|
|
耦接件涂层失效程度与其力学损伤之间的关系 |
李卓玄1, 曹艳辉1, 李崇杰1, 李辉2, 张小明2, 雍兴跃1( ) |
1.北京化工大学 有机无机复合材料国家重点实验室 北京 100029 2.中国航空工业集团公司第一飞机设计研究院 西安 710089 |
|
Relationship Between Corrosion Failure Degree of Organic Coatings and Mechanical Properties for Dissimilar Metal Assamblies |
LI Zhuoxuan1, CAO Yanhui1, LI Chongjie1, LI Hui2, ZHANG Xiaoming2, YONG Xingyue1( ) |
1. State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China 2. AVIC Xi'an Aircraft Design and Research Institute, Xi'an 710089, China |
引用本文:
李卓玄, 曹艳辉, 李崇杰, 李辉, 张小明, 雍兴跃. 耦接件涂层失效程度与其力学损伤之间的关系[J]. 中国腐蚀与防护学报, 2024, 44(3): 679-690.
Zhuoxuan LI,
Yanhui CAO,
Chongjie LI,
Hui LI,
Xiaoming ZHANG,
Xingyue YONG.
Relationship Between Corrosion Failure Degree of Organic Coatings and Mechanical Properties for Dissimilar Metal Assamblies[J]. Journal of Chinese Society for Corrosion and protection, 2024, 44(3): 679-690.
1 |
Mogoda A S, Ahmad Y H, Badawy W A. Corrosion behaviour of Ti-6Al-4V alloy in concentrated hydrochloric and sulphuric acids [J]. J. Appl. Electrochem., 2004, 34: 873
doi: 10.1023/B:JACH.0000040447.26482.bd
|
2 |
Song D J, Niu L, Yang S L. Research on application technology of titanium alloy in marine pipeline [J]. Rare Met. Mater. Eng., 2020, 49: 1100
|
2 |
宋德军, 牛 龙, 杨胜利. 船舶海水管路钛合金应用技术研究 [J]. 稀有金属材料与工程, 2020, 49: 1100
|
3 |
Zhao P P, Song Y W, Dong K H, et al. Effect of passive film on the galvanic corrosion of titanium alloy Ti60 coupled to copper alloy H62 [J]. Mater. Corros., 2019, 70: 1745
|
4 |
Liu J H, Shi J X, Li S M. Effects of electroplated coatings on corrosion behavior of Ti-1023/30CrMnSiA galvanic couple [J]. J. Wuhan Univ. Technol.-Mater. Sci. Ed., 2008, 23: 704
doi: 10.1007/s11595-007-5704-z
|
5 |
Li C J, Lan P, Li H, et al. Research on coupling metal corrosion induced by titanium alloy [A]. Summary Collection of the tenth National Corrosion Conference [C]. Nanchang, 2019
|
5 |
李崇杰, 蓝 飘, 李 辉 等. 钛合金引起的耦接金属腐蚀研究 [A]. 第十届全国腐蚀大会摘要集 [C]. 南昌, 2019
|
6 |
Zhang W Y. Progress in research on galvanic corrosion behavior and protection [J]. Total Corros. Control, 2018, 32(12): 51
|
6 |
张文毓. 电偶腐蚀与防护的研究进展 [J]. 全面腐蚀控制, 2018, 32(12): 51
|
7 |
Luan H, Meng F D, Liu L, et al. Preparation and anticorrosion performance of M-phenylenediamine-graphene oxide/organic coating [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 161
|
7 |
栾 浩, 孟凡帝, 刘 莉 等. 间苯二胺-氧化石墨烯/有机涂层的制备及防腐性能研究 [J]. 中国腐蚀与防护学报, 2021, 41: 161
|
8 |
Zou W J, Ding L, Zhang X J, et al. Epoxy/organosiloxane modified cationic acrylic emulsion composite coating [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 922
|
8 |
邹文杰, 丁 立, 张雪姣 等. 环氧树脂/有机硅氧烷改性阳离子丙烯酸乳液复合涂层的研究 [J]. 中国腐蚀与防护学报, 2023, 43: 922
doi: 10.11902/1005.4537.2022.279
|
9 |
Silva R S, Ferreira J Z, Meneguzzi A. Anticorrosive acrylic intelligent paint [J]. Chem. Pap., 2020, 74: 631
doi: 10.1007/s11696-019-00909-4
|
10 |
Yu Y, Zuo Y X, Zhang Z H, et al. Al2O3 coatings on zinc for anti-corrosion in alkaline solution by electrospinning [J]. Coatings, 2019, 9: 692
doi: 10.3390/coatings9110692
|
11 |
