Please wait a minute...
中国腐蚀与防护学报  2024, Vol. 44 Issue (3): 679-690     CSTR: 32134.14.1005.4537.2023.370      DOI: 10.11902/1005.4537.2023.370
  研究报告 本期目录 | 过刊浏览 |
耦接件涂层失效程度与其力学损伤之间的关系
李卓玄1, 曹艳辉1, 李崇杰1, 李辉2, 张小明2, 雍兴跃1()
1.北京化工大学 有机无机复合材料国家重点实验室 北京 100029
2.中国航空工业集团公司第一飞机设计研究院 西安 710089
Relationship Between Corrosion Failure Degree of Organic Coatings and Mechanical Properties for Dissimilar Metal Assamblies
LI Zhuoxuan1, CAO Yanhui1, LI Chongjie1, LI Hui2, ZHANG Xiaoming2, YONG Xingyue1()
1. State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
2. AVIC Xi'an Aircraft Design and Research Institute, Xi'an 710089, China
引用本文:

李卓玄, 曹艳辉, 李崇杰, 李辉, 张小明, 雍兴跃. 耦接件涂层失效程度与其力学损伤之间的关系[J]. 中国腐蚀与防护学报, 2024, 44(3): 679-690.
Zhuoxuan LI, Yanhui CAO, Chongjie LI, Hui LI, Xiaoming ZHANG, Xingyue YONG. Relationship Between Corrosion Failure Degree of Organic Coatings and Mechanical Properties for Dissimilar Metal Assamblies[J]. Journal of Chinese Society for Corrosion and protection, 2024, 44(3): 679-690.

全文: PDF(8954 KB)   HTML
摘要: 

以300M钢,2024和5A06铝合金涂层体系作为实验材料,采用不同的耦接模式将其与钛合金耦接,并依次进行了湿热、盐雾和霉菌加速实验。然后,利用层次分析法(AHP),分析建立了有机涂层失效综合评价模型,并通过电化学阻抗谱(EIS)对评价结果进行了验证。最后,利用万能拉伸试验机,测试了加速实验后涂层样品的力学性能,建立了涂层失效程度与其力学性能损伤之间的关系。结果表明,经过加速实验之后,耦接涂层样品的抗拉强度和断裂延伸率均出现一定程度的下降,且其下降程度与耦接方式有关。同时,经过加速实验之后,涂层样品力学性能与其综合评价结果呈明显的负相关关系。

关键词 耦接件加速实验有机涂层失效电化学阻抗谱力学性能    
Abstract

As one of the most common methods for galvanic corrosion control, organic coating has wildly used in an aerospace field. However, the failure of organic coatings often leads to the deterioration of mechanical properties of the dissimilar metal assemblies. In this work, selected organic coatings were applied on plates of 300M steel, 2024, and 5A06 Al-alloy respectively, then which were coupled with Ti-alloy plate by different modes. Afterwards, the dissimilar metal assemblies were subjected to lab accelerated tests in conditions of hot-humid, with mucedine, and of salt-spray in succession. Then, the acquired test results were analyzed and a comprehensive evaluation model for organic coating failures was established according to the so-called “Analytic Hierarchy Process (AHP)”, and which was verified by the measured results of electrochemical impedance spectroscopy (EIS) of the above assmeblies after lab accelerated tests. Furthermore, the mechanical properties of the dissimilar metal assemblies were examined by using a universal tensile testing machine after accelerated tests, and so that the relationship between the failure degree of organic coatings and damage degree of mechanical property of the dissimilar metal assemblies was established. The results indicate that the tensile strength and fracture elongation of the assemblies decrease to a certain degree after accelerated tests, which depend on the coupling modes. Meanwhile, there is a significant negative correlation between the mechanical properties and the comprehensive evaluation values for the dissimilar metal assemblies.

