cl-浓度溶液中的电偶腐蚀行为。结果表明,T2铜合金在电偶腐蚀中作为阴极受到保护,Q235钢作为阳极腐蚀速率加快;随Cl-浓度增大,电偶电流密度(Ig)受溶液中溶解氧含量降低、氧扩散系数减小和溶液电导率升高等因素影响存在最大值;随铜合金和碳钢面积比的增大,Ig明显增大,表明该条件下电偶腐蚀反应受阴极控制;温度从25℃升高到50℃,Ig增大且在Cl-浓度更低时出现最大值;电偶电压(Eg)受溶解氧的影响随Cl-浓度增大呈负移趋势。该研究结果为北山地下水对镀铜钢储罐电偶腐蚀的影响提供了参考。

关键词 T2铜合金Q235钢Cl-浓度电偶腐蚀    
Abstract

In this study, the galvanic corrosion behavior of T2 Cu-alloy and Q235 steel in solutions containing Na2SO4 and NaCl with various amount of Cl- was investigated by electrochemical tests and corrosion product analysis. The results show that T2 Cu-alloy acts as cathode, while Q235 steel as anode for the galvanic couple, therefore Q235 steel experiences corrosion with accelerating rate; With the increasing of Cl- concentration, the galvanic current density (Ig) of the galvanic couple exhibits a maximum due to the decrease of dissolved oxygen content in the solution, the decrease of oxygen diffusion coefficient and the increase of solution conductivity etc.; As the area ratio of T2 Cu-alloy to 235 steel increases, Ig increases significantly, indicating that the galvanic corrosion reaction is controlled by cathodic reaction; When the temperature increases from 25oC to 50oC, Ig increases and a maximum occurs at lower Cl- concentrations; galvanic potential (Eg) shifted negatively with the increasing Cl- concentration as influenced by dissolved oxygen. The results of this study may provide a reference for understanding the influence of Cl- concentration on galvanic corrosion of Cu-coated carbon steel metal containers.

Key wordsT2 Cu-alloy    Q235 steel    Cl- concentration    galvanic corrosion
收稿日期: 2024-02-14      32134.14.1005.4537.2024.049
ZTFLH:  TG174  
基金资助:国家自然科学基金(52201092);山东省自然科学基金(ZR2022QB128)
通讯作者: 刘相局,E-mail:liuxiangju124@163.com,研究方向为核用材料服役行为及安全评价;
刘娜珍,E-mail:liunazhen@qdio.ac.cn,研究方向为核废料深地质处置
Corresponding author: LIU Xiangju, E-mail: liuxiangju124@163.com
LIU Nazhen, E-mail: liunazhen@qdio.ac.cn
作者简介: 庞 洁,女,1998年生,硕士生
图1  T2铜合金和Q235钢在北山地下水模拟液中的OCP-t曲线
图2  25℃时Cl-浓度对T2铜合金和Q235钢OCP的影响
图3  T2铜合金和Q235钢在25℃含不同Cl-浓度的溶液中的极化曲线

[Cl-]