Zhang C L, He Y, Xu Z H, et al. Fabrication of Fe3O4@SiO2 nanocomposites to enhance anticorrosion performance of epoxy coatings [J]. Polym. Adv. Technol., 2016, 27: 740
doi: 10.1002/pat.3707
|
12 |
Jafarzadeh S, Claesson P M, Pan J S, et al. Direct measurement of colloidal interactions between polyaniline surfaces in a UV-curable coating formulation: the effect of surface hydrophilicity/hydrophobicity and resin composition [J]. Langmuir, 2014, 30: 1045
doi: 10.1021/la4035062
pmid: 24400981
|
13 |
Liu M, Mao X H, Zhu H, et al. Water and corrosion resistance of epoxy-acrylic-amine waterborne coatings: effects of resin molecular weight, polar group and hydrophobic segment [J]. Corros. Sci., 2013, 75: 106
doi: 10.1016/j.corsci.2013.05.020
|
14 |
Pugazhenthi I, Safiullah S M, Basha K A. UV and corrosion protective behavior of polymer hybrid coating on mild steel [J]. J. Appl. Polym. Sci., 2018, 135: 46175
doi: 10.1002/app.v135.16
|
15 |
Luo X H, Zhong J W, Zhou Q L, et al. Cationic reduced graphene oxide as self-aligned nanofiller in the epoxy nanocomposite coating with excellent anticorrosive performance and its high antibacterial activity [J]. ACS Appl. Mater. Interfaces, 2018, 10: 18400
doi: 10.1021/acsami.8b01982
|
16 |
Othman N H, Ismail M C, Mustapha M, et al. Graphene-based polymer nanocomposites as barrier coatings for corrosion protection [J]. Prog. Org. Coat., 2019, 135: 82
doi: 10.1016/j.porgcoat.2019.05.030
|
17 |
Rondinella A, Offoiach R, Andreatta F, et al. Development of a warning system for defects onset in organic coatings on large surfaces [J]. Prog. Org. Coat., 2023, 179: 107528
|
18 |
Liu L, Shao Z Y, Jia T Y, et al. Research progress on application of halloysite nanotubes for modification of smart anti-corrosion coating [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 523
|
18 |
刘 玲, 邵紫雅, 贾天越 等. 埃洛石纳米管负载改性及其在智能防腐涂层中的应用研究进展 [J]. 中国腐蚀与防护学报, 2022, 42: 523
|
19 |
Nazari M H, Shi X M. Polymer-based nanocomposite coatings for anticorrosion applications [A]. HosseiniM, MakhloufA S H. Industrial Applications for Intelligent Polymers and Coatings [M]. Cham: Springer, 2016: 373
|
20 |
Nazari M H, Zhang Y, Mahmoodi A, et al. Nanocomposite organic coatings for corrosion protection of metals: a review of recent advances [J]. Prog. Org. Coat., 2022, 162: 106573
|
21 |
Teng L, Chen X. Research progress of galvanic corrosion in marine environment [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 531
|
21 |
滕 琳, 陈 旭. 海洋环境中金属电偶腐蚀研究进展 [J]. 中国腐蚀与防护学报, 2022, 42: 531
|
22 |
Mansfeld F, Kenkel J V. Electrochemical measurements of time-of-wetness and atmospheric corrosion rates [J]. Corrosion, 1977, 33: 13
doi: 10.5006/0010-9312-33.1.13
|
23 |
Mansfeld F, Kendig M W, Tsai S. Evaluation of corrosion behavior of coated metals with AC impedance measurements [J]. Corrosion, 1982, 38: 478
doi: 10.5006/1.3577363
|
24 |
Salmasifar A, Sarabi A A, Mohammadloo H E. Anticorrosive performance of epoxy/clay nanocomposites pretreated by hexafluorozirconic acid based conversion coating on St12 [J]. Corros. Eng. Sci. Technol., 2015, 50: 372
