Please wait a minute...
中国腐蚀与防护学报  2024, Vol. 44 Issue (5): 1370-1376     CSTR: 32134.14.1005.4537.2023.386      DOI: 10.11902/1005.4537.2023.386
  研究报告 本期目录 | 过刊浏览 |
Pt涂层对TA4双极板在质子交换膜制氢电解池阳极环境中的电化学行为与界面导电性能研究
徐桂芝1,2, 杜小泽1, 胡晓2, 宋洁2()
1 华北电力大学能源动力与机械工程学院 北京 102206
2 先进输电技术国家重点实验室(国网智能电网研究院有限公司) 北京 102209
Effect of Pt Coating on Electrochemical Behavior and Interfacial Conductivity of TA4 Bipolar Plate in Anode Side Environment of Proton Exchange Membrane Water Electrolyzer for Hydrogen Production
XU Guizhi1,2, DU Xiaoze1, HU Xiao2, SONG Jie2()
1 School of Energy Power and Mechanical Engineering, North China Electric Power University, Beijing 102206, China
2 State Key Laboratory of Advanced Power Transmission Technology, State Grid Smart Grid Research Institute Co., Ltd., Beijing 102209, China
引用本文:

徐桂芝, 杜小泽, 胡晓, 宋洁. Pt涂层对TA4双极板在质子交换膜制氢电解池阳极环境中的电化学行为与界面导电性能研究[J]. 中国腐蚀与防护学报, 2024, 44(5): 1370-1376.
Guizhi XU, Xiaoze DU, Xiao HU, Jie SONG. Effect of Pt Coating on Electrochemical Behavior and Interfacial Conductivity of TA4 Bipolar Plate in Anode Side Environment of Proton Exchange Membrane Water Electrolyzer for Hydrogen Production[J]. Journal of Chinese Society for Corrosion and protection, 2024, 44(5): 1370-1376.

全文: PDF(11023 KB)   HTML
摘要: 

采用直流脉冲磁控溅射技术在TA4钛双极板表面成功制备了Pt涂层,涂层的存在显著提高了TA4在质子交换膜制氢电解池阳极环境中的界面导电性能。随着沉积时间的延长,Pt涂层的厚度从约0.29 μm增长到约0.95 μm,晶格常数从5 min的 0.39112 nm增加到15 min的 0.39128 nm;电化学研究表明Pt涂层样品的开路电位比TA4高约0.77 V。延长沉积时间可进一步增大界面电化学反应阻力,体现在电荷转移电阻随制备时间的延长而逐渐增加,分别为5.52 × 104,5.91 × 104和6.10 × 104 Ω·cm2。最重要的是,Pt涂层可以有效提高并维持界面优异的导电性能,模拟稳态极化测试后的界面接触电阻仅发生略微增长。

关键词 质子交换膜制氢电解池双极板Pt涂层电化学阻抗界面接触电阻    
Abstract

Pt coatings were successfully deposited on the surface of TA4 Ti-alloy using the DC pulse magnetron sputtering technique. With the increasing deposition time, the lattice constants of Pt coating increased from 0.39112 nm at 5 min to 0.39128 nm at 15 min, correspondingly the thickness increased from approximately 0.29 μm to around 0.95 μm. Electrochemical studies revealed that the open circuit voltage (OCP) of Pt-coated TC4 was approximately 0.77 V higher than that of the plain TA4. With the extension of deposition time, the interfacial electrochemical reaction resistance further increases, as a result, its charge transfer resistance will gradually increase with deposition time as described as below: 5.52 × 104, 5.91 × 104, and 6.1 × 104 Ω·cm2, respectively. Importantly, the Pt coating effectively enhanced and maintained the excellent interface conductivity, as the interface contact resistance (ICR) only exhibited a slight increase after a simulated steady-state polarization testing. In sum, the Pt coating can significantly enhance the interfacial conductivity of TA4 in the anode side environment of proton exchange membrane hydrogen electrolyzer (PEMWE).

