Please wait a minute...
中国腐蚀与防护学报  2023, Vol. 43 Issue (1): 62-68     CSTR: 32134.14.1005.4537.2022.008      DOI: 10.11902/1005.4537.2022.008
  研究报告 本期目录 | 过刊浏览 |
质子交换膜燃料电池不锈钢双极板表面Cr2AlC涂层的制备与耐蚀性能
刘云, 任延杰(), 陈荐, 周立波, 邱玮, 黄伟颖, 牛焱
长沙理工大学能源与动力工程学院 长沙 410114
Preparation and Corrosion Resistance of Ternary Layered Compound Cr2AlC Coating on 304 Stainless Steel for Bipolar Plates of PEMFC
LIU Yun, REN Yanjie(), CHEN Jian, ZHOU Libo, QIU Wei, HUANG Weiying, NIU Yan
Department of Energy and Power Engineering, Changsha University of Science and Technology, Changsha 410114, China
全文: PDF(8145 KB)   HTML
摘要: 

采用直流磁控溅射技术在304不锈钢双极板表面沉积Cr2AlC MAX相涂层。利用扫描电镜 (SEM)、X射线衍射 (XRD)、X射线光电子能谱 (XPS) 等对涂层的形貌、微观组织进行分析;采用电化学方法研究了Cr2AlC涂层对不锈钢在0.01 mol/L H2SO4溶液中耐蚀性能的影响。结果表明:涂层致密均匀,主要由Cr2AlC MAX相组成;沉积Cr2AlC涂层后,304不锈钢的腐蚀电流密度为2.43×10-7 A·cm-2,下降了两个数量级;恒电位极化后,阳极和阴极的电流密度分别稳定在2.44×10-8和2.3×10-7 A·cm-2;在腐蚀介质中的电荷转移电阻值高于105 Ω·cm2,表明Cr2AlC涂层在质子交换膜燃料电池模拟环境中具有良好的耐腐蚀性能。

关键词 质子交换膜燃料电池Cr2AlCMAX相涂层金属双极板腐蚀性能    
Abstract

In this paper, Cr2AlC phase coatings were deposited on 304 stainless steel bipolar plates by DC magnetron sputtering. The morphology and microstructure of the coating were characterized by scanning electron microscope (SEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) and its corrosion behavior in 0.01 mol/L H2SO4 solution was investigated by electrochemical methods. The results showed that the as-deposited Cr2AlC coating was compact and uniform, mainly composed of Cr2AlC phase. The corrosion current density of the coating was 2.43×10-7 A·cm-2, which was lower than that of 304 stainless steel by two orders of magnitude. After potentiostatic polarization at 600 and -240 mVSCE, the corresponding current densities were 2.44×10-8 and 2.3×10-7 A·cm-2, respectively. In addition, the impedance modulus of Cr2AlC coating in 0.01 mol/L H2SO4 solution was higher than 105 Ω·cm2, indicating that the coating could provide excellent protection for 304 stainless steel bipolar plate of PEMFC.

Key wordsPEMFC    Cr2AlC coatings    bipolar plate    corrosion resistance    stainless steel
收稿日期: 2022-01-06      32134.14.1005.4537.2022.008
ZTFLH:  TG172  
基金资助:国家自然科学基金(51771034);湖南省自然科学基金(2020JJ4610);长沙理工大学研究生科研创新项目(CX2020SS65)
作者简介: 刘云,女,1997年生,硕士生

引用本文:

刘云, 任延杰, 陈荐, 周立波, 邱玮, 黄伟颖, 牛焱. 质子交换膜燃料电池不锈钢双极板表面Cr2AlC涂层的制备与耐蚀性能[J]. 中国腐蚀与防护学报, 2023, 43(1): 62-68.