Key wordscoupled specimen    accelerated test    organic coating failure    electrochemical impedance spectroscopy    mechanical property
收稿日期: 2023-11-20      32134.14.1005.4537.2023.370
ZTFLH:  TG174.46  
基金资助:国家自然科学基金(52171062)
通讯作者: 雍兴跃,E-mail:yongxy@mail.buct.edu.cn,研究方向为腐蚀电化学
Corresponding author: YONG Xingyue, E-mail: yongxy@mail.buct.edu.cn
作者简介: 李卓玄,男,1995年生,博士生
MaterialCSiMnNiCrMoVPSCuMgZnSnZrNbFeAlTi
300M steel0.421.570.821.930.840.380.080.010.010.84-----Bal.--
2024 Al-alloy-0.500.52-0.104.101.450.25----Bal.-
5A06 Al-alloy-0.200.62------0.086.230.12---0.01Bal.0.05
TC12 Ti-alloy----1.262.84------1.801.821.960.156.25Bal.
表1  300M钢、2024与5A06铝合金以及TC12钛合金的化学成分
图1  涂层样品示意图
图2  钛合金与对偶材料的耦接方式示意图
SampleSpecimen type and the connecting method
1Coated 300M steel specimen without accelerated tests
2-4Single coated 300M steel specimen after accelerated tests
5-7Coated 300M steel specimen directed coupled with Ti-alloy
8-10Coated 300M steel specimen coupled with Ti-alloy by an insulating method
11Coated 2024 Al-alloy specimen without accelerated tests
12-14Single coated 2024 Al-alloy specimen after accelerated tests
15-17Coated 2024 Al-alloy specimen directed coupled with Ti-alloy
18-20Coated 5A06 Al-alloy specimen coupled with Ti alloy by an insulating method
21Coated 5A06 Al-alloy specimen without accelerated tests
22-24Single coated 5A06 Al-alloy specimen after accelerated tests
25-27Coated 5A06 Al-alloy specimen directed coupled with Ti-alloy
28-30Coated 300M steel specimen coupled with Ti-alloy by an insulating method
表2  涂层样品及耦接模式
图3  湿热实验温度控制图
图 4  涂层样品电化学测试时电解池示意图
图5  层次分析法结构图
Indicatorαβγδεζηθ
α11/21/31/41/61/71/81/9
β211/21/31/51/61/71/8
γ3211/21/41/51/61/7
δ43211/31/41/51/6
ε654311/21/31/4
ζ7654211/21/3
η87653211/2
θ98764321
表 3  不同关键评价指标重要性比较
图6  加速实验后涂层样品表面形貌图
SamplesConnectingThicknessGlossDiscolorationChalkingAdhesiveBlisteringCrackingDelamination
modes
lossstrength

Coated 300M

steel

As-received00000000
Directly coupling12201322
Insulated coupling51100300
Single22101200

Coated

2024

Al-alloy

As-received00000000
Directly coupling20011000
Insulated coupling21010000
Single22000000

Coated

5A06

Al-alloy

As-received00000000
Directly coupling31111000
Insulated coupling51110000
Single22100000
表4  加速实验后涂层的单项指标评级
SampleConnecting modeComprehensive evaluation value