Key wordsPEMWE    bipolar plates    Pt coating    EIS    interface contact resistance
收稿日期: 2023-12-12      32134.14.1005.4537.2023.386
ZTFLH:  O646  
基金资助:国家重点研发计划(2021YFB4000100);国家电网有限公司科技资助项目(521532220014)
通讯作者: 宋洁,E-mail:songjie_bj@163.com,研究方向为电解制氢及氢利用技术
Corresponding author: SONG Jie, E-mail: songjie_bj@163.com
作者简介: 徐桂芝,女,1976年生,硕士,正高级工程师
图1  TA4及不同沉积时间制备的Pt涂层的X射线衍射光谱图
图2  不同沉积时间制备的Pt涂层样品的表面和截面形貌,以及截面Ti, Pt, O的元素分布图
图3  TA4和不同沉积时间制备的Pt涂层样品的OCP随时间的变化图
图4  TA4和不同沉积时间制备的Pt涂层样品的动电位极化曲线
图5  TA4及不同沉积时间制备的Pt涂层样品的电化学阻抗谱
Sample

Rs

Ω·cm2

Qf

10-5 Ω-1·cm-2·s n1

n1

Rf

Ω·cm2

Qdl

10-5 Ω-1·cm-2·s n2

n2

Rct

104 Ω·cm2

χ2
TA4139.616.530.867563.74.490.854.321.09 × 10-4
5 min136.19.030.788215.15.010.7675.521.792 × 10-4
10 min161.67.110.783380.56.030.7855.913.58 × 10-4
15 min165.16.960.7676593.380.766.13.125 × 10-4
表1  TA及其不同沉积时间制备的Pt涂层样品的电化学阻抗谱拟合结果
图6  TA4和不同沉积时间制备的Pt涂层样品的电流密度随时间的响应
图7  TA4和不同沉积时间制备的Pt涂层样品的ICRs随压紧力的变化
图8  1.8 V恒电位极化12 h后的表面和截面形貌,以及截面Ti, Pt, O的元素分布图
1 H-vision in Rotterdam targets ‘blue’ hydrogen from natural gas [J]. Fuel Cells Bull., 2019, 2019: 9
2 Ayers K E, Capuano C, Anderson E B. Recent advances in cell cost and efficiency for PEM-based water electrolysis [J]. ECS Trans., 2012, 41: 15
3 Khatib F N, Wilberforce T, Ijaodola O, et al. Material degradation of components in polymer electrolyte membrane (PEM) electrolytic cell and mitigation mechanisms: a review [J]. Renew. Sustain. Energy Rev., 2019, 111: 1
4 Celik S, Timurkutluk B, Aydin U, et al. Development of titanium bipolar plates fabricated by additive manufacturing for PEM fuel cells in electric vehicles [J]. Int. J. Hydrog. Energy, 2022, 47: 37956
5 Utomo W B, Donne S W. Electrochemical behaviour of titanium in H2SO4-MnSO4 electrolytes [J]. Electrochim. Acta, 2006, 51: 3338
6 Babic U, Suermann M, Büchi F N, et al. Critical review—Identifying critical gaps for polymer electrolyte water electrolysis development [J]. J. Electrochem. Soc., 2017, 164: F387
7 Sun H, Cooke K, Eitzinger G, et al. Development of PVD coatings for PEMFC metallic bipolar plates [J]. Thin Solid Films, 2013, 528: 199
8 Jin J, He Z, Zhao X H. Formation of a protective TiN layer by liquid phase plasma electrolytic nitridation on Ti-6Al-4V bipolar plates for PEMFC [J]. Int. J. Hydrog. Energy, 2020, 45: 12489
