Please wait a minute...
中国腐蚀与防护学报  2024, Vol. 44 Issue (5): 1361-1369     CSTR: 32134.14.1005.4537.2023.375      DOI: 10.11902/1005.4537.2023.375
  研究报告 本期目录 | 过刊浏览 |
一种环氧耐蚀涂层在NaCl溶液中的劣化行为研究
王天丛1, 赵东杨2(), 向雪云1, 吴航1, 王文2
1 东北大学材料科学与工程学院 沈阳 110819
2 中国科学院金属研究所 沈阳 110016
Degradation Behavior of an Epoxy Corrosion-resistant Coating in NaCl Solution
WANG Tiancong1, ZHAO Dongyang2(), XIANG Xueyun1, WU Hang1, WANG Wen2
1 School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China
2 Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
引用本文:

王天丛, 赵东杨, 向雪云, 吴航, 王文. 一种环氧耐蚀涂层在NaCl溶液中的劣化行为研究[J]. 中国腐蚀与防护学报, 2024, 44(5): 1361-1369.
Tiancong WANG, Dongyang ZHAO, Xueyun XIANG, Hang WU, Wen WANG. Degradation Behavior of an Epoxy Corrosion-resistant Coating in NaCl Solution[J]. Journal of Chinese Society for Corrosion and protection, 2024, 44(5): 1361-1369.

全文: PDF(16223 KB)   HTML
摘要: 

围绕涂层的电化学阻抗、吸水率、附着力研究了一种环氧耐蚀涂层在NaCl溶液中的劣化行为。结果表明涂层浸泡至5350 h后依然具有良好的保护性能,涂层电化学阻抗、吸水率和附着力的变化趋势存在着相关性,电解质溶液与树脂材料的物理/化学反应可能是涂层劣化的主要机制,温度是涂层劣化的重要影响因素,涂层厚度的影响作用不明显。

关键词 环氧涂层电化学阻抗谱吸水率附着力    
Abstract

A study was conducted on the degradation behavior of an epoxy corrosion-resistant coating in NaCl solution, focusing on the electrochemical impedance, water absorption, and adhesion of the coating. The results indicated that the coating still exhibits good protective performance after immersion for 5350 h. Meanwhile, a correlation between the changes in electrochemical impedance, water absorption, and adhesion of the coating was observed. The physical/chemical reaction between the electrolyte solution and the resin material might be the main mechanism of the coating degradation, with temperature being a significant influencing factor and the effect of coating thickness being less apparent.

Key wordsepoxy coating    electrochemical impedance spectroscopy    water absorption    adhesion
收稿日期: 2023-11-24      32134.14.1005.4537.2023.375
ZTFLH:  TG174  
基金资助:工业和信息化部高技术船舶科研项目(MC-202003-Z01-02)
通讯作者: 赵东杨,E-mail: dyzhao@imr.ac.cn,研究方向为材料成型
Corresponding author: ZHAO Dongyang, E-mail: dyzhao@imr.ac.cn
作者简介: 王天丛,男,1998年生,硕士生
图1  涂层试样电化学阻抗谱测试电解池