Yun LIU, Yanjie REN, Jian CHEN, Libo ZHOU, Wei QIU, Weiying HUANG, Yan NIU. Preparation and Corrosion Resistance of Ternary Layered Compound Cr2AlC Coating on 304 Stainless Steel for Bipolar Plates of PEMFC. Journal of Chinese Society for Corrosion and protection, 2023, 43(1): 62-68.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2022.008      或      https://www.jcscp.org/CN/Y2023/V43/I1/62

图1  304不锈钢表面Cr2AlC MAX相涂层的表面和截面形貌
图2  304不锈钢表面Cr2AlC MAX相涂层的XRD图
图3  304不锈钢表面Cr2AlC涂层的XPS光谱图
图4  未沉积和沉积Cr2AlC涂层的304不锈钢样品在0.01 mol/L H2SO4中室温下的动电位极化曲线
图5  沉积Cr2AlC涂层的304不锈钢样品在模拟PEMFC阳极和阴极环境中的恒电位极化曲线
图6  沉积Cr2AlC涂层的304不锈钢在-240 mVSCE和600 mVSCE恒电位极化后的表面形貌
图7  未沉积和沉积Cr2AlC涂层的304不锈钢样品在0.01 mol/L H2SO4溶液中的开路电位-时间曲线
图8  未沉积及沉积Cr2AlC涂层的304不锈钢在0.01 mol/L H2SO4溶液中的电化学阻抗谱及其等效电路
Time / hRs / Ω·cm2CPE1Rct / Ω·cm2
Ydl / S Ω-1 cm-2n
239.621.053×10-30.877195.7
842.191.869×10-30.893126.9
4847.458.892×10-30.96376.33
9669.762.118×10-20.91171.48
表1  304不锈钢在0.01 mol/L H2SO4溶液中的电化学阻抗谱拟合结果
Time / hRs / Ω·cm2CPE1Rct / Ω·cm2CPE2Rf / Ω·cm2
Ydl / S Ω-1 cm-2ndlYf / S Ω-1 cm-2nf
2106.01.604×10-50.6764.228×1055.565×1050.9391.900×105
8152.81.116×10-50.6736.316×1056.675×1050.9422.799×105
48141.13.687×10-50.8721.841×1065.141×1050.98559.27
96165.03.299×10-50.8802.600×1065.984×1050.975100.50
264130.84.116×10-50.9361.122×1068.114×1050.96085.28
432131.47.643×10-50.9422.877×1055.363×1050.94741.01
表2  沉积Cr2AlC涂层的304不锈钢在0.01 mol/L H2SO4溶液中的电化学阻抗谱拟合结果
图9  沉积Cr2AlC涂层的不锈钢在0.01 mol/L H2SO4溶液中腐蚀432 h后的表面形貌
1 Yi P Y, Zhang D, Qiu D K, et al. Carbon-based coatings for metallic bipolar plates used in proton exchange membrane fuel cells [J]. Int. J. Hydrogen Energy, 2019, 44: 6813
doi: 10.1016/j.ijhydene.2019.01.176
2 Tan Q Y, Wang Y L. Research progress on corrosion behavior and surface protection of stainless steel bipolar plate of proton exchange membrane fuel cell [J]. Surf. Technol., 2021, 50(8): 192
2 谭茜匀, 王艳丽. 质子交换膜燃料电池不锈钢双极板的腐蚀行为及其表面防护的研究进展 [J]. 表面技术, 2021, 50(8): 192
3 Lee S H, Woo S P, Kakati N, et al. Corrosion and electrical properties of carbon/ceramic multilayer coated on stainless steel bipolar plates [J]. Surf. Coat. Technol., 2016, 303: 162
doi: 10.1016/j.surfcoat.2016.03.072
4 Jin J, Liu H J, Zheng D C, et al. Effects of Mo content on the interfacial contact resistance and corrosion properties of CrN coatings on SS316L as bipolar plates in simulated PEMFCs environment [J]. Int. J. Hydrogen Energy, 2018, 43: 10048
doi: 10.1016/j.ijhydene.2018.04.044
5 Han Y T, Zhang P C, Shi J F, et al. Surface modification of TA1 bipolar plate for proton exchange membrane fuel cell [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 125
5 韩月桐, 张鹏超, 史杰夫 等. 质子交换膜燃料电池中TA1双极板的表面改性研究 [J]. 中国腐蚀与防护学报, 2021, 41: 125
6 Lv J L, Liang T X, Wang C. Comparison of corrosion behavior between coarse grained and nanocrystalline Ni-Fe alloys in chloride solutions and proton exchange membrane fuel cell environment by EIS, XPS and Raman spectra techniques [J]. Energy, 2016, 112: 67
doi: 10.1016/j.energy.2016.06.060
