Please wait a minute...
中国腐蚀与防护学报  2023, Vol. 43 Issue (4): 693-703     CSTR: 32134.14.1005.4537.2023.153      DOI: 10.11902/1005.4537.2023.153
  中国腐蚀与防护学会杰出青年成就奖论文专栏 本期目录 | 过刊浏览 |
Mg-Gd-Y-Zn-Mn合金不同微弧氧化表面MgAlLa层状双羟基金属氧化物复合涂层的性能研究
吴嘉豪1, 吴量1,2,3(), 姚文辉1,2,3, 袁媛1,2,3, 谢治辉4, 王敬丰1,2,3, 潘复生1,2,3
1.重庆大学材料科学与工程学院 国家镁合金工程技术研究中心 重庆 400044
2.重庆大学 高端装备铸造技术全国重点实验室 重庆 400044
3.重庆大学 机械传动国家重点实验室 重庆 400044
4.西华师范大学化学化工学院 化学合成与污染控制四川省重点实验室 南充 637002
Properties of Layered Dihydroxyl Metal (MgAlLa) Oxide Composite Coatings on Different Micro-arc Oxidation Surfaces of Mg-Gd-Y-Zn-Mn Alloy
WU Jiahao1, WU Liang1,2,3(), YAO Wenhui1,2,3, YUAN Yuan1,2,3, XIE Zhihui4, WANG Jingfeng1,2,3, PAN Fusheng1,2,3
1.National Engineering Research Center for Magnesium Alloys, College of Materials Science and Engineering, Chongqing University, Chongqing 400044, China
2.National Key Laboratory of Advanced Casting Technologies, Chongqing University, Chongqing 400044, China
3.State Key Laboratory of Mechanical Transmission, Chongqing University, Chongqing 400044, China
4.Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, China
全文: PDF(12433 KB)   HTML
摘要: 

采用铝酸盐/硅酸盐体系 (AS)、铝酸盐/磷酸盐体系 (AP)、硅酸盐/磷酸盐体系 (SP) 和铝酸盐/磷酸盐/硅酸盐体系 (APS) 的微弧氧化电解液对Mg-Gd-Y-Zn-Mn合金进行微弧氧化 (MAO),并在其表面再进行原位生长MgAlLa层状双羟基金属氧化物 (MgAlLa-LDHs) 得到复合涂层。研究了不同MAO涂层对MgAlLa-LDHs涂层性能的影响,表征了涂层的形貌、结构及成分,并评估了其耐腐蚀性能。结果表明,不同MAO涂层表面生长的MgAlLa-LDHs膜形貌和结构存在明显的差异。此外,APS电解液制备的复合涂层表现出优异的耐腐蚀性能,其腐蚀电流密度为9.14×10-9 A·cm-2,相较镁合金基体提升了约4个数量级。

关键词 微弧氧化层状双羟基金属氧化物电解液镁合金耐蚀性    
Abstract

Micro-arc oxidation (MAO) surfaces were prepared on a Mg-Gd-Y-Zn-Mn alloy in four different electrolytes, namely aluminate/silicate (AS), aluminate/phosphate (AP), silicate/phosphate (SP) and aluminate/phosphate/silicate (APS), afterwards, on which films of layered dihydroxyl metal (MgAlLa) oxides (MgAlLa-LDHs) were in-situ grown to acquire the composite coating of MgAlLa-LDHs/MAOs. Then the effect of different MAO surfaces on the properties of the MgAlLa-LDHs/MAOs composite coatings were studied by means of field emission scanning electron microscopy (FE-SEM), X-ray diffractometer (XRD), energy dispersive spectrometer (EDS) and X-ray photoelectron spectroscopy (XPS), as well as measurements of potentiodynamic polarization, electrochemical impedance and hydrogen evolution etc. in terms of their morphology, microstructure, composition and corrosion behavior in 3.5%NaCl solution. The results show that the different MAO coatings present differences in morphology, phase constituents, number of phases, element distribution and pore size, which affect the in-situ growth of the subsequent MgAlLa-LDHs nanosheets, so that the shape, size and crystallinity of the MgAlLa-LDHs nanosheets are obviously different. In addition, the composite coatings of MgAlLa-LDHs/APS-MAO show excellent corrosion resistance with a corrosion current density 9.14×10-9 A·cm-2, which is about four orders of magnitude lower than that of the bare Mg-alloy substrate.

