Please wait a minute...
中国腐蚀与防护学报  2023, Vol. 43 Issue (4): 755-764     CSTR: 32134.14.1005.4537.2023.143      DOI: 10.11902/1005.4537.2023.143
  中国腐蚀与防护学会杰出青年成就奖论文专栏 本期目录 | 过刊浏览 |
AZ31镁合金表面超疏水耐腐蚀镍基复合涂层
黄志凤, 雍奇文, 房蕊, 谢治辉()
西华师范大学化学化工学院 化学合成与污染控制四川省重点实验室 南充 637002
Superhydrophobic and Corrosion-resistant Nickel-based Composite Coating on Magnesium Alloy
HUANG Zhifeng, YONG Qiwen, FANG Rui, XIE Zhihui()
Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, China
全文: PDF(11570 KB)   HTML
摘要: 

结合化学沉积和电沉积技术,以动态氢气泡为模板,在AZ31镁合金表面制备了一种超疏水耐腐蚀的镍基复合涂层。涂层形貌、结构、组成、润湿性和腐蚀防护性能的表征结果表明,电沉积溶液中添加ZnO纳米粒子会改变多孔镍层的表面形貌,影响疏水能力。静态水接触角 (WCA) 测试表明,电沉积溶液中ZnO纳米粒子的浓度为5.0 g‧L-1时获得的电沉积镀层经硬脂酸改性后,具有最大的WCA值,达到160.8°±2.8°。相较于裸镁合金,该复合涂层腐蚀电位显著正移,腐蚀电流密度和电荷转移电阻分别降低和提升两个数量级以上,说明复合涂层对镁合金基底具备良好的腐蚀保护能力。

关键词 镁合金镍镀层纳米氧化锌电沉积超疏水    
Abstract

The superhydrophobic surface has excellent water repellency, which helps to enhance the corrosion protection performance of the coating. In this work, a superhydrophobic and corrosion-resistant nickel-based composite coating was prepared on the surface of AZ31 Mg-alloy by combining chemical deposition and electrodeposition techniques with dynamic hydrogen bubbles as a template. The microscopic morphology, structure, composition, wettability, and corrosion protection performance of the coating were characterized using scanning electron microscopy (SEM), energy spectrometry (EDS), X-ray diffractometer (XRD), Fourier infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), optical contact angle meter and electrochemical workstation. It was found that adding ZnO nanoparticles to the electrodeposition bath may change the surface morphology of the porous nickel layer and affect its hydrophobicity. The static water contact angle (WCA) tests revealed that the highest WCA value of 160.8°±2.8° was acquired for the composite coating prepared by electrodeposition in the electrolyte containing ZnO nanoparticles of 5.0 g·L-1 and then modified by stearic acid. Compared to the bare Mg-alloy, the composite coating's corrosion potential was positively shifted by -1.23 V to -0.32 V. The corrosion current density and charge transfer resistance were reduced and increased by more than two orders of magnitude, reaching 8.41 10-7 A·cm-2 and 72.79 kΩ·cm2 respectively, indicating the good corrosion protection ability of the composite coating to the Mg-alloy.

