Please wait a minute...
中国腐蚀与防护学报  2023, Vol. 43 Issue (3): 578-586     CSTR: 32134.14.1005.4537.2022.151      DOI: 10.11902/1005.4537.2022.151
  研究报告 本期目录 | 过刊浏览 |
模拟海洋大气环境中镀锌钢的腐蚀行为和机理
王瑾1, 宁培栋1, 刘倩倩2, 陈娜娜2, 张新3, 肖葵2()
1.酒钢宏兴股份有限公司钢铁研究院 嘉峪关 735100
2.北京科技大学新材料技术研究院 北京 100083
3.北京科大分析检验中心有限公司 北京 100083
Corrosion Behavior of Galvanized Steel in a Simulated Marine Atmospheric Environment
WANG Jin1, NING Peidong1, LIU Qianqian2, CHEN Nana2, ZHANG Xin3, XIAO Kui2()
1.Research Institute, JISCO Hongxing Iron and Steel Co. Ltd., Jiayuguan 735100, China
2.Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China
3.Testing Center of University of Science and Technology Beijing Co. Ltd., Beijing 100083, China
全文: PDF(23341 KB)   HTML
摘要: 

采用失重法、扫描电子显微镜 (SEM)、能谱仪 (EDS)、X射线衍射 (XRD)、X射线光电子能谱 (XPS)、电化学阻抗谱 (EIS) 和3D共聚焦显微镜表征镀锌钢在模拟海洋大气环境中不同实验周期下的腐蚀行为。结果表明:试样在实验初期腐蚀速率较高,56 d时速率下降,104 d时,腐蚀速率再次升高,这与腐蚀产物的生成有关。通过对产物进行物相分析,主要的腐蚀产物有羟基氯化锌 (Zn5(OH)8Cl2·H2O)、氧化锌 (ZnO) 和碱式碳酸锌 (Zn5(OH)6(CO3)2)。在模拟海洋大气环境中,热浸镀锌层的耐蚀性很快失效,腐蚀速率加快直至生成的腐蚀产物在缺陷处形成较为完整的产物膜,这对镀层的腐蚀具有一定的抑制作用。

关键词 热浸镀锌钢海洋大气环境室内加速实验腐蚀机制    
Abstract

The corrosion behavior of hot-dip galvanized steel after various test cycles in simulate marine atmospheric environment was assessed by mass loss method, 3D confocal microscope, electrochemical impedance spectroscope (EIS), scanning electron microscope (SEM), energy dispersive spectrometer (EDS), X-ray diffractometer (XRD) and X-ray photoelectron spectroscope (XPS). The results show that the corrosion rate of the steel samples was higher at the beginning of the experiment, then decreased at 56 d, and increased again at 104 d, which might be related to the formation of corrosion products. After being tested for 56 d, the steel suffered form mainly uniform corrosion, the main corrosion products were hydroxyzinc chloride (Zn5(OH)8Cl2·H2O), zinc oxide (ZnO) and basic zinc carbonate (Zn5(OH)6(CO3)2). In the simulated marine atmospheric environment, the corrosion resistance of the hot-dip galvanized coating failed quickly. Whilst, the corrosion rate has been accelerating until the formation of a relatively complete corrosion product film on the existed damaged areas, hence, the corrosion product film has a certain inhibitory effect on the corrosion of the coating.

Key wordshot-dip galvanized steel    marine atmospheric environment    indoor acceleration test    corrosion mechanism
收稿日期: 2022-05-14      32134.14.1005.4537.2022.151
ZTFLH:  TG174  
基金资助:国家材料腐蚀与防护数据科学中心
通讯作者: 肖葵,E-mail:xiaokui@ustb.edu.cn,研究方向为材料腐蚀与防护
Corresponding author: XIAO Kui, E-mail: xiaokui@ustb.edu.cn
作者简介: 王 瑾,女,1971年生,正高级工程师

引用本文:

王瑾, 宁培栋, 刘倩倩, 陈娜娜, 张新, 肖葵. 模拟海洋大气环境中镀锌钢的腐蚀行为和机理[J]. 中国腐蚀与防护学报, 2023, 43(3): 578-586.
WANG Jin, NING Peidong, LIU Qianqian, CHEN Nana, ZHANG Xin, XIAO Kui. Corrosion Behavior of Galvanized Steel in a Simulated Marine Atmospheric Environment. Journal of Chinese Society for Corrosion and protection, 2023, 43(3): 578-586.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2022.151      或      https://www.jcscp.org/CN/Y2023/V43/I3/578

