|
|
AZ91镁合金和MAO涂层的点蚀行为研究 |
刘玉项( ), 徐安阳 |
陆军装甲兵学院 装备再制造技术国防科技重点实验室 北京 100072 |
|
Characterization of Pitting Corrosion Behavior of AZ91 Mg-alloy without and with MAO Coating |
LIU Yuxiang( ), XU Anyang |
National Key Laboratory for Remanufacturing of China, Academy of Army Armored Force, Beijing 100072, China |
引用本文:
刘玉项, 徐安阳. AZ91镁合金和MAO涂层的点蚀行为研究[J]. 中国腐蚀与防护学报, 2022, 42(6): 1034-1042.
Yuxiang LIU,
Anyang XU.
Characterization of Pitting Corrosion Behavior of AZ91 Mg-alloy without and with MAO Coating[J]. Journal of Chinese Society for Corrosion and protection, 2022, 42(6): 1034-1042.
[1] |
Chen Z N, Yong X Y, Chen X C. Micro-defects in micro-arc oxidation coatings on Mg-alloys [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 1
|
[1] |
(陈振宁, 雍兴跃, 陈晓春. 镁合金微弧氧化膜中微缺陷问题研究进展 [J]. 中国腐蚀与防护学报, 2022, 42: 1)
|
[2] |
Wang Z Q, Xu C X, Yang L J, et al. Microstructure and corrosion resistance of medical degradable Mg-2Y-1Zn-xZr alloy [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 113
|
[2] |
(王中琪, 许春香, 杨丽景 等. 医用可降解Mg-2Y-1Zn-xZr合金微观组织和耐蚀性能研究 [J]. 中国腐蚀与防护学报, 2022, 42: 113)
|
[3] |
Liu Y X, Zhu S, Han B Y. Research progress in anodic hydrogen evolution of magnesium electrochemistry corrosion [J]. J. Mater. Eng., 2020, 48(10): 17
|
[3] |
(刘玉项, 朱胜, 韩冰源. 金属镁电化学腐蚀阳极析氢行为研究进展 [J]. 材料工程, 2020, 48(10): 17)
|
[4] |
Esmaily M, Svensson J E, Fajardo S, et al. Fundamentals and advances in magnesium alloy corrosion [J]. Prog. Mater. Sci., 2017, 89: 92
doi: 10.1016/j.pmatsci.2017.04.011
|
[5] |
Yang J, Yim C D, You B S. Characteristics of surface films formed on Mg-Sn alloys in NaCl solution [J]. J. Electrochem. Soc., 2016, 163: C395
doi: 10.1149/2.0161608jes
|
[6] |
Fan Z M, Yu J, Song Y W, et al. Research progress of pitting corrosion of magnesium alloys [J]. J. Chin. Soc. Corros. Prot., 2018, 38: 317
|
[6] |
(樊志民, 于锦, 宋影伟 等. 镁合金点蚀的研究进展 [J]. 中国腐蚀与防护学报, 2018, 38: 317)
|
[7] |
Ding Z Y, Cui L Y, Zeng R C, et al. Exfoliation corrosion of extruded Mg-Li-Ca alloy [J]. J. Mater. Sci. Technol., 2018, 34: 1550
doi: 10.1016/j.jmst.2018.05.014
|
[8] |
Neil W C, Forsyth M, Howlett P C, et al. Corrosion of magnesium alloy ZE41-The role of microstructural features [J]. Corros. Sci., 2009, 51: 387
doi: 10.1016/j.corsci.2008.11.005
|
[9] |
Song Y W, Shan D Y, Han E H. Pitting corrosion of a rare earth Mg alloy GW93 [J]. J. Mater. Sci. Technol., 2017, 33: 954
doi: 10.1016/j.jmst.2017.01.014
|
[10] |
Liu J H, Song Y W, Chen J C, et al. The special role of anodic second phases in the micro-galvanic corrosion of EW75 Mg alloy [J]. Electrochim. Acta, 2016, 189: 190
doi: 10.1016/j.electacta.2015.12.075
|
[11] |
Dong C F, An Y H, Li X G, et al. Electrochemical performance of initial corrosion of 7A04 aluminium alloy in marine atmosphere [J]. Chin. J. Nonferrous Met., 2009, 19: 346
|
[11] |
(董超芳, 安英辉, 李晓刚 等. 7A04铝合金在海洋大气环境中初期腐蚀的电化学特性 [J]. 中国有色金属学报, 2009, 19: 346)
|
[12] |
Chen L, Chen J, Su Y. Study on pitting and corrosion inhibition of AZ63 magnesium alloy in sodium chloride solution [J]. Surf. Technol., 2013, 42(5): 24
|
[12] |
(陈琳, 陈静, 苏洋. AZ63镁合金在氯化钠溶液中的孔蚀及缓蚀研究 [J]. 表面技术, 2013, 42(5): 24)
|
[13] |
Martin H J, Horstemeyer M F, Wang P T. Comparison of corrosion pitting under immersion and salt-spray environments on an as-cast AE44 magnesium alloy [J]. Corros. Sci., 2010, 52: 3624
doi: 10.1016/j.corsci.2010.07.009
|
[14] |
Martin H J, Horstemeyer M F, Wang P T. Structure-property quantification of corrosion pitting under immersion and salt-spray environments on an extruded AZ61 magnesium alloy [J]. Corros. Sci., 2011, 53: 1348
doi: 10.1016/j.corsci.2010.12.025
|
[15] |
Song G L, Atrens A. Corrosion mechanisms of magnesium alloys [J]. Adv. Eng. Mater., 1999, 1: 11
doi: 10.1002/(SICI)1527-2648(199909)1:1<11::AID-ADEM11>3.0.CO;2-N
|
[16] |
Gobara M, Shamekh M, Akid R. Improving the corrosion resistance of AZ91D magnesium alloy through reinforcement with titanium carbides and borides [J]. J. Magne. Alloy., 2015, 3: 112