Key wordsMg-alloy    Ni-coating    nano-ZnO    electrodeposition    superhydrophobicity
收稿日期: 2023-05-09      32134.14.1005.4537.2023.143
ZTFLH:  TG174  
基金资助:国家自然科学基金(52271073)
通讯作者: 谢治辉,E-mail: zhxie@cwnu.edu.cn,研究方向为镁合金智能防腐涂层的制备与应用   
Corresponding author: XIE Zhi-Hui, E-mail: zhxie@cwnu.edu.cn   
作者简介: 黄志凤,女,1997年生,硕士生
谢治辉,1986 年出生,2013 年毕业于湖南大学,获博士学位。现就职于西华师范大学,教授。曾于2016 年 在美国SUNY at Binghamton 从事Postdoctoral Fellow 工作。现任化学合成与污染控制四川省重点实验室副 主任。谢治辉博士主要研究方向为镁合金的腐蚀与防护。提出并证明了高电位金属中间层实现光生阴极 保护对镁合金的间接防护;设计制备自修复功能金属、有机和无机镁合金防护涂层;获得反应条件与氢状 双金属氢氧化物 (LDHs) 成分、形貌、结构和耐腐蚀性能的关系;调控溶液中螯合剂、镁和铝离子浓度,实现 常压中低温镁合金耐腐蚀LDHs膜原位生长。主持国家自科基金 (面上/青年) 和四川省科技厅等国省级项 目近10 项。现任国家自然科学基金委、教育部科技发展中心等国省市科研项目和科技奖励评审专家、中国 腐蚀与防护学会青工会委员、四川省腐蚀与防护学会常务理事、IJMMM等SCI/EI 期刊青年编委和客座编辑、国际腐蚀大会学 术委员、CEJ等50 余本SCI 期刊审稿人。在ACS AMI和表面技术等SCI/EI 期刊发表学术论文近40 篇,第一发明人获授权发明 专利4 项。入选中国科协第四届青年人才托举工程,获省科技进步奖、省海外高层次留学人才和省腐蚀与防护学会青年科创人 才等荣誉和奖励。2023 年获得中国腐蚀与防护学会杰出青年成就奖。

引用本文:

黄志凤, 雍奇文, 房蕊, 谢治辉. AZ31镁合金表面超疏水耐腐蚀镍基复合涂层[J]. 中国腐蚀与防护学报, 2023, 43(4): 755-764.
HUANG Zhifeng, YONG Qiwen, FANG Rui, XIE Zhihui. Superhydrophobic and Corrosion-resistant Nickel-based Composite Coating on Magnesium Alloy. Journal of Chinese Society for Corrosion and protection, 2023, 43(4): 755-764.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2023.143      或      https://www.jcscp.org/CN/Y2023/V43/I4/755

图1  ENP/NZSA-2和ENP/NZSA-5复合镀层的SEM形貌和相应的EDS面扫描图
SampleNiZnCO
ENP/NZSA-281.9813.404.150.46
ENP/NZSA-565.7328.874.990.40
表 1  两种镀层表面不同元素的含量 (mass fraction / %)
图2  ENP,ENP/NZ-0,ENP/NZ-2和ENP/NZ-5复合涂层的XRD谱及ENP/NZSA-2和ENP/NZSA-5复合镀层的FT-IR光谱
图 3  ENP/NZSA-5涂层的高分辨XPS谱
图4  ENP/NZSA-5样品的SEM截面形貌以及EDS线扫和面扫结果
图5  ENP/NZSA-0,ENP/NZSA-2和ENP/NZSA-5的静态水接触角和ENP/NZSA-5复合镀层表面咖啡、牛奶、3.5% NaCl溶液、茶和去离子水的静态接触角以及相应形貌
图6  NP/NZSA-2和ENP/NZSA-5复合涂层在去离子水中浸入和取出过程的数码照片
图7  AZ31镁合金以及ENP、ENP/NZSA-2与ENP/NZSA-5涂层在3.5%NaCl溶液中的电化学阻抗谱及其等效电路图
Sample|Z|ƒ=0.01 HzkΩ·cm2RsΩ·cm2CPEc10-6 S·s n ·cm-2RckΩ·cm2CPEdl10-7 S·s n ·cm-2RctkΩ·cm2χ210-3
Mg-alloy0. 21832.04//102.800.321.53
ENP13.5426.2636.229.6578.4114.851.85
ENP/NZSA-239.8125.393.4314.7776.4035.053.87
ENP/NZSA-589.3826.401.0224.5667.3172.794.90
表2  AZ31镁合金以及ENP、ENP/NZSA-2与ENP/NZSA-5涂层的EIS拟合值
图8  AZ31镁合金和不同涂层在3.5%NaCl溶液中的Tafel曲线及相应的Ecorr和Icorr值
Sampleβa / mV·dec-1c / mV·dec-1Ecorr / VIcorr / A·cm-2
Mg-alloy/186.30-1.557.37×10-5
ENP410.90137.30-0.617.32×10-6
ENP/NZSA-2320.10154.60-0.492.04×10-6
ENP/NZSA-5/149.00-0.328.41×10-7
表3  AZ31镁合金和不同涂层的Tafel参数拟合值
1 Dai W L, Wang J H, Luo S, et al. Fabrication of super-hydrophobic surface on AM60 Mg-alloy and its corrosion resistance [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 301
1 代卫丽, 王景行, 罗 帅 等. AM60镁合金超疏水表面制备及防腐蚀性能的研究 [J]. 中国腐蚀与防护学报, 2022, 42: 301
doi: 10.11902/1005.4537.2021.088
2 Hu T, Ouyang Y J, Xie Z H, et al. One-pot scalable in situ growth of highly corrosion-resistant MgAl-LDH/MBT composite coating on magnesium alloy under mild conditions [J]. J. Mater. Sci. Technol., 2021, 92: 225
doi: 10.1016/j.jmst.2021.03.021