Key wordsmicro-arc oxidation    layered double hydroxyl metal oxide    electrolyte    Mg-alloy    corrosion resistance
收稿日期: 2023-05-10      32134.14.1005.4537.2023.153
ZTFLH:  TG172  
基金资助:国家自然科学基金(51971040);国家自然科学基金(52171101)
通讯作者: 吴量,E-mail: wuliang@cqu.edu.cn,研究方向为镁等轻合金腐蚀与防护   
Corresponding author: WU Liang,E-mail: wuliang@cqu.edu.cn   
作者简介: 吴嘉豪,男,1995年生,博士生
吴量,1985 年出生,2015 年毕业于北京航空航天大学,获博士学位。现就职于重庆大学,教授,博士生导师。 2020 年德国Helmholtz-Zentrum Hereon 研究所访问学者。吴量教授主要研究方向为镁合金防护涂层和镁 空气电池阳极材料。针对镁合金腐蚀与防护的难题,揭示了镁合金阳极/微弧氧化膜表面“类水滑石”膜层 的生长及自修复机制;协同设计及调控镁等轻合金涂层的多功能特性,阐释了协同防护机制;揭示了微观 组织对镁阳极材料的腐蚀和放电性能的影响规律,开发了高性能MgSnY材料。部分成果在航天五院等单 位实现了成果转化。先后主持国家自然科学基金项目3 项、国家军工项目1 项、国际合作项目1 项、省部级 及企业项目9 项。以第一/通讯作者在Corros. Sci.、Carbon 等期刊发表SCI 论文共67 篇,ESI 高被引论文5 篇。英文专著1 章,申请专利17 项 (授权5 项),作大会/特邀报告共18 次。获国际热处理及表面工程联合会汤姆贝尔奖, 2021、 2022 年国际镁科学技术奖,2017中国材料研究学会一等奖,入选“ 2022年全球前2%顶尖科学家”。2023年获得中国腐蚀与防 护学会杰出青年成就奖。

引用本文:

吴嘉豪, 吴量, 姚文辉, 袁媛, 谢治辉, 王敬丰, 潘复生. Mg-Gd-Y-Zn-Mn合金不同微弧氧化表面MgAlLa层状双羟基金属氧化物复合涂层的性能研究[J]. 中国腐蚀与防护学报, 2023, 43(4): 693-703.
WU Jiahao, WU Liang, YAO Wenhui, YUAN Yuan, XIE Zhihui, WANG Jingfeng, PAN Fusheng. Properties of Layered Dihydroxyl Metal (MgAlLa) Oxide Composite Coatings on Different Micro-arc Oxidation Surfaces of Mg-Gd-Y-Zn-Mn Alloy. Journal of Chinese Society for Corrosion and protection, 2023, 43(4): 693-703.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2023.153      或      https://www.jcscp.org/CN/Y2023/V43/I4/693

Electrolyte systemNaAlO2Na3PO4Na2SiO3NaOH
AS6062
AP6602
PS0662
APS4442
表1  不同微弧氧化电解液具体成分 (g/L)
图1  复合涂层制备流程图
图2  不同MAO涂层及对应的MAO/MgAlLa-LDHs复合涂层的XRD谱
图3  不同MAO涂层及对应的MAO/MgAlLa-LDHs复合涂层的FT-IR光谱
图4  不同涂层的表面SEM形貌
CoatingMgOAlLaPSiGdYN
MAO-AS39.945.97.8004.61.20.60
MAO-AP37.548.77.604.301.30.60
MAO-PS39.648.6004.35.21.50.80
MAO-APS35.647.07.304.14.11.20.70
MAO-AS-L38.448.48.0003.80.80.40.2
MAO-AP-L32.951.78.21.53.400.80.31.2
MAO-PS-L33.852.901.83.54.40.90.51.2
MAO-APS-L31.849.88.01.53.13.60.80.41.0
表2  MAO和对应的MAO/LDHs复合涂层的EDS分析结果 (atomic fraction / %)
图5  不同MAO/LDHs复合涂层的XPS谱
图6  在3.5% NaCl溶液中测量的镁合金基体、MAO涂层和MAO/LDHs复合涂层的动电位极化曲线
SampleEcorr / VSCEIcorr / A·cm-2
Blank Mg-1.4694.34×10-5
MAO-AS-1.5627.15×10-6
MAO-AP-1.2981.22×10-7
MAO-SP-1.4016.55×10-7
MAO-APS-1.4044.83×10-8
MAO-AS-L-1.5381.05×10-6
MAO-AP-L-1.6642.39×10-8
MAO-SP-L-1.5698.47×10-8
MAO-APS-L-1.5599.14×10-9
表3  图6中动电位极化曲线的Ecorr和Icorr的拟合计算结果
图7  不同涂层在3.5% NaCl溶液中测得的Bode图
图8  用于拟合EIS数据的等效电路
Sample