|
[17] |
Williams G, Grace R. Chloride-induced filiform corrosion of organic-coated magnesium [J]. Electrochim. Acta, 2011, 56: 1894
doi: 10.1016/j.electacta.2010.09.005
|
[18] |
Li T, Zhang H, He Y, et al. Comparison of corrosion behavior of Mg-1.5Zn-0.6Zr and AZ91D alloys in a NaCl solution [J]. Mater. Corros., 2015, 66: 7
|
[19] |
Esmailzadeh S, Aliofkhazraei M, Sarlak H. Interpretation of cyclic potentiodynamic polarization test results for study of corrosion behavior of metals: A review [J]. Prot. Met. Phys. Chem. Surf., 2018, 54: 976
doi: 10.1134/S207020511805026X
|
[20] |
Liu Y X, Liu Z, Xu A Y, et al. Understanding pitting corrosion behavior of AZ91 alloy and its MAO coating in 3.5%NaCl solution by cyclic potentiodynamic polarization [J]. J. Magnes. Alloy., 2022, 10: 1368
doi: 10.1016/j.jma.2020.12.005
|
[21] |
He J G, Wen J B, Sun L M, et al. Characterization of pitting behavior of pure Al and Al-7Zn-0.1Sn-0.015Ga alloy by cyclic polarization technique [J]. Corros. Sci. Prot. Technol., 2015, 27: 449
|
[21] |
(贺俊光, 文九巴, 孙乐民 等. 用循环极化曲线研究Al和铝合金的点蚀行为 [J]. 腐蚀科学与防护技术, 2015, 27: 449)
|
[22] |
Sherif E S M. Corrosion behavior of magnesium in naturally aerated stagnant seawater and 3.5% sodium chloride solutions [J]. Int. J. Electrochem. Sci., 2012, 7: 4235
|
[23] |
Song G L, Atrens A, Stjohn D, et al. The electrochemical corrosion of pure magnesium in 1 N NaCl [J]. Corros. Sci., 1997, 39: 855
doi: 10.1016/S0010-938X(96)00172-2
|
[24] |
Brunner J G, May J, Höppel H W, et al. Localized corrosion of ultrafine-grained Al-Mg model alloys [J]. Electrochim. Acta, 2010, 55: 1966
doi: 10.1016/j.electacta.2009.11.016
|
[25] |
Hou R Q, Ye C Q, Chen C D, et al. Localized corrosion of binary Mg-Ca alloy in 0.9 wt% sodium chloride solution [J]. Acta Metall. Sin. (Engl. Lett.), 2016, 29: 46
doi: 10.1007/s40195-015-0361-2
|
[26] |
Ascencio M, Pekguleryuz M, Omanovic S. An investigation of the corrosion mechanisms of WE43 Mg alloy in a modified simulated body fluid solution: The influence of immersion time [J]. Corros. Sci., 2014, 87: 489
doi: 10.1016/j.corsci.2014.07.015
|
[27] |
Taheri M, Phillips R C, Kish J R, et al. Analysis of the surface film formed on Mg by exposure to water using a FIB cross-section and STEM-EDS [J]. Corros. Sci., 2012, 59: 222
doi: 10.1016/j.corsci.2012.03.001
|
[28] |
Vermilyea D A, Kirk C F. Studies of inhibition of magnesium corrosion [J]. J. Electrochem. Soc., 1969, 116: 1487
doi: 10.1149/1.2411579
|
[29] |
Jamesh M I, Wu G S, Zhao Y, et al. Electrochemical corrosion behavior of biodegradable Mg-Y-RE and Mg-Zn-Zr alloys in Ringer's solution and simulated body fluid [J]. Corros. Sci., 2015, 91: 160
doi: 10.1016/j.corsci.2014.11.015
|
[30] |
Wang L, Shinohara T, Zhang B P. Influence of chloride, sulfate and bicarbonate anions on the corrosion behavior of AZ31 magnesium alloy [J]. J. Alloy. Compd., 2010, 496: 500
doi: 10.1016/j.jallcom.2010.02.088
|
[31] |
Cao C N. Principles of Electrochemistry of Corrosion [M]. 3rd ed. Beijing: Chemical Industry Press, 2008: 36
|
[31] |
(曹楚南. 腐蚀电化学原理 [M]. 第3版. 北京: 化学工业出版社, 2008: 36)
|
[32] |
Südholz A D, Kirkland N T, Buchheit R G, et al. Electrochemical properties of intermetallic phases and common impurity elements in magnesium alloys [J]. Electrochem. Solid-State Lett., 2011, 14: C5
doi: 10.1149/1.3523229
|
[33] |
Williams G, Birbilis N, McMurray H N. The source of hydrogen evolved from a magnesium anode [J]. Electrochem. Commun., 2013, 36: 1
doi: 10.1016/j.elecom.2013.08.023
|
[34] |
Salleh S H, Thomas S, Yuwono J A, et al. Enhanced hydrogen evolution on Mg(OH)2 covered Mg surfaces [J]. Electrochim. Acta, 2015, 161: 144
doi: 10.1016/j.electacta.2015.02.079
|
[35] |
Birbilis N, King A D, Thomas S, et al. Evidence for enhanced catalytic activity of magnesium arising from anodic dissolution [J]. Electrochim. Acta, 2014, 132: 277
doi: 10.1016/j.electacta.2014.03.133
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|