3 Ouyang Y J, Hu T, Wang J Y, et al. Electrochemical deposition and characterization of layered double hydroxide film on magnesium alloys [J]. J. Chin. Soc. Corros. Prot., 2019, 39: 453
3 欧阳跃军, 胡 婷, 王佳音 等. 镁合金表面层状双氢氧化物的电化学沉积和表征 [J]. 中国腐蚀与防护学报, 2019, 39: 453
doi: 10.11902/1005.4537.2019.178
4 Yang G L, Ouyang Y J, Xie Z H, et al. Nickel interlayer enables indirect corrosion protection of magnesium alloy by photoelectrochemical cathodic protection [J]. Appl. Surf. Sci., 2021, 558: 149840
doi: 10.1016/j.apsusc.2021.149840
5 Liu L, Zhang X F, Lei J L, et al. Self-cleaning and self-healing protective coating on magnesium alloy [J]. Surf. Technol., 2019, 48 (3) : 27
5 刘 雷, 张新芳, 雷惊雷 等. 镁合金表面自清洁、自修复防护膜研究 [J]. 表面技术, 2019, 48(3) : 27
6 Seifzadeh D, Kazemi Mohsenabadi H, Rajabalizadeh Z, Electroless Ni-P plating on magnesium alloy by innovative, simple and non-toxic oxalate pretreatment and its corrosion protection [J]. RSC Adv., 2016, 6: 97241
doi: 10.1039/C6RA19984D
7 Shoghi P, Seifzadeh D, Gholizadeh-Gheshlaghi M, et al. Pretreatment-free Ni-P plating on magnesium alloy at low temperatures [J]. Trans. Nonferrous Met. Soc. China, 2018, 28: 2478
doi: 10.1016/S1003-6326(18)64894-0
8 Cai Y R, Wang X D, Liu J J, et al. Electroless Ni-Cu-P/Ni-P composite coatings on magnesium alloys and anti-corrosion mechanisms [J]. Surf. Technol., 2019, 48(3): 47
8 蔡毅仁, 王旭东, 刘俊珺 等. 镁合金化学镀Ni-Cu-P/Ni-P复合镀层及腐蚀防护机理研究 [J]. 表面技术, 2019, 48(3): 47
9 Li Y Q, Ouyang Y J, Fang R, et al. A nickel-underlayer/LDH-midlayer/siloxane-toplayer composite coating for inhibiting galvanic corrosion between Ni layer and Mg alloy [J]. Chem. Eng. J., 2022, 430: 132776
doi: 10.1016/j.cej.2021.132776
10 Yao W H, Wu L, Huang G S, et al. Superhydrophobic coatings for corrosion protection of magnesium alloys [J]. J. Mater. Sci. Technol., 2020, 52: 100
doi: 10.1016/j.jmst.2020.02.055
11 Huang W, Huang J X, Guo Z G, et al. Icephobic/anti-icing properties of superhydrophobic surfaces [J]. Adv. Colloid Interface Sci., 2022, 304: 102658
doi: 10.1016/j.cis.2022.102658
12 Xia T, He X Q, Zhang Q X, et al. Simple and rapid fabrication and properties of superhydrophobic coatings on the surface [J]. Surf. Technol., 2022, 51(10): 328
12 夏 天, 何秀权, 章桥新 等. 简易快速的表面超疏水涂层制备及其性能 [J]. 表面技术, 2022, 51(10): 328
13 Fang R, Liu R J, Xie Z H, et al. Corrosion-resistant and superhydrophobic nickel-phosphorus/nickel/PFDTMS triple-layer coating on magnesium alloy [J]. Surf. Coat. Technol., 2022, 432: 128054
doi: 10.1016/j.surfcoat.2021.128054
14 Ntelia E, Karapanagiotis I. Superhydrophobic paraloid B72 [J]. Prog. Org. Coat., 2020, 139: 105224
15 Zhou Z Y, Ma B Y, Zhang X, et al. Enhanced corrosion resistance and self-cleaning properties of superhydrophobic nickel coating fabricated by one-step electrodeposition [J]. Ceram. Int., 2023, 49: 13109
doi: 10.1016/j.ceramint.2022.12.188
16 Wang Z H, Li Y C, Zhang G J. Hydrogen bubble-templated electrodeposition of superhydrophobic Zn-Ni films [J]. New J. Chem., 2023, 47: 844
