Please wait a minute...
中国腐蚀与防护学报  2022, Vol. 42 Issue (6): 1034-1042          DOI: 10.11902/1005.4537.2021.320
  研究报告 本期目录 | 过刊浏览 |
AZ91镁合金和MAO涂层的点蚀行为研究
刘玉项(), 徐安阳
陆军装甲兵学院 装备再制造技术国防科技重点实验室 北京 100072
Characterization of Pitting Corrosion Behavior of AZ91 Mg-alloy without and with MAO Coating
LIU Yuxiang(), XU Anyang
National Key Laboratory for Remanufacturing of China, Academy of Army Armored Force, Beijing 100072, China
引用本文:

刘玉项, 徐安阳. AZ91镁合金和MAO涂层的点蚀行为研究[J]. 中国腐蚀与防护学报, 2022, 42(6): 1034-1042.
Yuxiang LIU, Anyang XU. Characterization of Pitting Corrosion Behavior of AZ91 Mg-alloy without and with MAO Coating[J]. Journal of Chinese Society for Corrosion and protection, 2022, 42(6): 1034-1042.

全文: PDF(6385 KB)   HTML
摘要: 

采用循环极化曲线研究了AZ91镁合金及其表面微弧氧化 (MAO) 涂层在3.5%NaCl溶液中的点蚀行为。采用光学显微镜和扫描电镜观察循环极化不同阶段的点蚀形貌,探讨了点蚀在AZ91镁合金和MAO涂层上的萌生和扩展机制。结果表明,合金上点蚀倾向于在α-Mg相上萌生,而涂层上点蚀在多孔结构和裂纹处萌生,合金和涂层上点蚀的初始形态均为开口的“火山口”形貌。合金上点蚀坑中沉积一层腐蚀产物层对点蚀产生一定钝化效果,导致了点蚀在合金上横向扩展。而涂层上点蚀造成涂层的剥离和腐蚀产物的溶解,无法对点蚀形成钝化效果,导致点蚀在涂层上向纵深扩展。点蚀在循环极化过程中持续扩展的微观形貌验证了合金和涂层的循环极化曲线上出现正的滞后环,而不同的点蚀扩展现象也验证了涂层上较大的滞后环面积。

关键词 AZ91镁合金MAO涂层循环极化曲线腐蚀形貌和产物点蚀萌生及扩展    
Abstract

The use of micro-arc oxidation (MAO) coating is a promising approach for controlling corrosion for Mg alloys. However, MAO coating and the underneath Mg-alloy substrate are constantly threatened by pitting corrosion. In order to reveal the relevant mechanism, the pitting corrosion behavior of AZ91 Mg alloy without and with MAO coating was studied via cyclic potentiodynamic polarization (CPDP) test. Meanwhile, the pitting corrosion morphology and corrosion products at different CPDP stages were characterized by means of optical microscope (OM), scanning electron microscope (SEM) and energy dispersive X-ray (EDS) spectroscope. Results show that pits initiate on α-Mg phase rather than on β phase for AZ91 Mg alloy, however, they initiate around pores and cracks on MAO-coating. The initial pits show a volcano-like morphology for both the alloy and the coating. Moreover, inside the pits on the alloy there is a corrosion products film, which act as protective barrier for the substrate, as a result, pits on the alloy widened with time. By comparison, corrosion products of poor protectiveness exfoliate and dissolve inside the pits on the MAO coating, thus, where pits grow deeper with time. The morphology evolution of pits validates the positive hysteresis loops that exist on CPDP curves for both the alloy and coating, and can also explain the larger area of the positive hysteresis loop on the MAO coating. Overall, the MAO-coated alloy might fail without proper post-treatments due to the severe pitting corrosion, therefore, it is necessary to conduct pore sealing treatment for MAO coating to provide a promising corrosion protectiveness for Mg alloys.

