|
|
EPS处理对QStE700TM钢氢脆敏感性影响 |
徐云峰1, 王少峰2, 何龙2, 刘冬3, 黄峰1( ), 刘静1 |
1.武汉科技大学 省部共建耐火材料与冶金国家重点实验室 武汉 430081 2.杭州金固环保设备科技有限公司 杭州 311400 3.宝钢股份中央研究院武钢有限技术中心 武汉 430080 |
|
Effect of Eco Pickled Surface Treatment on Hydrogen Embrittlement Sensitivity of QStE700TM Steel |
XU Yunfeng1, WANG Shaofeng2, HE Long2, LIU Dong3, HUANG Feng1( ), LIU Jing1 |
1. State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, China 2. Hangzhou Jingu Environmental Protection Equipment And Technology Co. Ltd., Hangzhou 311400, China 3. R & D Center of Wuhan Iron & Steel Co. Ltd., Baosteel Central Research Institute, Wuhan 430080, China |
引用本文:
徐云峰, 王少峰, 何龙, 刘冬, 黄峰, 刘静. EPS处理对QStE700TM钢氢脆敏感性影响[J]. 中国腐蚀与防护学报, 2024, 44(3): 691-699.
Yunfeng XU,
Shaofeng WANG,
Long HE,
Dong LIU,
Feng HUANG,
Jing LIU.
Effect of Eco Pickled Surface Treatment on Hydrogen Embrittlement Sensitivity of QStE700TM Steel[J]. Journal of Chinese Society for Corrosion and protection, 2024, 44(3): 691-699.
1 |
Matlock D K, Kang S, De Moor E, et al. Applications of rapid thermal processing to advanced high strength sheet steel developments [J]. Mater. Charact., 2020, 166: 110397
doi: 10.1016/j.matchar.2020.110397
|
2 |
Wang Z W, Feng C C. New energy vehicle lightweight technology path and development strategy [J]. Automob. Technol. Mater., 2021, (6): 1
|
2 |
王智文, 冯昌川. 新能源汽车轻量化技术路径及开发策略 [J]. 汽车工艺与材料, 2021, (6): 1
|
3 |
Gao Y. Technical schemes and implementation examples of automobile lightweight [J]. Chin. J. Automot. Eng., 2018, 8: 1
|
3 |
高 阳. 汽车轻量化技术方案及应用实例 [J]. 汽车工程学报, 2018, 8: 1
|
4 |
Zhou C R, Chen X L, Zhou M K, et al. Cause analysis of surface blackening of SPHC hot rolled strip after pickling [J]. Phys. Exam. Test., 2020, 38(3): 41
|
4 |
周从锐, 陈小龙, 周明科 等. SPHC热轧带钢酸洗表面发黑原因分析 [J]. 物理测试, 2020, 38(3): 41
|
5 |
Ma C, Wang Y G, Liu Y, et al. Control and improvement of oxide scale on the surface of hot-rolled high-strength steel [J]. Phys. Exam. Test., 2022, 40(5): 1
|
5 |
马 聪, 汪永国, 刘 阳 等. 热轧高强钢表面氧化铁皮的控制与改善 [J]. 物理测试, 2022, 40(5): 1
|
6 |
Ma F. Control system of pickle-free surface treatment line for hot continuous rolling strip steel [J]. Mech. Eng. Automat., 2021, (2): 144
|
6 |
马 峰. 热连轧带钢免酸洗表面处理线控制系统 [J]. 机械工程与自动化, 2021, (2): 144
|
7 |
Gundgire T, Jokiaho T, Santa-aho S, et al. Comparative study of additively manufactured and reference 316 L stainless steel samples-Effect of severe shot peening on microstructure and residual stresses [J]. Mater. Charact., 2022, 191: 112162
doi: 10.1016/j.matchar.2022.112162
|
8 |
Wang Z, Jiang C H, Gan X Y, et al. Influence of shot peening on the fatigue life of laser hardened 17-4PH steel [J]. Int. J. Fatigue, 2011, 33: 549
