Please wait a minute...
中国腐蚀与防护学报  2024, Vol. 44 Issue (5): 1274-1284     CSTR: 32134.14.1005.4537.2023.379      DOI: 10.11902/1005.4537.2023.379
  研究报告 本期目录 | 过刊浏览 |
Ag微合金化对Mg-Zn-Ca合金微观组织及腐蚀行为的影响
尹洁1, 高永浩1(), 易芳2
1 中南大学材料科学与工程学院 长沙 410083
2 中南大学湘雅口腔医学院 长沙 410000
Effect of Ag Micro-alloying on Microstructure and Corrosion Behavior of Mg-Zn-Ca Alloy
YIN Jie1, GAO Yonghao1(), YI Fang2
1 School of Materials Science and Engineering, Central South University, Changsha 410083, China
2 Hunan Xiangya Stomatological Hospital, Central South University, Changsha 410000, China
引用本文:

尹洁, 高永浩, 易芳. Ag微合金化对Mg-Zn-Ca合金微观组织及腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2024, 44(5): 1274-1284.
Jie YIN, Yonghao GAO, Fang YI. Effect of Ag Micro-alloying on Microstructure and Corrosion Behavior of Mg-Zn-Ca Alloy[J]. Journal of Chinese Society for Corrosion and protection, 2024, 44(5): 1274-1284.

全文: PDF(13992 KB)   HTML
摘要: 

采用OM、SEM、电化学测试和析氢失重等方法研究了Ag微合金化对铸态Mg-2Zn-0.2Ca合金微观组织和腐蚀行为的影响。研究表明,ZX20合金(1.63 ± 0.17 mm/a)耐蚀性强于含Ag的ZXQ200合金(4.06 ± 0.68 mm/a),这主要源于第二相和基体间的电位差差异。ZX20合金的枝晶臂间距(69.8 ± 24.9 μm)小于ZXQ200合金的枝晶臂间距(85.9 ± 23.9 μm),这可能是ZXQ200合金局部腐蚀深度更大的原因之一。两种合金均由α-Mg和Ca2Mg6Zn3相组成且第二相体积分数相近,未发现富Ag相。Ag在第二相中的偏聚使得第二相与基体的电位差从约60 mV(ZX20合金)增加到约200 mV (ZXQ200合金),提高了合金的微电偶腐蚀驱动力,导致合金点蚀孕育期缩短和局部腐蚀位点增加。

关键词 镁合金Ag第二相微电偶腐蚀    
Abstract

The effect of Ag micro-alloying on the microstructure and corrosion behavior of the as-casted Mg-2Zn-0.2Ca (ZX20) alloy were investigated by means of OM, SEM, electrochemical tests, and hydrogen evolution mass loss method. The results reveal that the addition of 0.5% (mass fraction) Ag affects adversely the corrosion resistance of ZX20 alloy. The corrosion rate increases from 1.63 ± 0.17 mm/a for the ZX20 alloy to 4.06 ± 0.68 mm/a for the Ag-containing alloy (ZXQ200), primarily due to the potential difference between the second phase and the matrix. The dendrite arm spacing of the ZX20 alloy (69.8 ± 24.9 μm) is smaller than that of the ZXQ200 alloy (85.9 ± 23.9 μm), potentially contributing to the greater local corrosion depth observed in the ZXQ200 alloy. The two alloys all consist of α-Mg and Ca2Mg6Zn3 phases with a similar volume fraction of the second phase, and no Ag-rich compounds have been detected for the Ag-alloyed ones. However, the Ag segregation in the second phase results in a heightened potential difference between the second phase and the substrate, elevating it from approximately 60 mV (ZX20) to about 200 mV (ZXQ200). This segregation enhances the micro-galvanic corrosion driving force in the ZXQ200 alloy, resulting in a shorter pitting gestation period and an increase in local corrosion sites.