Key wordsAZ91 Mg-alloy    MAO coating    cyclic potentiodynamic polarization    corrosion morphology and products    pits initiation and propagation
收稿日期: 2021-11-09     
ZTFLH:  TG174.41  
基金资助:装备再制造技术国防科技重点实验室基金(614005180101)
作者简介: 刘玉项,男,1988年生,博士,助理研究员
图1  MAO涂层表面/截面的SEM微观形貌和EDS面扫描元素分布
图2  AZ91镁合金和MAO涂层XRD谱
图3  AZ91镁合金和MAO涂层在3.5%NaCl溶液中的开路电位曲线
图4  AZ91镁合金和MAO涂层在3.5%NaCl溶液中开路电位测试之后的循环极化曲线
SampleA1/A2B1/B2C1/C2
ESHE / VI / A·cm-2ESHE / VI / A·cm-2ESHE / VI / A·cm-2
AZ91 Mg-alloy-1.339-1.192×10-5-1.1296.004×10-3-1.2634.253×10-3
Ecorr vs SHEfor.=-1.329 V, Ecorr vs SHEback.=-1.463 V
MAO coating-1.2706.153×10-7-1.0162.637×10-3-1.27141.56×10-3
Ecorr vs SHEfor.=-1.216 V, Ecorr vs SHEback.=-1.471 V
表1  AZ91镁合金和MAO涂层循环极化曲线上A,B和C点的电位和电流密度
图5  AZ91镁合金和MAO涂层的循环极化曲线上A,B和C三点对应的腐蚀形貌及实时氢气释放情况
图6  AZ91镁合金和MAO涂层的循环极化曲线上A,B和C三点的表面腐蚀形貌
图7  AZ91镁合金和MAO涂层的循环极化曲线上A,B和C三点的截面腐蚀形貌
图8  AZ91镁合金和MAO涂层的循环极化曲线上B1和B2点的SEM表面腐蚀形貌和EDS面扫描
图9  AZ91镁合金和MAO涂层的循环极化曲线上B1和B2点XRD谱
[1] Chen Z N, Yong X Y, Chen X C. Micro-defects in micro-arc oxidation coatings on Mg-alloys [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 1
[1] (陈振宁, 雍兴跃, 陈晓春. 镁合金微弧氧化膜中微缺陷问题研究进展 [J]. 中国腐蚀与防护学报, 2022, 42: 1)
[2] Wang Z Q, Xu C X, Yang L J, et al. Microstructure and corrosion resistance of medical degradable Mg-2Y-1Zn-xZr alloy [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 113
[2] (王中琪, 许春香, 杨丽景 等. 医用可降解Mg-2Y-1Zn-xZr合金微观组织和耐蚀性能研究 [J]. 中国腐蚀与防护学报, 2022, 42: 113)
[3] Liu Y X, Zhu S, Han B Y. Research progress in anodic hydrogen evolution of magnesium electrochemistry corrosion [J]. J. Mater. Eng., 2020, 48(10): 17
[3] (刘玉项, 朱胜, 韩冰源. 金属镁电化学腐蚀阳极析氢行为研究进展 [J]. 材料工程, 2020, 48(10): 17)
[4] Esmaily M, Svensson J E, Fajardo S, et al. Fundamentals and advances in magnesium alloy corrosion [J]. Prog. Mater. Sci., 2017, 89: 92
doi: 10.1016/j.pmatsci.2017.04.011
[5] Yang J, Yim C D, You B S. Characteristics of surface films formed on Mg-Sn alloys in NaCl solution [J]. J. Electrochem. Soc., 2016, 163: C395
doi: 10.1149/2.0161608jes
[6] Fan Z M, Yu J, Song Y W, et al. Research progress of pitting corrosion of magnesium alloys [J]. J. Chin. Soc. Corros. Prot., 2018, 38: 317
[6] (樊志民, 于锦, 宋影伟 等. 镁合金点蚀的研究进展 [J]. 中国腐蚀与防护学报, 2018, 38: 317)
[7] Ding Z Y, Cui L Y, Zeng R C, et al. Exfoliation corrosion of extruded Mg-Li-Ca alloy [J]. J. Mater. Sci. Technol., 2018, 34: 1550
doi: 10.1016/j.jmst.2018.05.014
[8] Neil W C, Forsyth M, Howlett P C, et al. Corrosion of magnesium alloy ZE41-The role of microstructural features [J]. Corros. Sci., 2009, 51: 387
doi: 10.1016/j.corsci.2008.11.005
[9] Song Y W, Shan D Y, Han E H. Pitting corrosion of a rare earth Mg alloy GW93 [J]. J. Mater. Sci. Technol., 2017, 33: 954
doi: 10.1016/j.jmst.2017.01.014
[10] Liu J H, Song Y W, Chen J C, et al. The special role of anodic second phases in the micro-galvanic corrosion of EW75 Mg alloy [J]. Electrochim. Acta, 2016, 189: 190