Thickness of the coatings

μm

|Z|0.1 Hz at 30oC / Ω·cm2|Z|0.1 Hz at 40oC / Ω·cm2
0 h5350 h0 h5350 h
80-901.01 × 10103.27 × 1093.50 × 1091.46 × 109
100-1104.81 × 1092.74 × 1095.31 × 1093.21 × 109
140-1501.30 × 10106.56 × 1099.78 × 1094.64 × 109
表1  涂层浸泡后低频阻抗值的变化
图2  EIS拟合等效电路
图3  不同厚度的涂层在30℃浸泡不同时间后的电化学阻抗谱
图4  不同厚度的涂层在40℃浸泡不同时间后的电化学阻抗谱
图5  30℃下涂层阻抗值和容抗值随浸泡时间的变化
图6  40℃下涂层阻抗值和容抗值随浸泡时间的变化
Fitting parameter30oC40oC
Z022.7219122.41299
a-2.51764 × 10-4-2.89779 × 10-4
b-0.00667-0.01635
c-3.66002 × 10-92.89515 × 10-9
d1.19179 × 10-41.44238 × 10-4
f8.50083 × 10-76.68987 × 10-7
表2  多项式2中各参数拟合值
图7  涂层等效阻抗值随浸泡时间和涂层厚度变化的等高线图
图8  涂层在30和40℃下NaCl溶液中的OCP随浸泡时间的变化
图9  涂层在30和40℃溶液中吸水率的变化曲线
图10  涂层在30和40℃下NaCl溶液中浸泡时附着力随浸泡时间的变化
图11  不同厚度的涂层经30℃浸泡不同时间并进行附着力测试后的表面宏观形貌
图12  不同厚度的涂层经40℃浸泡不同时间并进行附着力测试后的表面宏观形貌
1 Dong Y H, Zhou Q. Relationship between ion transport and the failure behavior of epoxy resin coatings [J]. Corros. Sci., 2014, 78: 22
2 Chuang T J, Nguyen T, Lee S. Micro-mechanic model for cathodic blister growth in painted steel [J]. J. Coat. Technol., 1999, 71: 75
3 Inone P C, Garcia C M, Rúvolo-Filho A. Evaluating barrier properties of organic coatings by water permeation and electrochemical methods [J]. J. Coat. Technol., 2003, 75: 29
4 Martin J W, Nguyen T, Byrd E, et al. Relating laboratory and outdoor exposures of acrylic melamine coatings: I. Cumulative damage model and laboratory exposure apparatus [J]. Polym. Degrad. Stab., 2002, 75: 193
5 Brunner S, Richner P, Müller U, et al. Accelerated weathering device for service life prediction for organic coatings [J]. Polym. Test., 2005, 24: 25
6 Ochs H, Vogelsang J. Effect of temperature cycles on impedance spectra of barrier coatings under immersion conditions [J]. Electrochim. Acta, 2004, 49: 2973
7 Tahmassebi N, Moradian S, Mirabedini S M. Evaluation of the weathering performance of basecoat/clearcoat automotive paint systems by electrochemical properties measurements [J]. Prog. Org. Coat., 2005, 54: 384
8 Deyab M A, Ouarsal R, Al-Sabagh A M, et al. Enhancement of corrosion protection performance of epoxy coating by introducing newhydrogenphosphate compound [J]. Prog. Org. Coat., 2017, 107: 37
9 Cambier S M, Posner R, Frankel G S. Coating and interface degradation of coated steel, part 1: field exposure [J]. Electrochim. Acta, 2014, 133: 30
10 Cambier S M, Frankel G S. Coating and interface degradation of coated steel, part 2: accelerated laboratory tests [J]. Electrochim. Acta, 2014, 136: 442
11 Upadhyay V, Battocchi D. Localized electrochemical characterization of organic coatings: a brief review [J]. Prog. Org. Coat., 2016, 99: 365
12 Wang G R, Zheng H P, Cai H Y, et al. Failure process of epoxy coating subjected test of alternating immersion in artificial seawater and dry in air [J]. J. Chin. Soc. Corros. Prot., 2019, 39: 571
12 王贵容, 郑宏鹏, 蔡华洋 等. 环氧防腐涂料在模拟海水干湿交替条件下的失效过程 [J]. 中国腐蚀与防护学报, 2019, 39: 571
doi: 10.11902/1005.4537.2018.152
13 Weldon D G. Failure Analysis of Paints and Coatings [M]. Chichester: John Wiley & Sons Ltd., 2009: 9
14 Amirudin A, Thieny D. Application of electrochemical impedance spectroscopy to study the degradation of polymer-coated metals [J]. Prog. Org. Coat., 1995, 26: 1
15 Zhang J Q, Cao C N. Study and evaluation on organic coatings by electrochemical impedance spectroscopy [J]. Corros. Prot., 1998, 19: 99
15 张鉴清, 曹楚南. 电化学阻抗谱方法研究评价有机涂层 [J]. 腐蚀与防护, 1998, 19: 99
16 Le Thu Q, Takenouti H, Touzain S. EIS characterization of thick flawed organic coatings aged under cathodic protection in seawater [J]. Electrochim. Acta, 2006, 51: 2491