mol·L-1

T2 -alloyQ235 steel

Ecorr

mV

Icorr

μA·cm-2

Ecorr

mV

Icorr

μA·cm-2

0.01-891.4-64746.8
0.1-1371.8-62358.9
1-2085.4-63832.4
表1  T2铜合金和Q235钢的极化曲线拟合参数
图4  25℃时Cl-浓度对碳钢表面电偶电流密度和电偶电压的影响
图5  50℃时Cl-浓度对碳钢表面的电偶电流密度和电偶电压的影响
图6  不同温度下实验溶液电导率随Cl-浓度的变化
图7  25℃时不同Cl-浓度下面积比为10∶1时Q235钢表面腐蚀后SEM形貌图
图8  Q235钢在25℃下面积比为10∶1以及Cl-浓度为0.05 mol·L-1条件下溶液中电偶腐蚀48 h后的表面Raman光谱
1 Torjman M, Shaaban H. Nuclear energy as a primary source for a clean hydrogen energy system [J]. Energy Convers. Manag., 1998, 39: 27
2 Wang J. High-level radioactive waste disposal in China: update 2010 [J]. J. Rock Mech. Geotech. Eng., 2010, 2: 1
3 Wei X, Dong J H, Ke W. Progress on a corrosion study of low carbon steel for HLW container in a simulated geological disposal environment in China [J]. Corros. Commun., 2021, 1: 10
4 King F. Container materials for the storage and disposal of nuclear waste [J]. Corrosion, 2013, 69: 986
5 Metcalf P, Batandjieva B. International safety standards for radioactive waste (RAW) management and remediation of contaminated sites [A]. LeeWE, OjovanMI, JantzenCM. Radioactive Waste Management and Contaminated Site Clean-Up: Processes, Technologies and International Experience [M]. New Delhi: Woodhead Publishing, 2013: 73
6 Wang J. Progress of geological disposal of high-level radioactive waste in China in the 21st Century [J]. At. Energy Sci. Technol., 2019, 53: 2072
6 (王 驹. 中国高放废物地质处置21世纪进展 [J]. 原子能科学技术, 2019, 53: 2072)
7 Wang J. On area-specific underground research laboratory for geological disposal of high-level radioactive waste in China [J]. J. Rock Mech. Geotech. Eng., 2014, 6: 99
8 Chapman N, Hooper A. The disposal of radioactive wastes underground [J]. Proc. Geol. Assoc., 2012, 123: 46
9 Johnson L, King F. The effect of the evolution of environmental conditions on the corrosion evolutionary path in a repository for spent fuel and high-level waste in Opalinus Clay [J]. J. Nucl. Mater., 2008, 379: 9
10 Shoesmith D W. Assessing the corrosion performance of high-level nuclear waste containers [J]. Corrosion, 2006, 62: 703
11 Gras J M. Life prediction for HLW containers-issues related to long-term extrapolation of corrosion resistance [J]. C. R. Phys., 2002, 3: 891
12 King F. Factors in the selection of container materials for the disposal of HLW/SF [J]. MRS Online Proc. Libr., 2012, 1475: 241
13 Xue F, Wei X, Dong J H, et al. Research progress on corrosion behavior of low carbon steel in deep geological disposal environment of high-level waste [J]. Corros. Sci. Prot. Technol., 2015, 27: 497
13 (薛 芳, 魏 欣, 董俊华 等. 高放废物深地质处置环境中低碳钢腐蚀行为的研究进展 [J]. 腐蚀科学与防护技术, 2015, 27: 497)
14 Sun Y P, Wei X, Dong J H, et al. Understanding the role of alloyed Ni and Cu on improving corrosion resistance of low alloy steel in the simulated Beishan groundwater [J]. J. Mater. Sci. Technol., 2022, 130: 124
doi: 10.1016/j.jmst.2022.03.037
15 Zhang Q C, Zheng M, Huang Y L, et al. Corrosion behaviour of carbon steel, titanium and titanium alloy in simulated underground water in Beishan area preselected for nuclear waste repository in China [J]. Corros. Eng. Sci. Technol., 2017, 52: 425
16 Liu C S, Wang J Q, Zhang Z M, et al. Studies on corrosion behaviour of low carbon steel canister with and without γ-irradiation in China's HLW disposal repository [J]. Corros. Eng. Sci. Technol., 2017, 52: 136
17 Standish T, Chen J, Jacklin R, et al. Corrosion of copper-coated steel high level nuclear waste containers under permanent disposal conditions [J]. Electrochim. Acta, 2016, 211: 331
18 Zheng M, Zhang Q C, Huang Y L, et al. Determination of representative ground-water for corrosion assessment of candidate materials used in beishan area preselected for high-level radioactive waste disposal repository [J]. J. Chin. Soc. Corros. Prot., 2016, 36: 185
18 (郑 珉, 张琦超, 黄彦良 等. 中国高放废物处置库甘肃北山预选区腐蚀研究用代表性地下水成分的确定 [J]. 中国腐蚀与防护学报, 2016, 36: 185)
19 Wang H L. Study on regional groundwater flow simulation and rock mass permeability characteristics in Beishan preselection area of high level radioactive waste disposal repository [D]. Beijing: Beijing Research Institute of Uranium Geology, 2014: 25