doi: 10.1016/j.electacta.2015.12.075
[11] Dong C F, An Y H, Li X G, et al. Electrochemical performance of initial corrosion of 7A04 aluminium alloy in marine atmosphere [J]. Chin. J. Nonferrous Met., 2009, 19: 346
[11] (董超芳, 安英辉, 李晓刚 等. 7A04铝合金在海洋大气环境中初期腐蚀的电化学特性 [J]. 中国有色金属学报, 2009, 19: 346)
[12] Chen L, Chen J, Su Y. Study on pitting and corrosion inhibition of AZ63 magnesium alloy in sodium chloride solution [J]. Surf. Technol., 2013, 42(5): 24
[12] (陈琳, 陈静, 苏洋. AZ63镁合金在氯化钠溶液中的孔蚀及缓蚀研究 [J]. 表面技术, 2013, 42(5): 24)
[13] Martin H J, Horstemeyer M F, Wang P T. Comparison of corrosion pitting under immersion and salt-spray environments on an as-cast AE44 magnesium alloy [J]. Corros. Sci., 2010, 52: 3624
doi: 10.1016/j.corsci.2010.07.009
[14] Martin H J, Horstemeyer M F, Wang P T. Structure-property quantification of corrosion pitting under immersion and salt-spray environments on an extruded AZ61 magnesium alloy [J]. Corros. Sci., 2011, 53: 1348
doi: 10.1016/j.corsci.2010.12.025
[15] Song G L, Atrens A. Corrosion mechanisms of magnesium alloys [J]. Adv. Eng. Mater., 1999, 1: 11
doi: 10.1002/(SICI)1527-2648(199909)1:1<11::AID-ADEM11>3.0.CO;2-N
[16] Gobara M, Shamekh M, Akid R. Improving the corrosion resistance of AZ91D magnesium alloy through reinforcement with titanium carbides and borides [J]. J. Magne. Alloy., 2015, 3: 112
[17] Williams G, Grace R. Chloride-induced filiform corrosion of organic-coated magnesium [J]. Electrochim. Acta, 2011, 56: 1894
doi: 10.1016/j.electacta.2010.09.005
[18] Li T, Zhang H, He Y, et al. Comparison of corrosion behavior of Mg-1.5Zn-0.6Zr and AZ91D alloys in a NaCl solution [J]. Mater. Corros., 2015, 66: 7
[19] Esmailzadeh S, Aliofkhazraei M, Sarlak H. Interpretation of cyclic potentiodynamic polarization test results for study of corrosion behavior of metals: A review [J]. Prot. Met. Phys. Chem. Surf., 2018, 54: 976
doi: 10.1134/S207020511805026X
[20] Liu Y X, Liu Z, Xu A Y, et al. Understanding pitting corrosion behavior of AZ91 alloy and its MAO coating in 3.5%NaCl solution by cyclic potentiodynamic polarization [J]. J. Magnes. Alloy., 2022, 10: 1368
doi: 10.1016/j.jma.2020.12.005
[21] He J G, Wen J B, Sun L M, et al. Characterization of pitting behavior of pure Al and Al-7Zn-0.1Sn-0.015Ga alloy by cyclic polarization technique [J]. Corros. Sci. Prot. Technol., 2015, 27: 449
[21] (贺俊光, 文九巴, 孙乐民 等. 用循环极化曲线研究Al和铝合金的点蚀行为 [J]. 腐蚀科学与防护技术, 2015, 27: 449)
[22] Sherif E S M. Corrosion behavior of magnesium in naturally aerated stagnant seawater and 3.5% sodium chloride solutions [J]. Int. J. Electrochem. Sci., 2012, 7: 4235
[23] Song G L, Atrens A, Stjohn D, et al. The electrochemical corrosion of pure magnesium in 1 N NaCl [J]. Corros. Sci., 1997, 39: 855
doi: 10.1016/S0010-938X(96)00172-2