doi: 10.1039/D2NJ05478G
17 Ma F L, Shen L L, Zeng Z X. Fabricating a slippery porous nickel coating based on the hydrogen bubble template method for corrosion protection with self-healing property [J]. Surf. Topogr.: Metrol. Prop., 2022, 10: 045004
18 Comisso N, Armelao L, Cattarin S, et al. Porous oxide electrocatalysts for oxygen evolution reaction prepared through a combination of hydrogen bubble templated deposition, oxidation and galvanic displacement steps [J]. Electrochim. Acta, 2018, 273: 454
doi: 10.1016/j.electacta.2018.04.069
19 Park Y S, Choi W S, Jang M J, et al. Three-dimensional dendritic Cu-Co-P electrode by one-step electrodeposition on a hydrogen bubble template for hydrogen evolution reaction [J]. ACS Sustainable Chem. Eng., 2019, 7: 10734
doi: 10.1021/acssuschemeng.9b01426
20 Reda Y, Abdel-Karim R, Zohdy K M, et al. Electrochemical behavior of Ni-Cu foams fabricated by dynamic hydrogen bubble template electrodeposition used for energy applications [J]. Ain Shams Eng. J., 2022, 13: 101532
doi: 10.1016/j.asej.2021.06.018
21 Liu B, Yan S M, He Y, et al. Research for electrodeposited superhydrophobic Ni-W-WS2 coating and its anticorrosion and wear resistance [J]. Colloids Surf. A, 2022, 655: 130236
doi: 10.1016/j.colsurfa.2022.130236
22 Salehi M, Mozammel M, Emarati S M. Superhydrophobic and corrosion resistant properties of electrodeposited Ni-TiO2/TMPSi nanocomposite coating [J]. Colloids Surf. A, 2019, 573: 196
doi: 10.1016/j.colsurfa.2019.04.024
23 Yan Q Q, Zhou S G, Li Q F, et al. Superhydrophobic surface by SiO2 particle modified SiO2-Ni/a-C: H film deposition and superior corrosion protection [J]. Surf. Topogr.: Metrol. Prop., 2019, 7: 014003
24 Huang Z F, Yong Q W, Xie Z H. Stearic acid modified porous nickel-based coating on magnesium alloy AZ31 for high superhydrophobicity and corrosion resistance [J]. Corros. Commun., 2023, 10: 38
doi: 10.1016/j.corcom.2022.09.002
25 Wang S Y, Hou C, Wu M X, et al. Effect of choline chloride on electrodeposited superhydrophobic nickel film and the corrosion protection application [J]. Colloids Surf. A, 2021, 614: 126185
doi: 10.1016/j.colsurfa.2021.126185
26 Movahedi T, Norouzbeigi R. Synthesis of flower-like micro/nano ZnO superhydrophobic surfaces: additive effect optimization via designed experiments [J]. J. Alloy. Compd., 2019, 795: 483
doi: 10.1016/j.jallcom.2019.04.343
27 Feng Y C, Chen S G, Cheng Y F, Stearic acid modified zinc nano-coatings with superhydrophobicity and enhanced antifouling performance [J]. Surf. Coat. Technol., 2018, 340: 55
doi: 10.1016/j.surfcoat.2018.02.053
28 Mohamed M E, Ezzat A, Abdel-Gaber A M. Fabrication of eco-friendly graphene-based superhydrophobic coating on steel substrate and its corrosion resistance, chemical and mechanical stability [J]. Sci. Rep., 2022, 12: 10530
doi: 10.1038/s41598-022-14353-0 pmid: 35732683