doi: 10.1016/j.ijfatigue.2010.10.010
|
9 |
Cao H P, Song Z T, Liu X, et al. Application of Eco Pickled Surface (EPS) board on truck frame [J]. Automob. Technol. Mater., 2015, (9): 40
|
9 |
曹海鹏, 宋兆涛, 刘 鑫 等. 绿色清洁表面(EPS)板材在载货车车架上的应用 [J]. 汽车工艺与材料, 2015, (9): 40
|
10 |
Liu X Z, Liu Z H, Chen J X, et al. Application of EPS beam plate on longitudinal beam rolling production [J]. Automob. Technol. Mater., 2016, (7): 25
|
10 |
刘学真, 刘振海, 陈军绪 等. EPS大梁板在纵梁辊压生产中的应用 [J]. 汽车工艺与材料, 2016, (7): 25
|
11 |
Liu Q L, Zhou Q J, Venezuela J, et al. The role of the microstructure on the influence of hydrogen on some advanced high-strength steels [J]. Mater. Sci. Eng., 2018, 715A: 370
|
12 |
Liu Q L, Zhou Q J, Venezuela J, et al. A review of the influence of hydrogen on the mechanical properties of DP, TRIP, and TWIP advanced high-strength steels for auto construction [J]. Corros. Rev., 2016, 34: 127
doi: 10.1515/corrrev-2015-0083
|
13 |
Huang D, Xue G, Yang C F. Research on influence factors of hydrogen diffusion coefficient of pure iron [J]. Dev. Appl. Mater., 2020, 35(2): 1
|
13 |
黄 冬, 薛 钢, 杨超飞. 纯铁中的氢扩散系数影响因素研究 [J]. 材料开发与应用, 2020, 35(2): 1
|
14 |
Xue G, Wang T, Yang C F, et al. Existence state analysis of hydrogen existing in welding process of ferritic steel [J]. Dev. Appl. Mater., 2018, 33(5): 48
|
14 |
薛 钢, 王 涛, 杨超飞 等. 铁素体型钢焊接中氢的存在状态分析 [J]. 材料开发与应用, 2018, 33(5): 48
|
15 |
Troiano A R. The role of hydrogen and other interstitials in the mechanical behavior of metals [J]. Metallogr. Microstruct. Anal., 2016, 5: 557
doi: 10.1007/s13632-016-0319-4
|
16 |
Wang Z. Study on hydrogen diffusion and its effect on hydrogen embrittlement of high strength DP steels [D]. Wuhan: Wuhan University of Science and Technology, 2021
|
16 |
王 贞. 高强DP钢中氢扩散行为及其对氢脆敏感性的影响 [D]. 武汉: 武汉科技大学, 2021
|
17 |
Cheng X, Gui X L, Gao G H. Retained austenite in advanced high strength steels: a review [J]. Mater. Rep., 2023, 37(7): 21070186
|
17 |
程 瑄, 桂晓露, 高古辉. 先进高强钢中的残余奥氏体: 综述 [J]. 材料导报, 2023, 37(7): 21070186
|
18 |
Liu D L, Tao C H, Liu C K, et al. New phenomenons and knowledge of steel hydrogen embrittlement [J]. Fail. Anal. Prev., 2015, 10: 376
|
18 |
刘德林, 陶春虎, 刘昌奎 等. 钢氢脆失效的新现象与新认识 [J]. 失效分析与预防, 2015, 10: 376
|
19 |
Zhou Z L. Effect of shot peening on hydrogen diffusion and embrittlement in low alloy steel [D]. Xuzhou: China University of Mining and Technology, 2019
|
19 |
周志凌. 表面喷丸处理对低合金钢氢扩散和氢脆影响研究 [D]. 徐州: 中国矿业大学, 2019
|
20 |
Gan L J, Huang F, Zhao X Y, et al. Hydrogen trapping and hydrogen induced cracking of welded X100 pipeline steel in H2S environments [J]. Int. J. Hydrogen Energy, 2018, 43: 2293
doi: 10.1016/j.ijhydene.2017.11.155
|
21 |