[24] Brunner J G, May J, Höppel H W, et al. Localized corrosion of ultrafine-grained Al-Mg model alloys [J]. Electrochim. Acta, 2010, 55: 1966
doi: 10.1016/j.electacta.2009.11.016
[25] Hou R Q, Ye C Q, Chen C D, et al. Localized corrosion of binary Mg-Ca alloy in 0.9 wt% sodium chloride solution [J]. Acta Metall. Sin. (Engl. Lett.), 2016, 29: 46
doi: 10.1007/s40195-015-0361-2
[26] Ascencio M, Pekguleryuz M, Omanovic S. An investigation of the corrosion mechanisms of WE43 Mg alloy in a modified simulated body fluid solution: The influence of immersion time [J]. Corros. Sci., 2014, 87: 489
doi: 10.1016/j.corsci.2014.07.015
[27] Taheri M, Phillips R C, Kish J R, et al. Analysis of the surface film formed on Mg by exposure to water using a FIB cross-section and STEM-EDS [J]. Corros. Sci., 2012, 59: 222
doi: 10.1016/j.corsci.2012.03.001
[28] Vermilyea D A, Kirk C F. Studies of inhibition of magnesium corrosion [J]. J. Electrochem. Soc., 1969, 116: 1487
doi: 10.1149/1.2411579
[29] Jamesh M I, Wu G S, Zhao Y, et al. Electrochemical corrosion behavior of biodegradable Mg-Y-RE and Mg-Zn-Zr alloys in Ringer's solution and simulated body fluid [J]. Corros. Sci., 2015, 91: 160
doi: 10.1016/j.corsci.2014.11.015
[30] Wang L, Shinohara T, Zhang B P. Influence of chloride, sulfate and bicarbonate anions on the corrosion behavior of AZ31 magnesium alloy [J]. J. Alloy. Compd., 2010, 496: 500
doi: 10.1016/j.jallcom.2010.02.088
[31] Cao C N. Principles of Electrochemistry of Corrosion [M]. 3rd ed. Beijing: Chemical Industry Press, 2008: 36
[31] (曹楚南. 腐蚀电化学原理 [M]. 第3版. 北京: 化学工业出版社, 2008: 36)
[32] Südholz A D, Kirkland N T, Buchheit R G, et al. Electrochemical properties of intermetallic phases and common impurity elements in magnesium alloys [J]. Electrochem. Solid-State Lett., 2011, 14: C5
doi: 10.1149/1.3523229
[33] Williams G, Birbilis N, McMurray H N. The source of hydrogen evolved from a magnesium anode [J]. Electrochem. Commun., 2013, 36: 1
doi: 10.1016/j.elecom.2013.08.023
[34] Salleh S H, Thomas S, Yuwono J A, et al. Enhanced hydrogen evolution on Mg(OH)2 covered Mg surfaces [J]. Electrochim. Acta, 2015, 161: 144
doi: 10.1016/j.electacta.2015.02.079
[35] Birbilis N, King A D, Thomas S, et al. Evidence for enhanced catalytic activity of magnesium arising from anodic dissolution [J]. Electrochim. Acta, 2014, 132: 277
doi: 10.1016/j.electacta.2014.03.133
[1] 吕鑫, 邓坤坤, 王翠菊, 聂凯波, 史权新, 梁伟. SiCp尺寸对铸态AZ91镁合金显微组织与腐蚀性能的影响[J]. 中国腐蚀与防护学报, 2023, 43(1): 135-142.
[2] 戴芸,刘胜胆,邓运来,张新明. 7020铝合金在3.5%NaCl溶液中的点蚀行为[J]. 中国腐蚀与防护学报, 2017, 37(3): 279-286.
[3] 苗伟行,胡文彬,高志明,孔宪刚,赵茹,唐军务. 304不锈钢在海洋环境混凝土模拟液中的腐蚀行为[J]. 中国腐蚀与防护学报, 2016, 36(6): 543-548.
[4] 孙擎擎,周文辉,谢跃煌,董朋轩,陈康华,陈启元. 微量Cl-和温度对7150-T76铝合金电化学腐蚀性能的影响[J]. 中国腐蚀与防护学报, 2016, 36(2): 121-129.
[5] 潘太军, 汪涛. AZ91镁合金表面合成聚苯胺涂层及其腐蚀性能研究[J]. 中国腐蚀与防护学报, 2014, 34(6): 489-494.
[6] 黄发,陈健,王俭秋. 铸造AZ91镁合金在CO32-/HCO3-体系中的应力腐蚀行为[J]. 中国腐蚀与防护学报, 2010, 30(5): 347-353.