Rout

Ω·cm2

Qout

S·s n ·cm-2

nout

Rinn

Ω·cm2

Qinn

S·s n ·cm-2

ninn

Rct

Ω·cm2

Cdl

S·s n ·cm-2

ndlχ2
MAO-AS1.23×1026.9×10-70.95.9×1032.6×10-60.7---2.9×10-4
MAO-AP8.3×1029.1×10-71.06.7×1034.8×10-70.9---2.4×10-4
MAO-SP1.3×1043.1×10-50.82.2×1049.2×10-70.8---1.1×10-4
MAO-APS1.3×1044.0×10-60.98.6×1041.8×10-50.6---8.1×10-4
MAO-AS-L3.3×1037.4×10-91.07.4×1033.8×10-81.01.3×1043.1×10-71.01.4×10-4
MAO-AP-L3.9×1041.1×10-90.81.2×1043.3×10-60.84.2×1053.3×10-60.53.3×10-4
MAO-SP-L1.4×1041.1×10-70.77.4×1053.5×10-70.71.6×1052.5×10-50.71.9×10-4
MAO-APS-L4.1×1045.2×10-80.78.5×1041.4×10-70.75.9×1053.7×10-60.63.3×10-4
表4  图7中EIS数据的等效电路拟合结果
图9  不同涂层在3.5% NaCl溶液中浸泡的析氢数据
1 Zhang C, Wu L, Zhao Z L, et al. Effect of Al on the microstructure, corrosion behavior and mechanical properties of Mg-4Li [J]. Anti-Corros. Methods Mater., 2020, 67: 31
doi: 10.1108/ACMM-06-2019-2146
2 Orlov D, Ralston K D, Birbilis N, et al. Enhanced corrosion resistance of Mg alloy ZK60 after processing by integrated extrusion and equal channel angular pressing [J]. Acta Mater., 2011, 59: 6176
doi: 10.1016/j.actamat.2011.06.033
3 Wu L Y, Li H T. Effect of selective oxidation on corrosion behavior of Mg-Gd-Y-Zn-Zr alloy [J]. Corros. Sci., 2018, 142: 238
doi: 10.1016/j.corsci.2018.07.026
4 Chen X R, Wang H N, Le Q C, et al. The role of long‐period stacking ordered phase on the discharge and electrochemical behaviors of magnesium anode Mg‐Zn‐Y for the primary Mg‐air battery [J]. Int. J. Energy Res., 2020, 44: 8865
doi: 10.1002/er.v44.11
5 Chen J X, Zhang Y, Ibrahim M, et al. In vitro degradation and antibacterial property of a copper-containing micro-arc oxidation coating on Mg-2Zn-1Gd-0.5Zr alloy [J]. Colloids Surf., 2019, 179B: 77
6 Wang Z Q, Xu C X, Yang L J, et al. Microstructure and corrosion resistance of medical degradable Mg-2Y-1Zn-xZr alloy [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 113
6 王中琪, 许春香, 杨丽景 等. 医用可降解Mg-2Y-1Zn-xZr合金微观组织和耐蚀性能研究 [J]. 中国腐蚀与防护学报, 2022, 42: 113
doi: 10.11902/1005.4537.2021.014
7 Huang T, Xu C X, Yang L J, et al. Effect of Zr addition on microstructure and corrosion behavior of Mg-3Zn-1Y alloys [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 219
7 黄 涛, 许春香, 杨丽景 等. Zr含量对Mg-3Zn-1Y合金显微组织和腐蚀行为的影响 [J]. 中国腐蚀与防护学报, 2021, 41: 219
8 Atrens A, Song G L, Liu M, et al. Review of recent developments in the field of magnesium corrosion [J]. Adv. Eng. Mater., 2015, 17: 400
doi: 10.1002/adem.201400434
9 Yang X Y, Yang Y T, Lu X P, et al. Research Progress of Corrosion Inhibitor for Mg-alloy [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 435
9 杨欣宇, 杨云天, 卢小鹏 等. 镁合金缓蚀剂研究进展 [J]. 中国腐蚀与防护学报, 2022, 42: 435
doi: 10.11902/1005.4537.2021.295
