|
|
模拟海洋大气环境中镀锌钢的腐蚀行为和机理 |
王瑾1, 宁培栋1, 刘倩倩2, 陈娜娜2, 张新3, 肖葵2( ) |
1.酒钢宏兴股份有限公司钢铁研究院 嘉峪关 735100 2.北京科技大学新材料技术研究院 北京 100083 3.北京科大分析检验中心有限公司 北京 100083 |
|
Corrosion Behavior of Galvanized Steel in a Simulated Marine Atmospheric Environment |
WANG Jin1, NING Peidong1, LIU Qianqian2, CHEN Nana2, ZHANG Xin3, XIAO Kui2( ) |
1.Research Institute, JISCO Hongxing Iron and Steel Co. Ltd., Jiayuguan 735100, China 2.Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China 3.Testing Center of University of Science and Technology Beijing Co. Ltd., Beijing 100083, China |
引用本文:
王瑾, 宁培栋, 刘倩倩, 陈娜娜, 张新, 肖葵. 模拟海洋大气环境中镀锌钢的腐蚀行为和机理[J]. 中国腐蚀与防护学报, 2023, 43(3): 578-586.
WANG Jin,
NING Peidong,
LIU Qianqian,
CHEN Nana,
ZHANG Xin,
XIAO Kui.
Corrosion Behavior of Galvanized Steel in a Simulated Marine Atmospheric Environment. Journal of Chinese Society for Corrosion and protection, 2023, 43(3): 578-586.
链接本文:
https://www.jcscp.org/CN/10.11902/1005.4537.2022.151
或
https://www.jcscp.org/CN/Y2023/V43/I3/578
|
1 |
Wallinder I O, Leygraf C. A critical review on corrosion and runoff from zinc and zinc-based alloys in atmospheric environments [J]. Corrosion, 2017, 73: 1060
doi: 10.5006/2458
|
2 |
Maniam K K, Paul S. Corrosion performance of electrodeposited zinc and zinc-alloy coatings in marine environment [J]. Corros. Mater. Degrad., 2021, 2: 163
doi: 10.3390/cmd2020010
|
3 |
De Azevedo Alvarenga E, De Freitas Cunha Lins V. Atmospheric corrosion evaluation of electrogalvanized, hot-dip galvanized and galvannealed interstitial free steels using accelerated field and cyclic tests [J]. Surf. Coat. Technol., 2016, 306: 428
doi: 10.1016/j.surfcoat.2016.04.021
|
4 |
Wang J, Huang Q D, Liu J, et al. Accelerated indoor corrosion of galvanized steel in a simulated atmospheric environment of Guangzhou area [J]. Chin. J. Mater. Res., 2018, 32: 631
doi: 10.11901/1005.3093.2017.543
|
4 |
王 劲, 黄青丹, 刘 静 等. 镀锌钢在模拟广州地区大气环境中的室内加速腐蚀研究 [J]. 材料研究学报, 2018, 32: 631
|
5 |
Cao J Y, Fang Z G, Li L, et al. Corrosion behavior of domestic galvanized steel in different water environment: fresh water and salt water [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 169
|
5 |
曹京宜, 方志刚, 李 亮 等. 国产镀锌钢在不同水环境中的腐蚀行为: I淡水和盐水 [J]. 中国腐蚀与防护学报, 2021, 41: 169
doi: 10.11902/1005.4537.2021.003
|
6 |
Quintana P, Veleva L, Cauich W, et al. Study of the composition and morphology of initial stages of corrosion products formed on Zn plates exposed to the atmosphere of southeast Mexico [J]. Appl. Surf. Sci., 1996, 99: 325
doi: 10.1016/0169-4332(96)00597-1
|
7 |
Sánchez P, Fernández B, Menéndez A, et al. Quantitative depth profile analysis of metallic coatings by pulsed radiofrequency glow discharge optical emission spectrometry [J]. Anal. Chim. Acta, 2011, 684: 47
doi: 10.1016/j.aca.2010.10.039
|
8 |
Da Silva P S G, Costa A N C, Mattos O R, et al. Evaluation of the corrosion behavior of galvannealed steel in chloride aqueous solution and in tropical marine environment [J]. J. Appl. Electrochem., 2006, 36: 375