Key wordsMg-alloy    Ag    second phase    micro-galvanic corrosion
收稿日期: 2023-11-28      32134.14.1005.4537.2023.379
ZTFLH:  T146.2  
基金资助:湖南省自然科学基金(2023JJ30673)
通讯作者: 高永浩,E-mail:yonghao.gao@outlook.com,研究方向为镁合金加工成形及表面防护
Corresponding author: GAO Yonghao, E-mail: yonghao.gao@outlook.com
作者简介: 尹 洁,女,1999年生,硕士生
AlloyAlloying elementImpurity element
MgZnCaAgFeCuNiSi
ZX20Bal.2.000.20-0.01100.00130.00080.0110
ZXQ200Bal.2.040.170.500.00910.00060.00270.0092
表1  实验合金的化学成分 (mass fraction / %)
图1  Mg-2Zn-0.2Ca-xAg合金四元相图的垂直截面和两种合金的XRD图谱
图2  ZX20和ZXQ200合金的金相和SEM图
AlloyPointMgZnCaAg
ZX20184.511.34.2-
284.911.83.3-
ZXQ200373.618.15.62.7
477.115.75.31.9
表2  图2中标记点的EDS结果
图3  ZX20和ZXQ200铸态合金的EPMA图
图4  ZX20和ZXQ200合金浸泡在37 ± 1℃恒温生理盐水中的析氢体积和析氢速率随时间的变化曲线
图5  ZX20和ZXQ200合金的开路电位曲线、阴极极化曲线和阳极极化曲线
Alloy

Ecorr

V vs SCE

Icorr

μA·cm-2

βc

mV

Pi

mm·a-1

ZX20-1.6459.40-226.781.36
ZXQ200-1.61172.00-261.173.93
表3  阴极极化曲线拟合结果
图6  ZX20和ZXQ200合金在37 ± 1℃的生理盐水中浸泡1 h后的电化学阻抗谱
Alloy