10 Simchen F, Sieber M, Kopp A, et al. Introduction to plasma electrolytic oxidation—an overview of the process and applications [J]. Coatings, 2020, 10: 628
doi: 10.3390/coatings10070628
11 Chen Y, Lu X P, Lamaka S V, et al. Active protection of Mg alloy by composite PEO coating loaded with corrosion inhibitors [J]. Appl. Surf. Sci., 2020, 504: 144462
doi: 10.1016/j.apsusc.2019.144462
12 Barati Darband G, Aliofkhazraei M, Hamghalam P, et al. Plasma electrolytic oxidation of magnesium and its alloys: Mechanism, properties and applications [J]. J. Magnes. Alloy., 2017, 5: 74
doi: 10.1016/j.jma.2017.02.004
13 Chen Z N, Yong X Y, Chen X H. Micro-defects in Micro-arc Oxidation Coatings on Mg-alloys [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 1
13 陈振宁, 雍兴跃, 陈晓春. 镁合金微弧氧化膜中微缺陷问题研究进展 [J]. 中国腐蚀与防护学报, 2022, 42: 1
doi: 10.11902/1005.4537.2021.012
14 Nashrah N, Kamil M P, Yoon D K, et al. Formation mechanism of oxide layer on AZ31 Mg alloy subjected to micro-arc oxidation considering surface roughness [J]. Appl. Surf. Sci., 2019, 497: 143772
doi: 10.1016/j.apsusc.2019.143772
15 Liu Y X, Xu A Y. Characterization of pitting corrosion behavior of AZ91 Mg-alloy without and with MAO coating [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 1034
15 刘玉项, 徐安阳. AZ91镁合金和MAO涂层的点蚀行为研究 [J]. 中国腐蚀与防护学报, 2022, 42: 1034
doi: 10.11902/1005.4537.2021.320
16 Chen Y, Yang Y G, Zhang W, et al. Influence of second phase on corrosion performance and formation mechanism of PEO coating on AZ91 Mg alloy [J]. J. Alloy. Compd., 2017, 718: 92
doi: 10.1016/j.jallcom.2017.05.010
17 Wei Z, Ma B J, Li L, et al. Effect of ultrasonic rolling pretreatment on corrosion resistance of micro-arc oxidation coating of Mg-alloy [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 117
17 魏 征, 马保吉, 李 龙 等. 镁合金表面超声滚压预处理对微弧氧化膜耐蚀性能的影响 [J]. 中国腐蚀与防护学报, 2021, 41: 117
18 Lu X P, Blawert C, Huang Y D, et al. Plasma electrolytic oxidation coatings on Mg alloy with addition of SiO2 particles [J]. Electrochim. Acta, 2016, 187: 20
doi: 10.1016/j.electacta.2015.11.033
19 Rakoch A G, Monakhova E P, Khabibullina Z V, et al. Plasma electrolytic oxidation of AZ31 and AZ91 magnesium alloys: Comparison of coatings formation mechanism [J]. J. Magnes. Alloy., 2020, 8: 587
doi: 10.1016/j.jma.2020.06.002
20 Wang L, Chen L, Yan Z C, et al. The influence of additives on the stability behavior of electrolyte, discharges and PEO films characteristics [J]. J. Alloy. Compd., 2010, 493: 445
doi: 10.1016/j.jallcom.2009.12.123
21 Bouali A C, Serdechnova M, Blawert C, et al. Layered double hydroxides (LDHs) as functional materials for the corrosion protection of aluminum alloys: A review [J]. Appl. Mater. Today, 2020, 21: 100857