9 Jannat S, Rashtchi H, Atapour M, et al. Preparation and performance of nanometric Ti/TiN multi-layer physical vapor deposited coating on 316L stainless steel as bipolar plate for proton exchange membrane fuel cells [J]. J. Power Sources, 2019, 435: 226818
10 Jung H Y, Huang S Y, Popov B N. High-durability titanium bipolar plate modified by electrochemical deposition of platinum for unitized regenerative fuel cell (URFC) [J]. J. Power Sources, 2010, 195: 1950
11 Gago A S, Ansar S A, Saruhan B, et al. Protective coatings on stainless steel bipolar plates for proton exchange membrane (PEM) electrolysers [J]. J. Power Sources, 2016, 307: 815
12 Chi X, Song C H, Bao J F, et al. Research progress of titanium-based thin films prepared by magnetron sputtering [J]. Therm. Spray Technol., 2020, 12(2): 17
12 迟 迅, 宋长虹, 鲍君峰 等. 磁控溅射制备钛基薄膜研究进展 [J]. 热喷涂技术, 2020, 12(2): 17
13 Zhang J C, Wu W D, Xu H, et al. The recent developments and applications of magnetron sputtering [J]. Mater. Rep., 2004, 18(4): 56
13 张继成, 吴卫东, 许华 等. 磁控溅射技术新进展及应用 [J]. 材料导报, 2004, 18(4): 56
14 Zhang P P, Ding L X, Zhang S T. Effects of process parameters on crystalline TiO2 thin films prepared by magnetron sputtering [J]. Surf. Technol., 2015, 44(5): 48
14 张盼盼, 丁龙先, 张帅拓. 工艺参数对磁控溅射制备TiO2薄膜结晶性的影响 [J]. 表面技术, 2015, 44(5): 48
15 Wang H Q, Jiang H W, Wang F B, et al. The effect of process parameters on the structure of magnetron sputtering TiN films [J]. Plat. Finish., 2019, 41(12): 20
15 王槐乾, 姜宏伟, 王方标 等. 工艺参数对磁控溅射TiN膜结构的影响 [J]. 电镀与精饰, 2019, 41(12): 20
16 Kıstı M, Uysal S, Kaya M F. Development of Pt coated SS316 mesh gas diffusion electrodes for a PEM water electrolyzer anode [J]. Fuel, 2022, 324: 124775
17 Orazem M E, Tribollet B. Electrochemical Impedance Spectroscopy [M]. Hoboken: John Wiley & Sons, 2008
18 Luo H, Gao S J, Dong C F, et al. Characterization of electrochemical and passive behaviour of Alloy 59 in acid solution [J]. Electrochim. Acta, 2014, 135: 412
19 Wang X F, Luo H, Zhao Q C, et al. Investigations on the passive and pitting behaviors of 17-4 PH martensitic stainless steel containing Al2O3 inclusions in chlorine environment [J]. Colloids Surf. A: Physicochem. Eng. Asp., 2023, 660: 130861
20 Mao Y C, Zhu Y, Sun S K, et al. Localized corrosion of 5083 Al-alloy in simulated marine splash zone [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 47
20 毛英畅, 祝 钰, 孙圣凯 等. 5083铝合金在模拟海洋浪花飞溅区的局部腐蚀行为 [J]. 中国腐蚀与防护学报, 2023, 43: 47
doi: 10.11902/1005.4537.2022.162