Rs

Ω·cm2

Rct

Ω·cm2

CPEct-T

μΩ-1·cm-2·s n

n1

Rf

Ω·cm2

CPEf-T

μΩ-1·cm-2·s n

n2

RL1

Ω·cm2

L1

H·cm2

RL2

Ω·cm2

L2

H·cm2

χ2
ZX208.21053.017.10.911194.0911.10.7812672.0157640.0--0.0052
ZXQ2005.1262.721.40.89---336.7586.410396.6450.088
表4  ZX20和ZXQ200合金的阻抗谱拟合结果
图7  ZX20和ZXQ200合金在37 ± 1℃的生理盐水中浸泡不同时间的宏观形貌及其腐蚀面积变化曲线图
图8  ZX20和ZXQ200合金在37 ± 1℃的生理盐水中浸泡30 min后的腐蚀形貌SEM图
图9  ZX20和ZXQ200合金在37±1℃的生理盐水中浸泡5 d后的腐蚀截面形貌
图10  ZX20和ZXQ200合金的SKPFM表面相对电势图及相应的电势变化曲线
1 Bairagi D, Mandal S. A comprehensive review on biocompatible Mg-based alloys as temporary orthopaedic implants: current status, challenges, and future prospects [J]. J. Magnes. Alloys, 2022, 10: 627
2 Kumar R, Katyal P. Effects of alloying elements on performance of biodegradable magnesium alloy [J]. Mater. Today: Proc., 2022, 56: 2443
3 Staiger M P, Pietak A M, Huadmai J, et al. Magnesium and its alloys as orthopedic biomaterials: a review [J]. Biomaterials, 2006, 27: 1728
doi: 10.1016/j.biomaterials.2005.10.003 pmid: 16246414
4 Yuan G Y, Zhang J, Ding W J. Research progress of Mg-based alloys as degradable biomedical materials [J]. Mater. China, 2011, 30(2): 44
4 袁广银, 张 佳, 丁文江. 可降解医用镁基生物材料的研究进展 [J]. 中国材料进展, 2011, 30(2): 44
5 Tan Z G, Zhou Q, Jiang Y G. Biodegradable magnesium alloy stents: disadvantages and research trends [J]. Chin. J. Tissue Eng. Res., 2015, 19: 1284
5 谭志刚, 周 倩, 蒋宇钢. 生物可降解镁合金血管支架: 缺点及未来研究趋势 [J]. 中国组织工程研究, 2015, 19: 1284
6 Duygulu O, Kaya R A, Oktay G, et al. Investigation on the potential of magnesium alloy AZ31 as a bone implant [J]. Mater. Sci. Forum, 2007, 546-549: 421
7 Feyerabend F, Fischer J, Holtz J, et al. Evaluation of short-term effects of rare earth and other elements used in magnesium alloys on primary cells and cell lines [J]. Acta Biomater., 2010, 6: 1834
doi: 10.1016/j.actbio.2009.09.024 pmid: 19800429
8 Lu Y, Bradshaw A R, Chiu Y L, et al. Effects of secondary phase and grain size on the corrosion of biodegradable Mg-Zn-Ca alloys [J]. Mater. Sci. Eng., 2015, 48C: 480
9 Ma Y Z, Yang C L, Liu Y J, et al. Microstructure, mechanical, and corrosion properties of extruded low-alloyed Mg-xZn-0.2Ca alloys [J]. Int. J. Miner. Metall. Mater., 2019, 26: 1274
10 Schäublin R E, Becker M, Cihova M, et al. Precipitation in lean Mg-Zn–Ca alloys [J]. Acta Mater., 2022, 239: 118223
11 Zander D, Zumdick N A. Influence of Ca and Zn on the microstructure and corrosion of biodegradable Mg-Ca-Zn alloys [J]. Corros. Sci., 2015, 93: 222
12 Zareian Z, Emamy M, Malekan M, et al. Tailoring the mechanical properties of Mg-Zn magnesium alloy by calcium addition and hot extrusion process [J]. Mater. Sci. Eng., 2022, 774A: 138929
13 Zhao L Q, Wang C, Chen J C, et al. Development of weak-textured and high-performance Mg-Zn-Ca alloy sheets based on Zn content optimization [J]. J. Alloy. Compd., 2020, 849: 156640
14 Zhang Y N, Kevorkov D, Li J, et al. Determination of the solubility range and crystal structure of the Mg-rich ternary compound in the Ca-Mg-Zn system [J]. Intermetallics, 2010, 18: 2404