7 Joseph S, McClure J C, Chianelli R, et al. Conducting polymer-coated stainless steel bipolar plates for proton exchange membrane fuel cells (PEMFC) [J]. Int. J. Hydrogen Energy, 2005, 30: 1339
doi: 10.1016/j.ijhydene.2005.04.011
8 Lucio García M A, Smit M A. Study of electrodeposited polypyrrole coatings for the corrosion protection of stainless steel bipolar plates for the PEM fuel cell [J]. J. Power Sources, 2006, 158: 397
doi: 10.1016/j.jpowsour.2005.09.037
9 Chen Z H, Zhang G H, Yang W Z, et al. Superior conducting polypyrrole anti-corrosion coating containing functionalized carbon powders for 304 stainless steel bipolar plates in proton exchange membrane fuel cells [J]. Chem. Eng. J., 2020, 393: 124675
doi: 10.1016/j.cej.2020.124675
10 Ren Y J, Zeng C L. Effect of conducting composite polypyrrole/polyaniline coatings on the corrosion resistance of type 304 stainless steel for bipolar plates of proton-exchange membrane fuel cells [J]. J. Power Sources, 2008, 182: 524
doi: 10.1016/j.jpowsour.2008.04.056
11 Bertrand G, Mahdjoub H, Meunier C. A study of the corrosion behaviour and protective quality of sputtered chromium nitride coatings [J]. Surf. Coat. Technol., 2000, 126: 199
doi: 10.1016/S0257-8972(00)00527-2
12 Wang Y, Northwood D O. An investigation into TiN-coated 316L stainless steel as a bipolar plate material for PEM fuel cells [J]. J. Power Sources, 2007, 165: 293
doi: 10.1016/j.jpowsour.2006.12.034
13 Zhang K, Sharma S. Site-selective, low-loading, Au nanoparticle-polyaniline hybrid coatings with enhanced corrosion resistance and conductivity for fuel cells [J]. ACS Sustainable Chem. Eng., 2017, 5: 277
doi: 10.1021/acssuschemeng.6b01504
14 Feng K, Li Z G, Cai X, et al. Silver implanted 316L stainless steel as bipolar plates in polymer electrolyte membrane fuel cells [J]. Mater. Chem. Phys., 2011, 126: 6
doi: 10.1016/j.matchemphys.2010.11.029
15 Wind J, Späh R, Kaiser W, et al. Metallic bipolar plates for PEM fuel cells [J]. J. Power Sources, 2002, 105: 256
doi: 10.1016/S0378-7753(01)00950-8
16 Hentall P L, Lakeman J B, Mepsted G O, et al. New materials for polymer electrolyte membrane fuel cell current collectors [J]. J. Power Sources, 1999, 80: 235
doi: 10.1016/S0378-7753(98)00264-X
17 Walter C, Sigumonrong D P, El-Raghy T, et al. Towards large area deposition of Cr2AlC on steel [J]. Thin Solid Films, 2006, 515: 389
doi: 10.1016/j.tsf.2005.12.219
18 Lu J L, Abbas N, Tang J N, et al. Synthesis and characterization of conductive ceramic MAX-phase coatings for metal bipolar plates in simulated PEMFC environments [J]. Corros. Sci., 2019, 158: 108106
doi: 10.1016/j.corsci.2019.108106
19 Lu J L, Abbas N, Tang J N, et al. Characterization of Ti3SiC2-coating on stainless steel bipolar plates in simulated proton exchange membrane fuel cell environments [J]. Electrochem. Commun., 2019, 105: 106490
doi: 10.1016/j.elecom.2019.106490
20 Li J J, Hu L F, Li F Z, et al. Variation of microstructure and composition of the Cr2AlC coating prepared by sputtering at 370 and 500 ℃ [J]. Surf. Coat. Technol., 2010, 204: 3838