Wen Q Y, Huang F, Xiao H, et al. Improving hydrogen induced cracking resistance of high strength acid-resistant submarine pipeline steels via trace-Mg treatment [J]. Int. J. Hydrogen Energy, 2023, 48: 14808
doi: 10.1016/j.ijhydene.2022.12.322
|
22 |
Huang H L, Yan X F, Huang R J, et al. Research on application technology of EPS steel switching [J]. Automob. Technol. Mater., 2021, (3): 7
|
22 |
黄海玲, 严学峰, 黄瑞建 等. EPS钢切换应用技术研究 [J]. 汽车工艺与材料, 2021, (3): 7
|
23 |
Li X F, Zhang J, Shen S C, et al. Effect of tempering temperature and inclusions on hydrogen-assisted fracture behaviors of a low alloy steel [J]. Mater. Sci. Eng., 2017, 682A: 359
|
24 |
Mostafijur Rahman K M, Mohtadi-Bonab M A, Ouellet R, et al. Effect of electrochemical hydrogen charging on an API X70 pipeline steel with focus on characterization of inclusions [J]. Int. J. Press. Vessel. Pip., 2019, 173: 147
doi: 10.1016/j.ijpvp.2019.05.006
|
25 |
Wang Y F, Li Y Z, Huang Y T, et al. Effect of grain size on hydrogen embrittlement of 304L austenitic stainless steel [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 494
|
25 |
王艳飞, 李耀州, 黄玉婷 等. 晶粒尺寸对304L奥氏体不锈钢氢脆的影响 [J]. 中国腐蚀与防护学报, 2023, 43: 494
doi: 10.11902/1005.4537.2022.238
|
26 |
Wang D, Hagen A B, Fathi P U, et al. Investigation of hydrogen embrittlement behavior in X65 pipeline steel under different hydrogen charging conditions [J]. Mater. Sci. Eng., 2022, 860A: 144262
|
27 |
Mohtadi-Bonab M A, Masoumi M, Szpunar J A. A comparative fracture analysis on as-received and electrochemically hydrogen charged API X60 and API X60SS pipeline steels subjected to tensile testing [J]. Eng. Fail. Anal., 2021, 129: 105721
doi: 10.1016/j.engfailanal.2021.105721
|
28 |
Ke S Z, Liu J, Huang F, et al. Effect of pre-strain on hydrogen embrittlement susceptibility of DP600 steel [J]. J. Chin. Soc. Corros. Prot., 2018, 38: 424
|
28 |
柯书忠, 刘 静, 黄 峰 等. 预应变对DP600钢氢脆敏感性的影响 [J]. 中国腐蚀与防护学报, 2018, 38: 424
doi: 10.11902/1005.4537.2017.164
|
29 |
Li S J. Effects of shot peening on hydrogen resistance of metal materials [D]. Beijing: China University of Petroleum, Beijing, 2020
|
29 |
李树杰. 喷丸处理对金属材料阻氢性能的影响 [D]. 北京: 中国石油大学(北京), 2020
|
30 |
Yao C, Chen J, Ming H L, et al. Research progress on hydrogen permeability behavior of pipeline steel [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 209
|
30 |
姚 婵, 陈 健, 明洪亮 等. 管线钢氢渗透行为的研究进展 [J]. 中国腐蚀与防护学报, 2023, 43: 209
|
31 |
Zhou B X, Yao M Y, Li Q. Study on hydrogen induced delayed cracking behavior of Zirconium alloys caused by surface defects [J]. Nucl. Power Eng., 2023, 44(3): 1
|
31 |
周邦新, 姚美意, 李 强. 锆合金表面缺陷引起氢致延迟开裂行为的研究 [J]. 核动力工程, 2023, 44(3): 1
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|