29 Bai H, Zhang L, Gu D. Calcium stearate nanoparticles as building blocks for mechanically durable superhydrophobic coatings [J]. Mater. Chem. Phys., 2023, 294: 127040
doi: 10.1016/j.matchemphys.2022.127040
30 Feng Z B, Ren L L, Zhang J Q, et al. Effect of additives on the corrosion mechanism of nanocrystalline zinc-nickel alloys in an alkaline bath [J]. RSC Adv., 2016, 6: 88469
doi: 10.1039/C6RA18476F
31 Ouyang Y J, Huang Z F, Fang R, et al. Silica nanoparticles enhanced polysiloxane-modified nickel-based coatings on Mg alloy for robust superhydrophobicity and high corrosion resistance [J]. Surf. Coat. Technol., 2022, 450: 128995
doi: 10.1016/j.surfcoat.2022.128995
32 Hussain M M, Kunwar A, Majeed M K, et al. Superhydrophobic surface and lubricant-infused surface: implementing two extremes on electrodeposited Ni-TiO2 surface to drive optimal wettability regimes for droplets' multifunctional behaviors [J]. Adv. Eng. Mater., 2021, 23: 2100266
doi: 10.1002/adem.v23.10
33 Kuld S, Conradsen C, Moses P G, et al. Quantification of zinc atoms in a surface alloy on copper in an industrial-type methanol synthesis catalyst [J]. Angew. Chem., 2014, 126: 6051
doi: 10.1002/ange.201311073
34 Li R Q, Gao Q H, Dong Q J, et al. Template-free electrodeposition of ultra-high adhesive superhydrophobic Zn/Zn stearate coating with ordered hierarchical structure from deep eutectic solvent [J]. Surf. Coat. Technol., 2020, 403: 126267
doi: 10.1016/j.surfcoat.2020.126267
35 Morales C, del Campo A, Méndez J, et al. Re-oxidation of ZnO clusters grown on HOPG [J]. Coatings, 2020, 10: 401
doi: 10.3390/coatings10040401
36 Feliu Jr S, Barranco V. XPS study of the surface chemistry of conventional hot-dip galvanised pure Zn, galvanneal and Zn-Al alloy coatings on steel [J]. Acta Mater., 2003, 51: 5413
doi: 10.1016/S1359-6454(03)00408-7
37 Zhang X, Ding B, Bian Y F, et al. Synthesis of superhydrophobic surfaces with Wenzel and Cassie-Baxter state: experimental evidence and theoretical insight [J]. Nanotechnology, 2018, 29: 485601
doi: 10.1088/1361-6528/aae187
38 Lou C, Zhang R, Lu X, et al. Facile fabrication of epoxy/polybenzoxazine based superhydrophobic coating with enhanced corrosion resistance and high thermal stability [J]. Colloids Surf. A, 2019, 562: 8
doi: 10.1016/j.colsurfa.2018.10.066
39 Wang P, Zhang D, Qiu R, et al. Super-hydrophobic metal-complex film fabricated electrochemically on copper as a barrier to corrosive medium [J]. Corros. Sci., 2014, 83: 317
doi: 10.1016/j.corsci.2014.02.028
40 Li L X, Xie Z H, Fernandez C, et al. Development of a thiophene derivative modified LDH coating for Mg alloy corrosion protection [J]. Electrochim. Acta, 2020, 330: 135186
doi: 10.1016/j.electacta.2019.135186
41 Xu L, Yang X N, Fu X, et al. Fluorinated epoxy based superhydrophobic coating with robust self-healing and anticorrosive performances [J]. Prog. Org. Coat., 2022, 171: 107045
[1] 陈惠敏, 王帅星, 张骐, 詹中伟, 杜楠. 5,5-二甲基乙内酰脲配位体系中银的电沉积行为研究[J]. 中国腐蚀与防护学报, 2023, 43(4): 896-902.