21 Deng C M, Liu Z, Xia D H, et al. Localized corrosion mechanism of 5083-H111 Al alloy in simulated dynamic seawater zone [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 683
21 邓成满, 刘 喆, 夏大海 等. 5083-H111铝合金在模拟动态海水环境中的局部腐蚀机制 [J]. 中国腐蚀与防护学报, 2023, 43: 683
doi: 10.11902/1005.4537.2023.140
22 Carmo M, Fritz D L, Mergel J, et al. A comprehensive review on PEM water electrolysis [J]. Int. J. Hydrog. Energy, 2013, 38: 4901
23 Vermilyea D A. Advances in Electrochemistry and Electrochemical Engineering [M]. New York: John Wiley & Sons, 1963
24 Oyarce A, Holmström N, Bodén A, et al. Operating conditions affecting the contact resistance of bi-polar plates in proton exchange membrane fuel cells [J]. J. Power Sources, 2013, 231: 246
25 Li Y Y, Zhu Y Y, Wang M Z, et al. Recent progress on titanium sesquioxide: fabrication, properties, and applications [J]. Adv. Funct. Mater., 2022, 32: 2203491
[1] 禹文娟, 王天丛, 赵东杨, 向雪云, 吴航, 王文. 封闭型耐蚀涂层的寿命预测模型研究[J]. 中国腐蚀与防护学报, 2024, 44(6): 1617-1624.
[2] 王天丛, 赵东杨, 向雪云, 吴航, 王文. 一种环氧耐蚀涂层在NaCl溶液中的劣化行为研究[J]. 中国腐蚀与防护学报, 2024, 44(5): 1361-1369.
[3] 刘喆, 邓成满, 魏军胜, 夏大海. 涂覆有机涂层的镀锡薄钢板耐蒸煮性能电化学快速检测技术研究[J]. 中国腐蚀与防护学报, 2024, 44(4): 883-890.
[4] 傅江悦, 郭建喜, 杨延格, 冷哲, 王文. 单相流冲刷条件下一种低合金高强钢的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2024, 44(3): 585-600.
[5] 李卓玄, 曹艳辉, 李崇杰, 李辉, 张小明, 雍兴跃. 耦接件涂层失效程度与其力学损伤之间的关系[J]. 中国腐蚀与防护学报, 2024, 44(3): 679-690.
[6] 赵国仙, 刘冉冉, 丁浪勇, 张思琦, 郭梦龙, 王映超. 温度对5Cr钢在模拟油田高温高压环境中CO2 腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2024, 44(1): 175-186.
[7] 李春霖, 史洪微, 梁国平, 李丽, 王浩, 王伟, 刘福春, 韩恩厚. 高速列车用聚氨酯面漆耐蚀性能和老化机制研究[J]. 中国腐蚀与防护学报, 2023, 43(6): 1383-1391.
[8] 陈肖寒, 白杨, 王志超, 陈从棕, 张勇, 崔显林, 左娟娟, 王同良. 低表面处理环氧防腐底漆的制备及其耐蚀性研究[J]. 中国腐蚀与防护学报, 2023, 43(5): 1126-1132.
[9] 胡杰珍, 上官桔钰, 邓培昌, 冯绮蓝, 王贵, 王沛林. 基于阵列电极技术研究藤壶附着对Q235钢腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2023, 43(5): 1145-1150.
[10] 毛飞雄, 周羽婷, 姚文清, 沈翔, 肖龙, 李明辉. 基于PDM304不锈钢钝化膜生长动力学研究[J]. 中国腐蚀与防护学报, 2023, 43(4): 911-921.
[11] 刘明, 王杰, 朱春晖, 张延晓. 3D打印NiTi形状记忆合金在模拟不同口腔环境中电化学腐蚀行为研究[J]. 中国腐蚀与防护学报, 2023, 43(4): 781-786.
[12] 邓成满, 刘喆, 夏大海, 胡文彬. 5083-H111铝合金在模拟动态海水环境中的局部腐蚀机制[J]. 中国腐蚀与防护学报, 2023, 43(4): 683-692.
[13] 王通, 王巍. 聚二甲基硅氧烷涂层自修复过程中的弛豫时间分布研究[J]. 中国腐蚀与防护学报, 2023, 43(2): 337-344.
[14] 袁世成, 吴艳峰, 徐长慧, 王兴奇, 冷哲, 杨延格. 多羟基超分散剂对水性环氧涂层防腐性能的影响[J]. 中国腐蚀与防护学报, 2023, 43(2): 289-300.
[15] 刘云, 任延杰, 陈荐, 周立波, 邱玮, 黄伟颖, 牛焱. 质子交换膜燃料电池不锈钢双极板表面Cr2AlC涂层的制备与耐蚀性能[J]. 中国腐蚀与防护学报, 2023, 43(1): 62-68.