doi: 10.1007/s10800-005-9083-x
|
9 |
Al-Negheimish A, Hussain R R, Alhozaimy A, et al. Corrosion performance of hot-dip galvanized zinc-aluminum coated steel rebars in comparison to the conventional pure zinc coated rebars in concrete environment [J]. Construct. Build. Mater., 2021, 274: 121921
doi: 10.1016/j.conbuildmat.2020.121921
|
10 |
Yadav A P, Katayama H, Noda K, et al. Effect of Fe-Zn alloy layer on the corrosion resistance of galvanized steel in chloride containing environments [J]. Corros. Sci., 2007, 49: 3716
doi: 10.1016/j.corsci.2007.03.039
|
11 |
Ma S D, Liu X, Wang Z D, et al. Characterization of seawater corrosion interface of zinc coated steel plate in Zhong-gang harbor [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 585
|
11 |
马士德, 刘 欣, 王在东 等. 普碳钢表面锌防护层在青岛中港海水中耐蚀与防污损性能对比研究 [J]. 中国腐蚀与防护学报, 2021, 41: 585
doi: 10.11902/1005.4537.2020.248
|
12 |
Friel J J. Atmospheric corrosion products on Al, Zn, and AlZn metallic coatings [J]. Corrosion, 1986, 42: 422
doi: 10.5006/1.3584923
|
13 |
Tittarelli F, Bellezze T. Investigation of the major reduction reaction occurring during the passivation of galvanized steel rebars [J]. Corros. Sci., 2010, 52: 978
doi: 10.1016/j.corsci.2009.11.021
|
14 |
Sandberg J, Wallinder I O, Leygraf C, et al. Corrosion-induced zinc runoff from construction materials in a marine environment [J]. J. Electrochem. Soc., 2007, 154: C120
doi: 10.1149/1.2403078
|
15 |
Dos Santos A P, Manhabosco S M, Rodrigues J S, et al. Comparative study of the corrosion behavior of galvanized, galvannealed and Zn55Al coated interstitial free steels [J]. Surf. Coat. Technol., 2015, 279: 150
doi: 10.1016/j.surfcoat.2015.08.046
|
16 |
Vera R, Guerrero F, Delgado D, et al. Atmospheric corrosion of galvanized steel and precipitation runoff from zinc in a marine environment [J]. J. Brazil. Chem. Soc., 2013, 24: 449
doi: 10.1590/S0103-50532013000300013
|
17 |
Blanco M T, Andrade C, Macias A. SEM Study of the Corrosion Products of Galvanized Reinforcements Immersed in Solutions in the pH Range 12·6 to 13·6 [J]. Br. Corros. J., 1984, 19: 41
doi: 10.1179/000705984798273524
|
18 |
Azmat N S, Ralston K D, Muddle B C, et al. Corrosion of Zn under acidified marine droplets [J]. Corros. Sci., 2011, 53: 1604
doi: 10.1016/j.corsci.2011.01.044
|
19 |
Schmidt D P, Shaw B A, Sikora E, et al. Corrosion protection assessment of sacrificial coating systems as a function of exposure time in a marine environment [J]. Prog. Organ. Coat., 2006, 57: 352
doi: 10.1016/j.porgcoat.2006.09.021
|
20 |
Lyon S B, Thompson G E, Johnson J B, et al. Accelerated atmospheric corrosion testing using a cyclic wet/dry exposure test: aluminum, galvanized steel, and steel [J]. Corrosion, 1987, 43: 719
doi: 10.5006/1.3583858
|
21 |
Vilche J R, Jüttner K, Lorenz W J, et al. Semiconductor properties of passive films on Zn, Zn‐Co, and Zn‐Ni substrates [J]. J. Electrochem. Soc., 1989, 136: 3773
doi: 10.1149/1.2096546
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|