Time / dMass loss / g·m-2Average corrosion depth / μmAverage corrosion rate / μm·a-1
2414.6312.04931.165
5624.6683.45522.519
10440.6885.69920.000
12048.6576.82020.743
表1  GI板在模拟海洋大气实验下的腐蚀失重数据
图1  模拟海洋大气环境中GI板的腐蚀动力学相关曲线
图2  GI板在模拟海洋大气环境加速腐蚀实验不同周期后的XRD谱
图3  GI板在模拟海洋大气环境加速腐蚀试验不同周期后的XPS谱
图4  GI板在模拟海洋大气环境加速腐蚀实验不同周期后的宏观腐蚀形貌
图5  模拟海洋大气不同实验周期GI板除锈后的3D共聚焦形貌
图6  模拟海洋大气不同实验周期后GI板的腐蚀形貌
PositionC KO KZn KCl KFe KP K
a22.0827.5950.33---
b-39.6646.2514.09--
c39.4025.759.485.8716.123.39
d-43.8517.841.4236.89-
e48.9823.712.781.1423.39-
f-38.676.450.7754.10-
表2  模拟海洋大气不同实验周期后GI板的EDS结果
图7  模拟海洋大气不同实验周期后GI镀层截面的背散射形貌及面扫照片
图8  不同实验周期后的GI板在酸性 (1±0.1) g/L NaHSO3溶液中的电化学阻抗谱
图9  GI板在酸性 (50±5) g/L NaCl溶液中的等效电路
Time / dRs / Ω·cm2Rf / Ω·cm2Q1 / F·cm-2n1Q2 / F·cm-2n2Rr / Ω·cm2Q3 / F·cm-2n3Rct / Ω·cm2Chi-squared
2424.3---1.89×10-50.916.21.3×10-30.51.36×1031.2×10-3
5623.5---6.18×10-60.7440.24.2×10-50.61.75×1042.8×10-3
10424.8---6.34×10-50.671.63.1×10-30.51.39×1034.0×10-4
1208×10-53709×10-50.31.4×10-40.63.1×1035×10-40.67.5×1034.84×10-5
表3  GI板在酸性 (50±5) g/L NaCl溶液中的等效电路元件拟合值
1 Wallinder I O, Leygraf C. A critical review on corrosion and runoff from zinc and zinc-based alloys in atmospheric environments [J]. Corrosion, 2017, 73: 1060
doi: 10.5006/2458
2 Maniam K K, Paul S. Corrosion performance of electrodeposited zinc and zinc-alloy coatings in marine environment [J]. Corros. Mater. Degrad., 2021, 2: 163
doi: 10.3390/cmd2020010
3 De Azevedo Alvarenga E, De Freitas Cunha Lins V. Atmospheric corrosion evaluation of electrogalvanized, hot-dip galvanized and galvannealed interstitial free steels using accelerated field and cyclic tests [J]. Surf. Coat. Technol., 2016, 306: 428
doi: 10.1016/j.surfcoat.2016.04.021
4 Wang J, Huang Q D, Liu J, et al. Accelerated indoor corrosion of galvanized steel in a simulated atmospheric environment of Guangzhou area [J]. Chin. J. Mater. Res., 2018, 32: 631
doi: 10.11901/1005.3093.2017.543
4 王 劲, 黄青丹, 刘 静 等. 镀锌钢在模拟广州地区大气环境中的室内加速腐蚀研究 [J]. 材料研究学报, 2018, 32: 631
5 Cao J Y, Fang Z G, Li L, et al. Corrosion behavior of domestic galvanized steel in different water environment: fresh water and salt water [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 169
5 曹京宜, 方志刚, 李 亮 等. 国产镀锌钢在不同水环境中的腐蚀行为: I淡水和盐水 [J]. 中国腐蚀与防护学报, 2021, 41: 169
doi: 10.11902/1005.4537.2021.003
6 Quintana P, Veleva L, Cauich W, et al. Study of the composition and morphology of initial stages of corrosion products formed on Zn plates exposed to the atmosphere of southeast Mexico [J]. Appl. Surf. Sci., 1996, 99: 325
doi: 10.1016/0169-4332(96)00597-1
7 Sánchez P, Fernández B, Menéndez A, et al. Quantitative depth profile analysis of metallic coatings by pulsed radiofrequency glow discharge optical emission spectrometry [J]. Anal. Chim. Acta, 2011, 684: 47
doi: 10.1016/j.aca.2010.10.039
8 Da Silva P S G, Costa A N C, Mattos O R, et al. Evaluation of the corrosion behavior of galvannealed steel in chloride aqueous solution and in tropical marine environment [J]. J. Appl. Electrochem., 2006, 36: 375
doi: 10.1007/s10800-005-9083-x
9 Al-Negheimish A, Hussain R R, Alhozaimy A, et al. Corrosion performance of hot-dip galvanized zinc-aluminum coated steel rebars in comparison to the conventional pure zinc coated rebars in concrete environment [J]. Construct. Build. Mater., 2021, 274: 121921
doi: 10.1016/j.conbuildmat.2020.121921