doi: 10.1016/j.surfcoat.2010.04.067
21 Abdulkadhim A, to Baben M, Takahashi T, et al. Crystallization kinetics of amorphous Cr2AlC thin films [J]. Surf. Coat. Technol., 2011, 206: 599
doi: 10.1016/j.surfcoat.2011.06.003
22 Sharma P, Pandey O P. Non-isothermal oxidation kinetics of nano-laminated Cr2AlC MAX phase [J]. J. Alloy. Compd., 2019, 773: 872
doi: 10.1016/j.jallcom.2018.09.326
23 Vyas A, Shen Y G, Zhou Z F, et al. Nano-structured CrN/CN x multilayer films deposited by magnetron sputtering [J]. Compos. Sci. Technol., 2008, 68: 2922
doi: 10.1016/j.compscitech.2007.11.002
24 Zhang Z, Lim S H, Chai J W, et al. Plasma spray of Ti2AlC MAX phase powders: effects of process parameters on coatings' properties [J]. Surf. Coat. Technol., 2017, 325: 429
doi: 10.1016/j.surfcoat.2017.07.006
25 Li G, Xia L F. Structural characterization of TiC x films prepared by plasma based ion implantation [J]. Thin Solid Films, 2001, 396: 16
doi: 10.1016/S0040-6090(01)01227-5
26 Zhang Z, Nie Y G, Shen L, et al. Charge distribution in the single crystalline Ti2AlN thin films grown on MgO (111) substrates [J]. J. Phys. Chem. C, 2013, 117: 11656
doi: 10.1021/jp402373k
27 Zhang Z, Jin H M, Chai J W, et al. Temperature-dependent microstructural evolution of Ti2AlN thin films deposited by reactive magnetron sputtering [J]. Appl. Surf. Sci., 2016, 368: 88
doi: 10.1016/j.apsusc.2016.01.229
28 Healy M D, Smith D C, Rubiano R R, et al. Use of tetraneopentylchromium as a precursor for the organometallic chemical vapor deposition of chromium carbide: a Reinvestigation [J]. Chem. Mater., 1994, 6: 448
doi: 10.1021/cm00040a019
29 Mani S P, Kalaiarasan M, Ravichandran K, et al. Corrosion resistant and conductive TiN/TiAlN multilayer coating on 316L SS: a promising metallic bipolar plate for proton exchange membrane fuel cell [J]. J. Mater. Sci., 2021, 56: 10575
doi: 10.1007/s10853-020-05682-4
30 Wang Y L, Tan Q Y, Huang B. Synthesis and properties of novel N/Ta-co-doped TiO2 coating on titanium in simulated PEMFC environment [J]. J. Alloy. Compd., 2021, 879: 160470
doi: 10.1016/j.jallcom.2021.160470
31 Jin J, He Z, Zhao X H. Effect of Al content on the corrosion resistance and conductivity of metal nitride coating in the cathode environment of PEMFCs [J]. Mater. Chem. Phys., 2020, 245: 122739
doi: 10.1016/j.matchemphys.2020.122739
32 Pugal Mani S, Rajendran N. Corrosion and interfacial contact resistance behavior of electrochemically nitrided 316L SS bipolar plates for proton exchange membrane fuel cells [J]. Energy, 2017, 133: 1050
doi: 10.1016/j.energy.2017.05.086
33 Ren Y J, Anisur M R, Qiu W, et al. Degradation of graphene coated copper in simulated proton exchange membrane fuel cell environment: electrochemical impedance spectroscopy study [J]. J. Power Sources, 2017, 362: 366
doi: 10.1016/j.jpowsour.2017.07.041
[1] 肖文涛, 刘静, 彭晶晶, 张弦, 吴开明. 两种电弧喷涂涂层在中性盐雾环境下的耐蚀性能对比研究[J]. 中国腐蚀与防护学报, 2023, 43(5): 1003-1014.