22 Guo X, Zhang F ZX, Evans D G, et al. Layered double hydroxide films: synthesis, properties and applications [J]. Chem. Commun., 2010, 46: 5197
doi: 10.1039/c0cc00313a
23 Liu S H, Liu B, Xu D W, et al. Research progress on anti-corrosion coatings of layered double hydroxides [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 16
23 刘术辉, 刘 斌, 徐大伟 等. 层状双金属氢氧化物防腐蚀涂层材料的研究进展 [J]. 中国腐蚀与防护学报, 2022, 42: 16
doi: 10.11902/1005.4537.2021.021
24 Peng F, Wang D H, Zhang D D, et al. PEO/Mg-Zn-Al LDH composite coating on Mg alloy as a Zn/Mg Ion-release platform with multifunctions: enhanced corrosion resistance, osteogenic, and antibacterial activities [J]. ACS Biomater. Sci. Eng., 2018, 4: 4112
doi: 10.1021/acsbiomaterials.8b01184
25 Zhang X X, Zhang Y P, Lv Y, et al. Enhanced corrosion resistance of AZ31 Mg alloy by one-step formation of PEO/Mg-Al LDH composite coating [J]. Corros. Commun., 2022, 6: 67
doi: 10.1016/j.corcom.2022.05.001
26 Wang B, Li H Z, Dong Z H. Fabrication and corrosion resistance of MAO-LDH composite coating on AZ91 Mg alloy [J]. Mater. Prot., 2020, 53: 26
26 王 彪, 李汉周, 董泽华. 微弧氧化-水滑石复合涂层的制备及其在AZ91镁合金防腐蚀中的应用 [J]. 材料保护, 2020, 53: 26
27 Zheludkevich M L, Tedim J, Ferreira M G S. “Smart” coatings for active corrosion protection based on multi-functional micro and nanocontainers [J]. Electrochim. Acta, 2012, 82: 314
doi: 10.1016/j.electacta.2012.04.095
28 Wang X G, Gao K W, Yan L C, et al. Effect of Ce on corrosion resistance of films of ZnAlCe-layered double hydroxides on Mg-alloy [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 335
28 王晓鸽, 高克玮, 颜鲁春 等. Ce对镁合金表面ZnAlCe-LDHs薄膜耐腐蚀性能的影响机理研究 [J]. 中国腐蚀与防护学报, 2021, 41: 335
doi: 10.11902/1005.4537.2020.068
29 Wu L, Ding X X, Zheng Z C, et al. Doublely-doped Mg-Al-Ce-V2O7 4- LDH composite film on magnesium alloy AZ31 for anticorrosion [J]. J. Mater. Sci. Technol., 2021, 64: 66
doi: 10.1016/j.jmst.2019.09.031
30 Dai X, Wu L, Xia Y, et al. Intercalation of Y in Mg-Al layered double hydroxide films on anodized AZ31 and Mg-Y alloys to influence corrosion protective performance [J]. Appl. Surf. Sci., 2021, 551: 149432
doi: 10.1016/j.apsusc.2021.149432
31 Kamil M P, Kaseem M, Lee Y H, et al. Microstructural characteristics of oxide layer formed by plasma electrolytic oxidation: Nanocrystalline and amorphous structures [J]. J. Alloy. Compd., 2017, 707: 167
doi: 10.1016/j.jallcom.2017.01.051
32 Wang K, Wang J F, Dou X X, et al. Microstructure and mechanical properties of large-scale Mg-Gd-Y-Zn-Mn alloys prepared through semi-continuous casting [J]. J. Mater. Sci. Technol., 2020, 52: 72
doi: 10.1016/j.jmst.2020.04.013