17 Bierwagen G P, Tallman D, Li J P, et al. EIS studies of coated metals in accelerated exposure [J]. Prog. Org. Coat., 2003, 46: 149
18 Ahadi M M, Attar M M. OCP measurement: a method to determine CPVC [J]. Sci. Iran., 2007, 14: 369
19 Murray J N. Electrochemical test methods for evaluating organic coatings on metals: an update. Part II: single test parameter measurements [J]. Prog. Org. Coat., 1997, 31: 255, doi: 10.1016/S0300-9440(97)00084-2
20 Cao J Y, Yang Y G, Fang Z G, et al. Failure behavior of fresh water tank coating in different water [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 209
20 曹京宜, 杨延格, 方志刚 等. 淡水舱涂层在不同水环境中的失效行为研究 [J]. 中国腐蚀与防护学报, 2021, 41: 209
doi: 10.11902/1005.4537.2021.008
21 Chen L, Liu H, Liu Z Q, et al. Thermal conductivity and anti-corrosion of epoxy resin based composite coatings doped with graphene and graphene oxide [J]. Composites, 2021, 5C: 100124
22 Kinsella E M, Mayne J E O. Ionic conduction in polymer films I. Influence of electrolyte on resistance [J]. Br. Polym. J., 1969, 1: 173
23 Mayne J E O, Scantlebury J D. Ionic conduction in polymer films: II. Inhomogeneous structure of varnish films [J]. Br. Polym. J., 1970, 2: 240
24 Jamali S S, Mills D J. Studying inhomogeneity of organic coatings using wire beam multielectrode and physicomechanical testing [J]. Corros. Eng. Sci. Technol., 2013, 48: 489
25 Van der Weijde D H. Impedance spectroscopy and organic barrier coatings; (im)possibilities [D]. Delft University of Technology, 1996
26 Cao J Y, Wang Z Q, Li L, et al. Failure mechanism of organic coating with modified graphene under simulated deep-sea alternating hydrostatic pressure [J]. J. Chin. Soc. Corros. Prot., 2020, 40: 139
26 曹京宜, 王智峤, 李 亮 等. 深海压力交变加速条件下改性石墨烯有机涂层的失效机制 [J]. 中国腐蚀与防护学报, 2020, 40: 139
doi: 10.11902/1005.4537.2019.224
27 Crank J. The Mathematics of Diffusion [M]. Oxford: Clarendon Press, 1975
28 Jeffcoate C S, Wocken T L, Bierwagen G P. Electrochemical assessment of spray-applied thermoplastic coating barrier properties [J]. J. Mater. Eng. Perform., 1997, 6: 417
[1] 吕晓明, 王震宇, 韩恩厚. 纳米改性环氧隔热涂层的制备及其耐蚀性研究[J]. 中国腐蚀与防护学报, 2024, 44(5): 1234-1242.
[2] 刘喆, 邓成满, 魏军胜, 夏大海. 涂覆有机涂层的镀锡薄钢板耐蒸煮性能电化学快速检测技术研究[J]. 中国腐蚀与防护学报, 2024, 44(4): 883-890.
[3] 傅江悦, 郭建喜, 杨延格, 冷哲, 王文. 单相流冲刷条件下一种低合金高强钢的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2024, 44(3): 585-600.
[4] 李卓玄, 曹艳辉, 李崇杰, 李辉, 张小明, 雍兴跃. 耦接件涂层失效程度与其力学损伤之间的关系[J]. 中国腐蚀与防护学报, 2024, 44(3): 679-690.
[5] 韩东晓, 纪文会, 王通, 王巍. 基于弛豫时间分布和有限元模拟的环氧涂层渗水行为研究[J]. 中国腐蚀与防护学报, 2024, 44(2): 489-496.
[6] 曹京宜, 李敬, 殷文昌, 孟凡帝, 刘莉. 组胺改性环氧树脂及其对有机涂层性能的影响[J]. 中国腐蚀与防护学报, 2024, 44(1): 151-158.
[7] 赵国仙, 刘冉冉, 丁浪勇, 张思琦, 郭梦龙, 王映超. 温度对5Cr钢在模拟油田高温高压环境中CO2 腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2024, 44(1): 175-186.
[8] 李春霖, 史洪微, 梁国平, 李丽, 王浩, 王伟, 刘福春, 韩恩厚. 高速列车用聚氨酯面漆耐蚀性能和老化机制研究[J]. 中国腐蚀与防护学报, 2023, 43(6): 1383-1391.
[9] 胡杰珍, 上官桔钰, 邓培昌, 冯绮蓝, 王贵, 王沛林. 基于阵列电极技术研究藤壶附着对Q235钢腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2023, 43(5): 1145-1150.
[10] 毛飞雄, 周羽婷, 姚文清, 沈翔, 肖龙, 李明辉. 基于PDM304不锈钢钝化膜生长动力学研究[J]. 中国腐蚀与防护学报, 2023, 43(4): 911-921.
[11] 刘明, 王杰, 朱春晖, 张延晓. 3D打印NiTi形状记忆合金在模拟不同口腔环境中电化学腐蚀行为研究[J]. 中国腐蚀与防护学报, 2023, 43(4): 781-786.
[12] 邓成满, 刘喆, 夏大海, 胡文彬. 5083-H111铝合金在模拟动态海水环境中的局部腐蚀机制[J]. 中国腐蚀与防护学报, 2023, 43(4): 683-692.
[13] 王通, 王巍. 聚二甲基硅氧烷涂层自修复过程中的弛豫时间分布研究[J]. 中国腐蚀与防护学报, 2023, 43(2): 337-344.
[14] 袁世成, 吴艳峰, 徐长慧, 王兴奇, 冷哲, 杨延格. 多羟基超分散剂对水性环氧涂层防腐性能的影响[J]. 中国腐蚀与防护学报, 2023, 43(2): 289-300.
[15] 毛英畅, 祝钰, 孙圣凯, 秦真波, 夏大海, 胡文彬. 5083铝合金在模拟海洋浪花飞溅区的局部腐蚀行为[J]. 中国腐蚀与防护学报, 2023, 43(1): 47-54.