[2] 丁立, 邹文杰, 张雪姣, 陈均. ADC12铝合金表面硅锆复合转化膜的研究[J]. 中国腐蚀与防护学报, 2023, 43(4): 903-910.
[3] 倪雅, 施方长, 戚继球. Ce添加对Zn-0.6Cu-0.3Ti合金组织与耐蚀性能的影响[J]. 中国腐蚀与防护学报, 2023, 43(4): 803-811.
[4] 吕鑫, 邓坤坤, 王翠菊, 聂凯波, 史权新, 梁伟. SiCp尺寸对铸态AZ91镁合金显微组织与腐蚀性能的影响[J]. 中国腐蚀与防护学报, 2023, 43(1): 135-142.
[5] 胡雄鑫, 张弦, 刘静, 吴开明, 林安. 无取向电工钢用磷酸盐系绝缘环保涂层的研制及性能研究[J]. 中国腐蚀与防护学报, 2022, 42(5): 805-812.
[6] 张赪栋, 刘斌, 石泽耀, 刘岩, 曹青敏, 蹇冬辉. 镍铝青铜合金海水腐蚀行为研究进展[J]. 中国腐蚀与防护学报, 2022, 42(1): 25-33.
[7] 冯彦朋, 张弦, 吴开明, 杨淼. 热处理工艺对超细贝氏体钢显微组织及耐腐蚀性能的影响[J]. 中国腐蚀与防护学报, 2021, 41(5): 602-608.
[8] 王晓鸽, 高克玮, 颜鲁春, 杨会生, 庞晓露. Ce对镁合金表面ZnAlCe-LDHs薄膜耐腐蚀性能的影响机理研究[J]. 中国腐蚀与防护学报, 2021, 41(3): 335-340.
[9] 乔及森, 夏宗辉, 刘立博, 许佳敏, 刘旭东. 铝镁双金属反向等温包覆挤压棒材耐腐蚀性能[J]. 中国腐蚀与防护学报, 2021, 41(2): 255-262.
[10] 史昆玉, 吴伟进, 张毅, 万毅, 于传浩. TC4表面沉积Nb涂层在模拟体液环境下的电化学性能研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 71-79.
[11] 韩月桐, 张鹏超, 史杰夫, 李婷, 孙俊才. 质子交换膜燃料电池中TA1双极板的表面改性研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 125-130.
[12] 沈树阳, 王东胜, 孙士斌, 杨剔, 赵前进, 王鑫, 张亚飞, 常雪婷. 深冷处理对EH40极寒环境船用钢板的海水腐蚀性能影响[J]. 中国腐蚀与防护学报, 2020, 40(2): 151-158.
[13] 欧阳跃军,胡婷,王佳音,谢治辉. 镁合金表面层状双氢氧化物的电化学沉积和表征[J]. 中国腐蚀与防护学报, 2019, 39(5): 453-457.
[14] 史昆玉,张进中,张毅,万毅. Nb2N涂层制备及其耐腐蚀性能研究[J]. 中国腐蚀与防护学报, 2019, 39(4): 313-318.
[15] 常亮, 师超, 邵亚薇, 王艳秋, 刘斌, 孟国哲. 植酸转化膜对环氧清漆防腐性能的影响[J]. 中国腐蚀与防护学报, 2018, 38(3): 265-273.