19 (王海龙. 高放废物处置库北山预选区区域地下水流模拟及岩体渗透特征研究 [D]. 北京: 核工业北京地质研究院, 2014: 25)
20 Standish T E, Braithwaite L J, Shoesmith D W, et al. Influence of area ratio and chloride concentration on the galvanic coupling of copper and carbon steel [J]. J. Electrochem. Soc., 2019, 166: C3448
doi: 10.1149/2.0521911jes
21 Liu Q B, Liu Z D, Guo S Y, et al. Galvanic corrosion behavior of 5083 al-alloy and 30CrMnSiA steel in NaCl solutions [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 883
21 (刘泉兵, 刘宗德, 郭胜洋 等. 5083铝合金与30CrMnSiA钢在不同Cl-浓度中电偶腐蚀行为的研究 [J]. 中国腐蚀与防护学报, 2021, 41: 883)
doi: 10.11902/1005.4537.2020.184
22 Wang C L, Wu J H, Li Q F. Recent advances and prospect of galvanic corrosion in marine environment [J]. J. Chin. Soc. Corros. Prot., 2010, 30: 416
22 (王春丽, 吴建华, 李庆芬. 海洋环境电偶腐蚀研究现状与展望 [J]. 中国腐蚀与防护学报, 2010, 30: 416)
23 Cramer S D. Solubility of methane in brines from 0 to 300oC [J]. Ind. Eng. Chem. Process Des. Dev., 1984, 23: 533
24 Geng M, Duan Z H. Prediction of oxygen solubility in pure water and brines up to high temperatures and pressures [J]. Geochim. Cosmochim. Acta, 2010, 74: 5631
25 Hung G W, Dinius R H. Diffusivity of oxygen in electrolyte solutions [J]. J. Chem. Eng. Data, 1972, 17: 449
26 Xing W, Yin M, Lv Q, et al. Oxygen solubility, diffusion coefficient, and solution viscosity [A]. XingW, YinG P, ZhangJ J. Rotating Electrode Methods and Oxygen Reduction Electrocatalysts [M]. Elsevier, 2014: 1
27 England W A, Bennett M J, Greenhalgh D A, et al. The characterization by raman spectroscopy of oxide scales formed on a 20Cr-25Ni-Nb stabilized stainless steel [J]. Corros. Sci., 1986, 26: 537
28 Kiefer W. Recent advances in linear and nonlinear Raman spectroscopy I [J]. J. Raman Spectrosc., 2007, 38: 1538
29 Zhang X, Xiao K, Dong C F, et al. In situ Raman spectroscopy study of corrosion products on the surface of carbon steel in solution containing Cl- and SO2-4 [J]. Eng. Fail. Anal., 2011, 18: 1981
30 Nie X H, Li X G, Du C W, et al. Characterization of corrosion products formed on the surface of carbon steel by Raman spectroscopy [J]. J. Raman Spectrosc., 2009, 40: 76
31 De Faria D L A, Venâncio Silva S, De Oliveira M T. Raman microspectroscopy of some iron oxides and oxyhydroxides [J]. J. Raman Spectrosc., 1997, 28: 873
32 Réguer S, Neff D, Bellot-Gurlet L, et al. Deterioration of iron archaeological artefacts: micro-Raman investigation on Cl-containing corrosion products [J]. J. Raman Spectrosc., 2007, 38: 389
[1] 赵骞, 张洁, 毛锐锐, 缪春辉, 卞亚飞, 滕越, 汤文明. Q235钢结构件表面热镀锌层的应力腐蚀及其机理[J]. 中国腐蚀与防护学报, 2024, 44(5): 1305-1315.
[2] 史先飞, 陈晓华, 满成. HRB400钢在模拟混凝土孔隙液中的自然钝化行为及耐蚀性能的研究[J]. 中国腐蚀与防护学报, 2024, 44(5): 1213-1222.
[3] 尹洁, 高永浩, 易芳. Ag微合金化对Mg-Zn-Ca合金微观组织及腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2024, 44(5): 1274-1284.
[4] 乔泽, 李清泉, 刘晓航, 李燚周. 中性氯化钠溶液中硝酸根和电偶对7075-T651铝合金缝隙腐蚀行为影响研究[J]. 中国腐蚀与防护学报, 2024, 44(4): 1047-1054.
[5] 周龙, 鲁骏, 丁文珊, 李昊, 陶涛, 师超, 邵亚薇, 刘光明. 不同植酸盐对Q235钢腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2024, 44(3): 669-678.
[6] 周兰欣, 张丽萍, 汤燕, 陈柯宇, 周剑军, 师超, 邵亚薇, 刘光明. 植酸锌的制备及其对Q235钢腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2024, 44(2): 396-404.
[7] 孙硕, 代珈铭, 宋影伟, 艾彩娇. 挤压态EW75稀土镁合金在沈阳工业大气环境中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2024, 44(1): 141-150.
[8] 张勤号, 朱泽洁, 蔡浩冉, 李鑫冉, 孟宪泽, 李昊, 伍廉奎, 罗荘竹, 曹发和. Pt/IrO x -pH超微电化学传感器性能探究及其在铜/不锈钢电偶腐蚀研究中的应用[J]. 中国腐蚀与防护学报, 2023, 43(6): 1264-1272.
[9] 廖敏行, 刘俊, 董宝军, 冷雪松, 蔡泽伦, 武俊伟, 贺建超. 盐雾环境对1Cr18Ni9Ti钎焊接头的影响研究[J]. 中国腐蚀与防护学报, 2023, 43(6): 1312-1318.
[10] 邢少华, 刘仲晔, 刘近增, 白舒宇, 钱峣, 张大磊. ZCuSn5Pb5Zn5/B10偶对在流动海水中的腐蚀规律与机制研究[J]. 中国腐蚀与防护学报, 2023, 43(6): 1339-1348.
[11] 何静, 于航, 傅梓瑛, 岳鹏辉. 水溶性缓蚀剂对建筑管道用Q235钢腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2023, 43(5): 1041-1048.
[12] 胡杰珍, 上官桔钰, 邓培昌, 冯绮蓝, 王贵, 王沛林. 基于阵列电极技术研究藤壶附着对Q235钢腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2023, 43(5): 1145-1150.
[13] 王长罡, DANIEL Enobong Felix, 李超, 董俊华, 杨华, 张东玖. 海洋环境中碳钢和不锈钢螺栓紧固件的腐蚀机制差异研究[J]. 中国腐蚀与防护学报, 2023, 43(4): 737-745.
[14] 倪雨朦, 于英杰, 严慧, 王嵬, 李瑛. 铜铝/镍石墨可磨耗封严涂层相选择性溶解机制有限元研究[J]. 中国腐蚀与防护学报, 2023, 43(4): 855-861.
[15] 王洪伦, 杨华, 蔡辉, 李博文. Q235钢在海南濒海同区域户外暴晒环境和棚下环境的腐蚀行为[J]. 中国腐蚀与防护学报, 2023, 43(3): 677-682.