15 Xing R, Yang X Y, Li A Y. Research on corrosion and mechanical properties of Mg-Zn-Ca magnesium alloy for medical application [J]. New Technol. New Process, 2020, (2): 6
15 邢 蕊, 杨晓宇, 李安阳. 医用Mg-Zn-Ca镁合金的腐蚀与力学性能研究 [J]. 新技术新工艺, 2020, (2): 6
16 Qian J Q. Study on the corrosion behavior of Mg-Al-Ca-Zn magnesium alloy in NaCl solution [D]. Changsha: Hunan University, 2020
16 钱嘉琦. Mg-Al-Ca-Zn镁合金在NaCl溶液中腐蚀行为研究 [D]. 长沙: 湖南大学, 2020
17 Davidović S, Lazić V, Miljković M, et al. Antibacterial ability of immobilized silver nanoparticles in agar-agar films co-doped with magnesium ions [J]. Carbohydr. Polym., 2019, 224: 115187
18 Lagashetty A, Pattar A, Ganiger S K. Synthesis, characterization and antibacterial study of Ag doped magnesium ferrite nanocomposite [J]. Heliyon, 2019, 5: e01760
19 Ramya M, Ravi K R. Biodegradable nanocrystalline Mg-Zn-Ca-Ag alloys as suitable materials for orthopedic implants [J]. Mater. Today: Proc., 2022, 58: 721
20 Yu L T, Zhao Z H, Tang C K, et al. The mechanical and corrosion resistance of Mg-Zn-Ca-Ag alloys: The influence of Ag content [J]. J. Mater. Res. Technol., 2020, 9: 10863
21 Ben-Hamu G, Eliezer D, Shin K S. Influence of Si, Ca and Ag addition on corrosion behaviour of new wrought Mg-Zn alloys [J]. Mater. Sci. Technol., 2006, 22: 1213
22 Yang L Z, Feng Y, He Y Q, et al. Effect of Sc/Sm microalloying on microstructural and properties of Mg-2Zn-0.3Ca biodegradable alloy [J]. J. Alloy. Compd., 2022, 907: 164533
23 Wang L, Feng Y C, Guo E J, et al. The corrosion characteristic of Mg-3Nd alloy without and with Al addition [J]. Mater. Res. Express, 2018, 5: 066513
24 Li Y J, Li M X, Hua Z M, et al. Role of alloyed Al on the microstructure and corrosion behavior of as-cast dilute Mg-2Zn-xAl-0.5Ca alloys [J]. Corros. Sci., 2023, 211: 110861
25 Wang B Y, Li M X, Li Y J, et al. Effect of Al/Mn ratio on corrosion behavior of lean Mg-Zn-Ca-Al-Mn alloy processed by twin-roll casting [J]. Corros. Sci., 2023, 212: 110938
26 Li Z. Study on the corrosion behavior of ZK60 magnesium alloys and methods to improve its anti-corrosion performance [D]. Wuhan: Huazhong University of Science & Technology, 2023
26 李 振. ZK60镁合金腐蚀行为及其耐蚀性改善方法研究 [D]. 武汉: 华中科技大学, 2023
27 Yin S Q, Duan W C, Liu W H, et al. Improving the corrosion resistance of MgZn1.2Gd x Zr0.18 (x = 0, 0.8, 1.4, 2.0) alloys via Gd additions [J]. Corros. Sci., 2020, 177: 108962
28 Ma K, Wang J F, Zheng W X, et al. The effect of solute segregated stacking faults on the corrosion behavior of Mg-Gd-Cu alloys [J]. Corros. Sci., 2022, 208: 110689
29 Song G L. Corrosion and Protection of Magnesium Alloy [M]. Beijing: Chemical Industry Press, 2006
29 宋光铃. 镁合金腐蚀与防护 [M]. 北京: 化学工业出版社, 2006
30 Duan G Q, Yang L X, Liao S J, et al. Designing for the chemical conversion coating with high corrosion resistance and low electrical contact resistance on AZ91D magnesium alloy [J]. Corros. Sci., 2018, 135: 197
31 Xu S Y, Jiang S N, Chen Z Y, et al. Influence of corrosion morphology on inductive impedance of Mg-Gd-Y-Zn-Zr-Ag alloy [J]. J. Mater. Eng. Perform., 2021, 30: 4126
32 Yang M. Study on the corrosion and mechanical properties of AM50 magnesium alloy [D]. Changchun: Jilin University, 2014