Low frequency impedance modulus

Ω·cm-2

Coated 300MAs-received0.0001.13 × 1010
Directly coupling1.9141.21 × 107
Insulated coupling0.6453.09 × 107
Single0.5293.88 × 108
Coated 2024 Al-alloyAs-received0.0002.10 × 1010
Directly coupling0.2074.60 × 109
Insulated coupling0.1395.77 × 109
Single0.1146.96 × 109
Coated 5A06 Al-alloyAs-received0.0005.54 × 109
Directly coupling0.3042.38 × 109
Insulated coupling0.2732.97 × 109
Single0.1542.99 × 109
表5  涂层失效的综合评价值与阻抗模值
图7  加速实验后涂层样品的应力-应变曲线
图8  不同耦接方式涂层样品加速实验后的抗拉强度及断裂伸长率
图9  300M合金钢涂层样品加速实验后的断口形貌
图10  2024铝合金涂层样品加速实验后的断口形貌
图11  5A06铝合金涂层样品加速实验后的断口形貌
图12  涂层体系抗拉强度及断裂延伸率与综合评分之间的关系
1 Mogoda A S, Ahmad Y H, Badawy W A. Corrosion behaviour of Ti-6Al-4V alloy in concentrated hydrochloric and sulphuric acids [J]. J. Appl. Electrochem., 2004, 34: 873
doi: 10.1023/B:JACH.0000040447.26482.bd
2 Song D J, Niu L, Yang S L. Research on application technology of titanium alloy in marine pipeline [J]. Rare Met. Mater. Eng., 2020, 49: 1100
2 宋德军, 牛 龙, 杨胜利. 船舶海水管路钛合金应用技术研究 [J]. 稀有金属材料与工程, 2020, 49: 1100
3 Zhao P P, Song Y W, Dong K H, et al. Effect of passive film on the galvanic corrosion of titanium alloy Ti60 coupled to copper alloy H62 [J]. Mater. Corros., 2019, 70: 1745
4 Liu J H, Shi J X, Li S M. Effects of electroplated coatings on corrosion behavior of Ti-1023/30CrMnSiA galvanic couple [J]. J. Wuhan Univ. Technol.-Mater. Sci. Ed., 2008, 23: 704
doi: 10.1007/s11595-007-5704-z
5 Li C J, Lan P, Li H, et al. Research on coupling metal corrosion induced by titanium alloy [A]. Summary Collection of the tenth National Corrosion Conference [C]. Nanchang, 2019
5 李崇杰, 蓝 飘, 李 辉 等. 钛合金引起的耦接金属腐蚀研究 [A]. 第十届全国腐蚀大会摘要集 [C]. 南昌, 2019
6 Zhang W Y. Progress in research on galvanic corrosion behavior and protection [J]. Total Corros. Control, 2018, 32(12): 51
6 张文毓. 电偶腐蚀与防护的研究进展 [J]. 全面腐蚀控制, 2018, 32(12): 51
7 Luan H, Meng F D, Liu L, et al. Preparation and anticorrosion performance of M-phenylenediamine-graphene oxide/organic coating [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 161
7 栾 浩, 孟凡帝, 刘 莉 等. 间苯二胺-氧化石墨烯/有机涂层的制备及防腐性能研究 [J]. 中国腐蚀与防护学报, 2021, 41: 161
8 Zou W J, Ding L, Zhang X J, et al. Epoxy/organosiloxane modified cationic acrylic emulsion composite coating [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 922
8 邹文杰, 丁 立, 张雪姣 等. 环氧树脂/有机硅氧烷改性阳离子丙烯酸乳液复合涂层的研究 [J]. 中国腐蚀与防护学报, 2023, 43: 922
doi: 10.11902/1005.4537.2022.279
9 Silva R S, Ferreira J Z, Meneguzzi A. Anticorrosive acrylic intelligent paint [J]. Chem. Pap., 2020, 74: 631
doi: 10.1007/s11696-019-00909-4
10 Yu Y, Zuo Y X, Zhang Z H, et al. Al2O3 coatings on zinc for anti-corrosion in alkaline solution by electrospinning [J]. Coatings, 2019, 9: 692
doi: 10.3390/coatings9110692
11 Zhang C L, He Y, Xu Z H, et al. Fabrication of Fe3O4@SiO2 nanocomposites to enhance anticorrosion performance of epoxy coatings [J]. Polym. Adv. Technol., 2016, 27: 740
doi: 10.1002/pat.3707
12 Jafarzadeh S, Claesson P M, Pan J S, et al. Direct measurement of colloidal interactions between polyaniline surfaces in a UV-curable coating formulation: the effect of surface hydrophilicity/hydrophobicity and resin composition [J]. Langmuir, 2014, 30: 1045
doi: 10.1021/la4035062 pmid: 24400981
13 Liu M, Mao X H, Zhu H, et al. Water and corrosion resistance of epoxy-acrylic-amine waterborne coatings: effects of resin molecular weight, polar group and hydrophobic segment [J]. Corros. Sci., 2013, 75: 106