doi: 10.1179/1743278214Y.0000000233
|
25 |
Lee C Y, Lee S K, Park J H, et al. Novel approach to correlate degree of surface deterioration to coating impedance for laboratory test panels coated with two types of primers [J]. Corros. Eng. Sci. Technol.: Int. J. Corros. Processes Corros., 2012, 47: 411
|
26 |
Kendig M, Scully J. Basic aspects of electrochemical impedance application for the life prediction of organic coatings on metals [J]. Corrosion, 1990, 46: 22
doi: 10.5006/1.3585061
|
27 |
Kim I T, Itoh Y. Accelerated exposure tests as evaluation tool for estimating life of organic coatings on steel bridges [J]. Corros. Eng. Sci. Technol., 2007, 42: 242
doi: 10.1179/174327807X214833
|
28 |
Lee C Y, Chang T. Service life prediction for steel bridge coatings with type of coating systems [J]. J. Korean Soc. Steel Construct., 2016, 28: 325
doi: 10.7781/kjoss.2016.28.5.325
|
29 |
Guseva O, Brunner S, Richner P. Service life prediction for aircraft coatings [J]. Polym. Degrad. Stab., 2013, 82: 1
doi: 10.1016/S0141-3910(03)00124-1
|
30 |
Hirohata M, Takemi J, Itoh Y. Corrosion accelerated exposure experiment simulating under seawater environment for organic coated steel materials [J]. Corros. Eng. Sci. Technol., 2015, 50: 449
doi: 10.1179/1743278214Y.0000000238
|
31 |
Zhang J Q, Cao C N. Study and evaluation on organic coatings by electrochemical impedance spectroscopy [J]. Corros. Prot., 1998, 19: 99
|
31 |
张鉴清, 曹楚南. 电化学阻抗谱方法研究评价有机涂层 [J]. 腐蚀与防护, 1998, 19: 99
|
32 |
Liu L, Cui Y, Li Y, et al. Failure behavior of nano-SiO2 fillers epoxy coating under hydrostatic pressure [J]. Electrochim. Acta, 2012, 62: 42
doi: 10.1016/j.electacta.2011.11.067
|
33 |
Papadopoulos M P, Apostolopoulos C A, Alexopoulos N D, et al. Effect of salt spray corrosion exposure on the mechanical performance of different technical class reinforcing steel bars [J]. Mater. Des., 2007, 28: 2318
doi: 10.1016/j.matdes.2006.07.017
|
34 |
Brunner-Schwer C, Petrat T, Graf B, et al. Highspeed-plasma-laser-cladding of thin wear resistance coatings: a process approach as a hybrid metal deposition-technology [J]. Vacuum, 2019, 166: 123
doi: 10.1016/j.vacuum.2019.05.003
|
35 |
Saaty R W. The analytic hierarchy process—what it is and how it is used [J]. Math. Modell., 1987, 9: 161
doi: 10.1016/0270-0255(87)90473-8
|
36 |
Chan H K, Sun X T, Chung S H. when should fuzzy analytic hierarchy process be used instead of analytic hierarchy process? [J]. Decis. Support Syst., 2019, 125: 113114
doi: 10.1016/j.dss.2019.113114
|
37 |
Yong X Y, Hu X Y, Jiang L, et al. Damage assessment of the corrosion-resistant performances for organic coating systems after accelerated tests using analytic hierarchy process [J]. Eng. Failure Anal., 2018, 93: 1
doi: 10.1016/j.engfailanal.2018.06.015
|
38 |
Duan H Y, Tang G X, Sheng J, et al. A novel prediction model for fatigue strength [J]. J. ShangHai Jiao Tong Univ., 2022, 56: 801
|
38 |
段红燕, 唐国鑫, 盛 捷 等. 一种新型的疲劳强度预测模型 [J]. 上海交通大学学报, 2022, 56: 801
doi: 10.16183/j.cnki.jsjtu.2021.051
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|