10 Yadav A P, Katayama H, Noda K, et al. Effect of Fe-Zn alloy layer on the corrosion resistance of galvanized steel in chloride containing environments [J]. Corros. Sci., 2007, 49: 3716
doi: 10.1016/j.corsci.2007.03.039
11 Ma S D, Liu X, Wang Z D, et al. Characterization of seawater corrosion interface of zinc coated steel plate in Zhong-gang harbor [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 585
11 马士德, 刘 欣, 王在东 等. 普碳钢表面锌防护层在青岛中港海水中耐蚀与防污损性能对比研究 [J]. 中国腐蚀与防护学报, 2021, 41: 585
doi: 10.11902/1005.4537.2020.248
12 Friel J J. Atmospheric corrosion products on Al, Zn, and AlZn metallic coatings [J]. Corrosion, 1986, 42: 422
doi: 10.5006/1.3584923
13 Tittarelli F, Bellezze T. Investigation of the major reduction reaction occurring during the passivation of galvanized steel rebars [J]. Corros. Sci., 2010, 52: 978
doi: 10.1016/j.corsci.2009.11.021
14 Sandberg J, Wallinder I O, Leygraf C, et al. Corrosion-induced zinc runoff from construction materials in a marine environment [J]. J. Electrochem. Soc., 2007, 154: C120
doi: 10.1149/1.2403078
15 Dos Santos A P, Manhabosco S M, Rodrigues J S, et al. Comparative study of the corrosion behavior of galvanized, galvannealed and Zn55Al coated interstitial free steels [J]. Surf. Coat. Technol., 2015, 279: 150
doi: 10.1016/j.surfcoat.2015.08.046
16 Vera R, Guerrero F, Delgado D, et al. Atmospheric corrosion of galvanized steel and precipitation runoff from zinc in a marine environment [J]. J. Brazil. Chem. Soc., 2013, 24: 449
doi: 10.1590/S0103-50532013000300013
17 Blanco M T, Andrade C, Macias A. SEM Study of the Corrosion Products of Galvanized Reinforcements Immersed in Solutions in the pH Range 12·6 to 13·6 [J]. Br. Corros. J., 1984, 19: 41
doi: 10.1179/000705984798273524
18 Azmat N S, Ralston K D, Muddle B C, et al. Corrosion of Zn under acidified marine droplets [J]. Corros. Sci., 2011, 53: 1604
doi: 10.1016/j.corsci.2011.01.044
19 Schmidt D P, Shaw B A, Sikora E, et al. Corrosion protection assessment of sacrificial coating systems as a function of exposure time in a marine environment [J]. Prog. Organ. Coat., 2006, 57: 352
doi: 10.1016/j.porgcoat.2006.09.021
20 Lyon S B, Thompson G E, Johnson J B, et al. Accelerated atmospheric corrosion testing using a cyclic wet/dry exposure test: aluminum, galvanized steel, and steel [J]. Corrosion, 1987, 43: 719
doi: 10.5006/1.3583858
21 Vilche J R, Jüttner K, Lorenz W J, et al. Semiconductor properties of passive films on Zn, Zn‐Co, and Zn‐Ni substrates [J]. J. Electrochem. Soc., 1989, 136: 3773
doi: 10.1149/1.2096546
[1] 王华, 王英杰, 刘恩泽. Ni含量对Co-Al-W合金热腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2023, 43(6): 1419-1426.
[2] 胡杰珍, 蓝文杰, 邓培昌, 吴敬权, 曾俊昊. E690钢在热带海洋大气环境下的初期腐蚀行为研究[J]. 中国腐蚀与防护学报, 2023, 43(5): 1140-1144.
[3] 刘超, 陈天奇, 李晓刚. 低合金钢中夹杂物诱发局部腐蚀萌生机制的研究进展[J]. 中国腐蚀与防护学报, 2023, 43(4): 746-754.
[4] 高秋英, 徐亦璇, 胡鹏伟, 姚田万, 齐文龙. 天然气再生塔底重沸器腐蚀与防护技术研究[J]. 中国腐蚀与防护学报, 2022, 42(4): 699-704.
[5] 张震, 吴欣强, 谭季波. 电化学噪声原位监测应力腐蚀开裂的研究现状与进展[J]. 中国腐蚀与防护学报, 2020, 40(3): 223-229.
[6] 王保杰,栾吉瑜,王士栋,许道奎. 镁合金应力腐蚀开裂行为研究进展[J]. 中国腐蚀与防护学报, 2019, 39(2): 89-95.
[7] 张飘飘,杨忠民,陈颖,王慧敏. 含铬耐候钢在模拟海洋大气环境中的腐蚀行为[J]. 中国腐蚀与防护学报, 2017, 37(2): 93-100.
[8] 孙霜青,赵予兵,郑弃非,李德富. 包铝的7075和2024合金在海洋大气环境中的点蚀演化机制[J]. 中国腐蚀与防护学报, 2012, 32(3): 195-202.
[9] 闫丽静;董俊华;牛林;林海潮;吴维. 铁在含H_2S的硫酸溶液中的腐蚀机制研究[J]. 中国腐蚀与防护学报, 1998, 18(4): 269-275.