32 杨 淼. AM50镁合金腐蚀力学性能研究 [D]. 长春: 吉林大学, 2014
33 Fan Z M, Yu J, Song Y W, et al. Research progress of pitting corrosion of magnesium alloys [J]. J. Chin. Soc. Corros. Prot., 2018, 38: 317
33 樊志民, 于 锦, 宋影伟 等. 镁合金点蚀的研究进展 [J]. 中国腐蚀与防护学报, 2018, 38: 317
doi: 10.11902/1005.4537.2017.120
34 Feng X W, Qi W J, Li X H, et al. Microstructure and electrochemical corrosion properties of biomedical extruded Mg-Zn-Gd alloys [J]. J. Chin. Soc. Corros. Prot., 2016, 36: 267
34 冯晓伟, 戚文军, 黎小辉 等. 生物医用挤压态Mg-Zn-Gd镁合金的组织与耐电化学腐蚀性能 [J]. 中国腐蚀与防护学报, 2016, 36: 267
doi: 10.11902/1005.4537.2015.050
35 Feng Y F, Song Y Q, An Y. Microstructure and corrosion resistance of Mg-Zn-Mn alloy as-cast [J]. Heat Treat. Met., 2016, 41(10): 29
35 冯宇飞, 宋义全, 安 玥. Mg-Zn-Mn合金的铸态组织及耐腐蚀性 [J]. 金属热处理, 2016, 41(10): 29
36 Wang X G, Liu T, Li W L, et al. Effects of Cu and Ni elements on the microstructure and degradation properties of Mg-4Zn alloy [J]. Spec. Cast. Nonferrous Alloys, 2023, 43: 536
36 王小刚, 刘 涛, 李伟莉 等. Cu、Ni元素对Mg-4Zn合金显微组织及降解性能的影响 [J]. 特种铸造及有色合金, 2023, 43: 536
doi: 10.15980/j.tzzz.2023.04.020
37 Deng Z C, Sun J L, Hou L F, et al. Research on the influence of In content on corrosion behavior of Mg-In binary alloys [J]. J. Funct. Mater., 2022, 53: 12121
doi: 10.3969/j.issn.1001-9731.2022.12.016
37 邓志超, 孙俊丽, 侯利锋 等. In含量对Mg-In二元合金腐蚀行为的影响研究 [J]. 功能材料, 2022, 53: 12121
doi: 10.3969/j.issn.1001-9731.2022.12.016
38 Wang Z Y, Xu Y Z, Li J Y. Effects of trace Nd on microstructure, mechanical properties and corrosion resistance of Mg-2Zn-0.2Sr-0.6Zr-xNd biomaterials [J]. Spec. Cast. Nonferrous Alloys, 2021, 41: 1238
38 王祯寅, 徐玉召, 李静媛. 微量Nd对Mg-2Zn-0.2Sr-0.6Zr-xNd医用镁合金组织和性能的影响 [J]. 特种铸造及有色合金, 2021, 41: 1238
doi: 10.15980/j.tzzz.2021.10.012
[1] 田梦真, 王勇, 李涛, 汪川, 郭泉忠, 郭建喜. 电参数对AZ31B镁合金微弧氧化膜能耗及耐蚀性的影响[J]. 中国腐蚀与防护学报, 2024, 44(4): 1064-1072.
[2] 吴洋, 安易强, 王力伟, 崔中雨. 镁铝合金在模拟低温条件下大气腐蚀行为研究[J]. 中国腐蚀与防护学报, 2024, 44(4): 1001-1010.
[3] 朱慧文, 郑黎, 张昊, 于宝义, 崔志博. BeWE43镁合金高温氧化行为及阻燃性的影响[J]. 中国腐蚀与防护学报, 2024, 44(4): 1022-1028.
[4] 戴威, 刘园园, 涂闻芮, 孙阳庭, 李劲, 蒋益明. 外加电位下Ag/Sn电偶的腐蚀行为[J]. 中国腐蚀与防护学报, 2024, 44(3): 700-706.
[5] 黄居峰, 宋光铃. 镁合金腐蚀测试与分析研究进展[J]. 中国腐蚀与防护学报, 2024, 44(3): 519-528.
[6] 司伟婷, 张吉昊, 高荣杰. AZ31B镁合金超双疏表面的制备及其耐蚀性研究[J]. 中国腐蚀与防护学报, 2024, 44(2): 381-388.
[7] 宋东东, 万红霞, 徐栋, 周倩. 轧制对ZM5镁合金腐蚀性能的影响[J]. 中国腐蚀与防护学报, 2024, 44(1): 213-220.
[8] 孙硕, 代珈铭, 宋影伟, 艾彩娇. 挤压态EW75稀土镁合金在沈阳工业大气环境中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2024, 44(1): 141-150.
[9] 吴嘉豪, 吴量, 姚文辉, 袁媛, 谢治辉, 王敬丰, 潘复生. Mg-Gd-Y-Zn-Mn合金不同微弧氧化表面MgAlLa层状双羟基金属氧化物复合涂层的性能研究[J]. 中国腐蚀与防护学报, 2023, 43(4): 693-703.
[10] 黄志凤, 雍奇文, 房蕊, 谢治辉. AZ31镁合金表面超疏水耐腐蚀镍基复合涂层[J]. 中国腐蚀与防护学报, 2023, 43(4): 755-764.
[11] 骆晨, 吴雄, 宋汉强, 孙志华, 汤智慧. 海洋环境服役飞机发动机镁合金使用要求和研究方向分析[J]. 中国腐蚀与防护学报, 2023, 43(4): 787-794.
[12] 赵艳亮, 赵景茂. 层状双金属氢氧化物对镁合金的保护作用及自愈性能研究进展[J]. 中国腐蚀与防护学报, 2023, 43(1): 1-5.
[13] 吕鑫, 邓坤坤, 王翠菊, 聂凯波, 史权新, 梁伟. SiCp尺寸对铸态AZ91镁合金显微组织与腐蚀性能的影响[J]. 中国腐蚀与防护学报, 2023, 43(1): 135-142.
[14] 刘泽琪, 何潇潇, 祁康, 黄华良. AZ91D镁合金和2002铝合金在0.5 mg/L NaCl溶液中的电偶腐蚀行为研究[J]. 中国腐蚀与防护学报, 2022, 42(6): 1016-1026.
[15] 刘玉项, 徐安阳. AZ91镁合金和MAO涂层的点蚀行为研究[J]. 中国腐蚀与防护学报, 2022, 42(6): 1034-1042.