[2] 骆晨, 吴雄, 宋汉强, 孙志华, 汤智慧. 海洋环境服役飞机发动机镁合金使用要求和研究方向分析[J]. 中国腐蚀与防护学报, 2023, 43(4): 787-794.
[3] 吴嘉豪, 吴量, 姚文辉, 袁媛, 谢治辉, 王敬丰, 潘复生. Mg-Gd-Y-Zn-Mn合金不同微弧氧化表面MgAlLa层状双羟基金属氧化物复合涂层的性能研究[J]. 中国腐蚀与防护学报, 2023, 43(4): 693-703.
[4] 陈异凡, 孟凡帝, 曲优异, 方芷晴, 刘莉, 王福会. 超疏水聚苯胺胶囊的一步可控合成及其对有机涂层防腐性能的影响[J]. 中国腐蚀与防护学报, 2023, 43(2): 345-351.
[5] 连衍成, 梁富源, 贺建超, 李瑨, 武俊伟, 冷雪松. 超疏水聚四氟乙烯材料制备工艺的研究进展[J]. 中国腐蚀与防护学报, 2023, 43(2): 231-241.
[6] 吕鑫, 邓坤坤, 王翠菊, 聂凯波, 史权新, 梁伟. SiCp尺寸对铸态AZ91镁合金显微组织与腐蚀性能的影响[J]. 中国腐蚀与防护学报, 2023, 43(1): 135-142.
[7] 赵艳亮, 赵景茂. 层状双金属氢氧化物对镁合金的保护作用及自愈性能研究进展[J]. 中国腐蚀与防护学报, 2023, 43(1): 1-5.
[8] 罗为平, 罗雪, 石悦婷, 王新潮, 张胜涛, 高放, 李红茹. Q235钢表面的超疏水吸附层形成与缓蚀研究[J]. 中国腐蚀与防护学报, 2022, 42(6): 903-912.
[9] 刘泽琪, 何潇潇, 祁康, 黄华良. AZ91D镁合金和2002铝合金在0.5 mg/L NaCl溶液中的电偶腐蚀行为研究[J]. 中国腐蚀与防护学报, 2022, 42(6): 1016-1026.
[10] 刘玉项, 徐安阳. AZ91镁合金和MAO涂层的点蚀行为研究[J]. 中国腐蚀与防护学报, 2022, 42(6): 1034-1042.
[11] 黄连鹏, 张欣, 熊伊铭, 陶嘉豪, 王泽华, 周泽华. 不同磁场强度下铝镁合金腐蚀行为研究[J]. 中国腐蚀与防护学报, 2022, 42(5): 833-838.
[12] 田卫平, 郭良帅, 王宇航, 周鹏, 张涛. Cu/Ag活化对微弧氧化涂层表面化学镀层生长及耐蚀性能的影响[J]. 中国腐蚀与防护学报, 2022, 42(4): 573-582.
[13] 杨延格, 曹京宜, 王兴奇, 方志刚, 于宏飞, 于宝兴, 王福会. 轻合金锆/钛基转化膜的设计及性能研究[J]. 中国腐蚀与防护学报, 2022, 42(3): 387-394.
[14] 刘煊煊, 于金山, 高燕, 赵鹏, 王启伟, 杜卓玲, 张俊喜. APTES改性蒙脱土对镁合金表面杂化溶胶-凝胶涂层防护性能的影响[J]. 中国腐蚀与防护学报, 2022, 42(3): 464-470.
[15] 杨欣宇, 杨云天, 卢小鹏, 张涛, 王福会. 镁合金缓蚀剂研究进展[J]. 中国腐蚀与防护学报, 2022, 42(3): 435-440.