doi: 10.1016/j.corsci.2013.05.020
14 Pugazhenthi I, Safiullah S M, Basha K A. UV and corrosion protective behavior of polymer hybrid coating on mild steel [J]. J. Appl. Polym. Sci., 2018, 135: 46175
doi: 10.1002/app.v135.16
15 Luo X H, Zhong J W, Zhou Q L, et al. Cationic reduced graphene oxide as self-aligned nanofiller in the epoxy nanocomposite coating with excellent anticorrosive performance and its high antibacterial activity [J]. ACS Appl. Mater. Interfaces, 2018, 10: 18400
doi: 10.1021/acsami.8b01982
16 Othman N H, Ismail M C, Mustapha M, et al. Graphene-based polymer nanocomposites as barrier coatings for corrosion protection [J]. Prog. Org. Coat., 2019, 135: 82
doi: 10.1016/j.porgcoat.2019.05.030
17 Rondinella A, Offoiach R, Andreatta F, et al. Development of a warning system for defects onset in organic coatings on large surfaces [J]. Prog. Org. Coat., 2023, 179: 107528
18 Liu L, Shao Z Y, Jia T Y, et al. Research progress on application of halloysite nanotubes for modification of smart anti-corrosion coating [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 523
18 刘 玲, 邵紫雅, 贾天越 等. 埃洛石纳米管负载改性及其在智能防腐涂层中的应用研究进展 [J]. 中国腐蚀与防护学报, 2022, 42: 523
19 Nazari M H, Shi X M. Polymer-based nanocomposite coatings for anticorrosion applications [A]. HosseiniM, MakhloufA S H. Industrial Applications for Intelligent Polymers and Coatings [M]. Cham: Springer, 2016: 373
20 Nazari M H, Zhang Y, Mahmoodi A, et al. Nanocomposite organic coatings for corrosion protection of metals: a review of recent advances [J]. Prog. Org. Coat., 2022, 162: 106573
21 Teng L, Chen X. Research progress of galvanic corrosion in marine environment [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 531
21 滕 琳, 陈 旭. 海洋环境中金属电偶腐蚀研究进展 [J]. 中国腐蚀与防护学报, 2022, 42: 531
22 Mansfeld F, Kenkel J V. Electrochemical measurements of time-of-wetness and atmospheric corrosion rates [J]. Corrosion, 1977, 33: 13
doi: 10.5006/0010-9312-33.1.13
23 Mansfeld F, Kendig M W, Tsai S. Evaluation of corrosion behavior of coated metals with AC impedance measurements [J]. Corrosion, 1982, 38: 478
doi: 10.5006/1.3577363
24 Salmasifar A, Sarabi A A, Mohammadloo H E. Anticorrosive performance of epoxy/clay nanocomposites pretreated by hexafluorozirconic acid based conversion coating on St12 [J]. Corros. Eng. Sci. Technol., 2015, 50: 372
doi: 10.1179/1743278214Y.0000000233
25 Lee C Y, Lee S K, Park J H, et al. Novel approach to correlate degree of surface deterioration to coating impedance for laboratory test panels coated with two types of primers [J]. Corros. Eng. Sci. Technol.: Int. J. Corros. Processes Corros., 2012, 47: 411
26 Kendig M, Scully J. Basic aspects of electrochemical impedance application for the life prediction of organic coatings on metals [J]. Corrosion, 1990, 46: 22
doi: 10.5006/1.3585061
27 Kim I T, Itoh Y. Accelerated exposure tests as evaluation tool for estimating life of organic coatings on steel bridges [J]. Corros. Eng. Sci. Technol., 2007, 42: 242
doi: 10.1179/174327807X214833
28 Lee C Y, Chang T. Service life prediction for steel bridge coatings with type of coating systems [J]. J. Korean Soc. Steel Construct., 2016, 28: 325
doi: 10.7781/kjoss.2016.28.5.325
29 Guseva O, Brunner S, Richner P. Service life prediction for aircraft coatings [J]. Polym. Degrad. Stab., 2013, 82: 1
doi: 10.1016/S0141-3910(03)00124-1