33 Wei X X, Jin L, Dong S, et al. Effect of Zn/ (Gd + Y) ratio on the microstructure evolution and mechanical properties of Mg-Gd-Y-Zn-Zr alloy [J]. Mater. Charact., 2020, 169: 110670
doi: 10.1016/j.matchar.2020.110670
34 Wu J H, Wu L, Yao W H, et al. Effect of electrolyte systems on plasma electrolytic oxidation coatings characteristics on LPSO Mg-Gd-Y-Zn alloy [J]. Surf. Coat. Technol., 2023, 454: 129192
doi: 10.1016/j.surfcoat.2022.129192
35 Zhang G, Wu L, Tang A T, et al. Active corrosion protection by a smart coating based on a MgAl-layered double hydroxide on a cerium-modified plasma electrolytic oxidation coating on Mg alloy AZ31 [J]. Corros. Sci., 2018, 139: 370
doi: 10.1016/j.corsci.2018.05.010
36 Liu D, Han E-H, Song Y W, et al. Enhancing the self-healing property by adding the synergetic corrosion inhibitors of Na3PO4 and 2-mercaptobenzothiazole into the coating of Mg alloy [J]. Electrochim. Acta, 2019, 323: 134796
doi: 10.1016/j.electacta.2019.134796
37 Fattah-Alhosseini A, Chaharmahali R, Babaei K. Effect of particles addition to solution of plasma electrolytic oxidation (PEO) on the properties of PEO coatings formed on magnesium and its alloys: a review [J]. J. Magnes. Alloy., 2020, 8: 799
doi: 10.1016/j.jma.2020.05.001
38 Dehnavi V, Binns W J, Noël J J, et al. Growth behaviour of low-energy plasma electrolytic oxidation coatings on a magnesium alloy [J]. J. Magnes. Alloy., 2018, 6: 229
doi: 10.1016/j.jma.2018.05.008
39 Chen Y N, Wu L, Yao W H, et al. In situ growth of Mg-Zn-Al LDHs by ZIF-8 carrying Zn source and micro-arc oxidation integrated coating for corrosion and protection of magnesium alloys [J]. Surf. Coat. Technol., 2022, 451: 129032
doi: 10.1016/j.surfcoat.2022.129032
40 Chen Y N, Wu L, Yao W H, et al. One-step in situ synthesis of graphene oxide/MgAl-layered double hydroxide coating on a micro-arc oxidation coating for enhanced corrosion protection of magnesium alloys [J]. Surf. Coat. Technol., 2021, 413: 127083
doi: 10.1016/j.surfcoat.2021.127083
41 Chen Y N, Wu L, Yao W H, et al. A self-healing corrosion protection coating with graphene oxide carrying 8-hydroxyquinoline doped in layered double hydroxide on a micro-arc oxidation coating [J]. Corros. Sci., 2022, 194: 109941
doi: 10.1016/j.corsci.2021.109941
42 Wang D D, Liu X T, Wang Y, et al. Role of the electrolyte composition in establishing plasma discharges and coating growth process during a micro-arc oxidation [J]. Surf. Coat. Technol., 2020, 402: 126349
doi: 10.1016/j.surfcoat.2020.126349
43 Chen Y N, Wu L, Yao W H, et al. Synergistic effect of graphene oxide/ ternary Mg-Al-La layered double hydroxide for dual self-healing corrosion protection of micro-arc oxide coating of magnesium alloy [J]. Colloid Surf. A, 2022, 655A: 130339