30 Hirohata M, Takemi J, Itoh Y. Corrosion accelerated exposure experiment simulating under seawater environment for organic coated steel materials [J]. Corros. Eng. Sci. Technol., 2015, 50: 449
doi: 10.1179/1743278214Y.0000000238
31 Zhang J Q, Cao C N. Study and evaluation on organic coatings by electrochemical impedance spectroscopy [J]. Corros. Prot., 1998, 19: 99
31 张鉴清, 曹楚南. 电化学阻抗谱方法研究评价有机涂层 [J]. 腐蚀与防护, 1998, 19: 99
32 Liu L, Cui Y, Li Y, et al. Failure behavior of nano-SiO2 fillers epoxy coating under hydrostatic pressure [J]. Electrochim. Acta, 2012, 62: 42
doi: 10.1016/j.electacta.2011.11.067
33 Papadopoulos M P, Apostolopoulos C A, Alexopoulos N D, et al. Effect of salt spray corrosion exposure on the mechanical performance of different technical class reinforcing steel bars [J]. Mater. Des., 2007, 28: 2318
doi: 10.1016/j.matdes.2006.07.017
34 Brunner-Schwer C, Petrat T, Graf B, et al. Highspeed-plasma-laser-cladding of thin wear resistance coatings: a process approach as a hybrid metal deposition-technology [J]. Vacuum, 2019, 166: 123
doi: 10.1016/j.vacuum.2019.05.003
35 Saaty R W. The analytic hierarchy process—what it is and how it is used [J]. Math. Modell., 1987, 9: 161
doi: 10.1016/0270-0255(87)90473-8
36 Chan H K, Sun X T, Chung S H. when should fuzzy analytic hierarchy process be used instead of analytic hierarchy process? [J]. Decis. Support Syst., 2019, 125: 113114
doi: 10.1016/j.dss.2019.113114
37 Yong X Y, Hu X Y, Jiang L, et al. Damage assessment of the corrosion-resistant performances for organic coating systems after accelerated tests using analytic hierarchy process [J]. Eng. Failure Anal., 2018, 93: 1
doi: 10.1016/j.engfailanal.2018.06.015
38 Duan H Y, Tang G X, Sheng J, et al. A novel prediction model for fatigue strength [J]. J. ShangHai Jiao Tong Univ., 2022, 56: 801
38 段红燕, 唐国鑫, 盛 捷 等. 一种新型的疲劳强度预测模型 [J]. 上海交通大学学报, 2022, 56: 801
doi: 10.16183/j.cnki.jsjtu.2021.051
[1] 傅江悦, 郭建喜, 杨延格, 冷哲, 王文. 单相流冲刷条件下一种低合金高强钢的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2024, 44(3): 585-600.
[2] 和雅洁, 陈灵芝, 阮章顺, 付晓刚, 纪琤, 龙斌. 小冲杆技术及其在材料与铅铋脆化效应研究中的应用[J]. 中国腐蚀与防护学报, 2024, 44(3): 567-575.
[3] 赵国仙, 刘冉冉, 丁浪勇, 张思琦, 郭梦龙, 王映超. 温度对5Cr钢在模拟油田高温高压环境中CO2 腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2024, 44(1): 175-186.
[4] 李春霖, 史洪微, 梁国平, 李丽, 王浩, 王伟, 刘福春, 韩恩厚. 高速列车用聚氨酯面漆耐蚀性能和老化机制研究[J]. 中国腐蚀与防护学报, 2023, 43(6): 1383-1391.
[5] 廖敏行, 刘俊, 董宝军, 冷雪松, 蔡泽伦, 武俊伟, 贺建超. 盐雾环境对1Cr18Ni9Ti钎焊接头的影响研究[J]. 中国腐蚀与防护学报, 2023, 43(6): 1312-1318.
[6] 胡杰珍, 上官桔钰, 邓培昌, 冯绮蓝, 王贵, 王沛林. 基于阵列电极技术研究藤壶附着对Q235钢腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2023, 43(5): 1145-1150.
[7] 毛飞雄, 周羽婷, 姚文清, 沈翔, 肖龙, 李明辉. 基于PDM304不锈钢钝化膜生长动力学研究[J]. 中国腐蚀与防护学报, 2023, 43(4): 911-921.
[8] 邓成满, 刘喆, 夏大海, 胡文彬. 5083-H111铝合金在模拟动态海水环境中的局部腐蚀机制[J]. 中国腐蚀与防护学报, 2023, 43(4): 683-692.
[9] 刘明, 王杰, 朱春晖, 张延晓. 3D打印NiTi形状记忆合金在模拟不同口腔环境中电化学腐蚀行为研究[J]. 中国腐蚀与防护学报, 2023, 43(4): 781-786.
[10] 尚进, 古岩, 赵京, 王哲, 张博, 赵统君, 陈泽浩, 王金龙. 增材制造Hastelloy X合金在850 ℃混合硫酸盐中热腐蚀行为及其对力学性能的影响[J]. 中国腐蚀与防护学报, 2023, 43(3): 671-676.
[11] 王瑾, 宁培栋, 刘倩倩, 陈娜娜, 张新, 肖葵. 模拟海洋大气环境中镀锌钢的腐蚀行为和机理[J]. 中国腐蚀与防护学报, 2023, 43(3): 578-586.
[12] 张全福, 宋蕾, 王建, 郭振宇, 任乃栋, 赵建琪, 武维康, 程伟丽. 挤压态低合金化Mg-0.5Bi-0.5Sn-0.5Ca合金的力学性能及腐蚀行为研究[J]. 中国腐蚀与防护学报, 2023, 43(2): 428-434.
[13] 袁世成, 吴艳峰, 徐长慧, 王兴奇, 冷哲, 杨延格. 多羟基超分散剂对水性环氧涂层防腐性能的影响[J]. 中国腐蚀与防护学报, 2023, 43(2): 289-300.
[14] 王通, 王巍. 聚二甲基硅氧烷涂层自修复过程中的弛豫时间分布研究[J]. 中国腐蚀与防护学报, 2023, 43(2): 337-344.
[15] 毛英畅, 祝钰, 孙圣凯, 秦真波, 夏大海, 胡文彬. 5083铝合金在模拟海洋浪花飞溅区的局部腐蚀行为[J]. 中国腐蚀与防护学报, 2023, 43(1): 47-54.