44 Montemor M F, Snihirova D V, Taryba M G, et al. Evaluation of self-healing ability in protective coatings modified with combinations of layered double hydroxides and cerium molibdate nanocontainers filled with corrosion inhibitors [J]. Electrochim. Acta, 2012, 60: 31
doi: 10.1016/j.electacta.2011.10.078
45 Serdechnova M, Salak A N, Barbosa F S, et al. Interlayer intercalation and arrangement of 2-mercaptobenzothiazolate and 1, 2, 3-benzotriazolate anions in layered double hydroxides: in situ X-ray diffraction study [J]. J. Solid State Chem., 2016, 233: 158
doi: 10.1016/j.jssc.2015.10.023
46 Chen Y N, Wu L, Yao W H, et al. Development of metal-organic framework (MOF) decorated graphene oxide/MgAl-layered double hydroxide coating via microstructural optimization for anti-corrosion micro-arc oxidation coatings of magnesium alloy [J]. J. Mater. Sci. Technol., 2022, 130: 12
doi: 10.1016/j.jmst.2022.03.039
47 Song G L, Atrens A, StJohn D. An hydrogen evolution method for the estimation of the corrosion rate of magnesium alloys [A]. MathaudhuS N, LuoA A, NeelamegghamN R, et al. Essential Readings in Magnesium Technology [M]. Cham: Springer International Publishing, 2016: 565
[1] 刘超, 陈天奇, 李晓刚. 低合金钢中夹杂物诱发局部腐蚀萌生机制的研究进展[J]. 中国腐蚀与防护学报, 2023, 43(4): 746-754.
[2] 骆晨, 吴雄, 宋汉强, 孙志华, 汤智慧. 海洋环境服役飞机发动机镁合金使用要求和研究方向分析[J]. 中国腐蚀与防护学报, 2023, 43(4): 787-794.
[3] 肖檬, 王勤英, 张兴寿, 西宇辰, 白树林, 董立谨, 张进, 杨俊杰. 激光淬火对AISI 4130钢微观组织结构及腐蚀、磨损行为的影响机制[J]. 中国腐蚀与防护学报, 2023, 43(4): 713-724.
[4] 黄志凤, 雍奇文, 房蕊, 谢治辉. AZ31镁合金表面超疏水耐腐蚀镍基复合涂层[J]. 中国腐蚀与防护学报, 2023, 43(4): 755-764.
[5] 汪涵敏, 黄峰, 袁玮, 张佳伟, 王昕煜, 刘静. 新型Cu-Mo耐候钢在模拟海洋大气环境中的腐蚀行为[J]. 中国腐蚀与防护学报, 2023, 43(3): 507-515.
[6] 毛训聪, 陈乐平, 彭聪. Ca-P涂层和Sr-P涂层对脉冲磁场下凝固的Mg-Zn-Zr-Gd合金耐蚀性的影响[J]. 中国腐蚀与防护学报, 2023, 43(3): 647-655.
[7] 张小丽, 寻懋年, 梁小红, 张彩丽, 韩培德. 含Ce S31254超级奥氏体不锈钢析出相析出行为及耐蚀性[J]. 中国腐蚀与防护学报, 2023, 43(2): 384-390.
[8] 蒋芳芳, 云虹, 彭莉, 张依豪, 李卫顺, 代文静, 王保峰, 徐群杰. 原位聚合聚苯胺改性NiFe-LDH复合涂层的防护性能研究[J]. 中国腐蚀与防护学报, 2023, 43(2): 312-320.
[9] 吕鑫, 邓坤坤, 王翠菊, 聂凯波, 史权新, 梁伟. SiCp尺寸对铸态AZ91镁合金显微组织与腐蚀性能的影响[J]. 中国腐蚀与防护学报, 2023, 43(1): 135-142.
[10] 赵艳亮, 赵景茂. 层状双金属氢氧化物对镁合金的保护作用及自愈性能研究进展[J]. 中国腐蚀与防护学报, 2023, 43(1): 1-5.
[11] 江杰, 姜建军, 杨丽景, 雷步芳, 赵宇, 林建强, 宋振纶. 烧结NdFeB表面Zn-Al涂层制备及耐腐蚀机理研究[J]. 中国腐蚀与防护学报, 2023, 43(1): 104-110.
[12] 李育桥, 司伟婷, 高荣杰. 铝合金超双疏表面的制备及其耐蚀性研究[J]. 中国腐蚀与防护学报, 2022, 42(6): 966-972.
[13] 刘泽琪, 何潇潇, 祁康, 黄华良. AZ91D镁合金和2002铝合金在0.5 mg/L NaCl溶液中的电偶腐蚀行为研究[J]. 中国腐蚀与防护学报, 2022, 42(6): 1016-1026.
[14] 刘玉项, 徐安阳. AZ91镁合金和MAO涂层的点蚀行为研究[J]. 中国腐蚀与防护学报, 2022, 42(6): 1034-1042.
[15] 黄连鹏, 张欣, 熊伊铭, 陶嘉豪, 王泽华, 周泽华. 不同磁场强度下铝镁合金腐蚀行为研究[J]. 中国腐蚀与防护学报, 2022, 42(5): 833-838.