Please wait a minute...
中国腐蚀与防护学报  2024, Vol. 44 Issue (3): 669-678     CSTR: 32134.14.1005.4537.2023.232      DOI: 10.11902/1005.4537.2023.232
  研究报告 本期目录 | 过刊浏览 |
不同植酸盐对Q235钢腐蚀行为的影响
周龙1, 鲁骏1, 丁文珊1, 李昊1, 陶涛1, 师超1(), 邵亚薇2, 刘光明1
1.南昌航空大学 江西省金属材料微结构调控重点实验室 南昌 330063
2.哈尔滨工程大学材料科学与化学工程学院 哈尔滨 150001
Effect of Different Phytates on Corrosion Behaviors of Carbon Steel
ZHOU Long1, LU Jun1, DING Wenshan1, LI Hao1, TAO Tao1, SHI Chao1(), SHAO Yawei2, LIU Guangming1
1. Key Laboratory for Microstructural Control of Metallic Materials of Jiangxi Province, Nanchang Hangkong University, Nanchang 330063, China
2. School of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
引用本文:

周龙, 鲁骏, 丁文珊, 李昊, 陶涛, 师超, 邵亚薇, 刘光明. 不同植酸盐对Q235钢腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2024, 44(3): 669-678.
Long ZHOU, Jun LU, Wenshan DING, Hao LI, Tao TAO, Chao SHI, Yawei SHAO, Guangming LIU. Effect of Different Phytates on Corrosion Behaviors of Carbon Steel[J]. Journal of Chinese Society for Corrosion and protection, 2024, 44(3): 669-678.

全文: PDF(15477 KB)   HTML
摘要: 

利用硫酸盐和植酸钠反应制备植酸盐,并通过扫描电镜(SEM)、能谱仪(EDS)、红外光谱(FT-IR)、X射线衍射(XRD)对植酸盐进行表征,所制备的植酸盐样品存在明显磷酸基团,为非晶态,表现为球状颗粒,直径在300~400 nm。通过滴定实验分析植酸盐在水溶液中的溶解度,通过Tafel极化法、电化学阻抗法、腐蚀浸泡实验研究Q235钢在植酸盐3.5%NaCl浸出液中的腐蚀行为。结果表明,植酸铝浸出液中生成铝酸(Al(OH)3)导致Q235钢腐蚀速率加快,植酸镁、植酸钙、植酸锰及植酸锌浸出液中Q235钢腐蚀速率减缓。其中,植酸锌的缓蚀效率能达到92.46%,表现出良好的缓蚀性能。

关键词 Q235钢腐蚀植酸盐缓蚀性能    
Abstract

The study on the preparation and properties of new anti-rust pigments is of significance for the development of anticorrosion coatings. In this paper, phytates were prepared by reaction of sulfates with sodium phytate. The phytates were characterized using SEM, EDS, FT-IR, and XRD analysis. The results showed that the prepared phytates were amorphous containing obvious phosphate groups, and presented as spherical particles with a diameter of 300-400 nm. The solubilities of phytates in aqueous solution were analyzed through titration test. The corrosion behavior of Q235 steel in phytate-extracting solutions, which were acquired by soaking aluminum-, magnesium-, calcium-, manganese- and zinc-phytates, respectively, in 3.5%NaCl solution and then leaching, were studied via immersion test, Tafel polarization, and electrochemical impedance spectroscopy. The findings revealed that the corrosion rate of carbon steel increased in aluminum phytate-extracting solution due to the production of aluminum-acid (Al(OH)3). However, the corrosion rates decreased in the other four extracting solutions. Notably, the inhibition rate of zinc phytate was approximately 92.46%.

Key wordsQ235 steel    corrosion    phytate    inhibition
收稿日期: 2023-07-27      32134.14.1005.4537.2023.232
ZTFLH:  TG178  
基金资助:国家自然科学基金(52001155);江西省自然科学基金(20212BAB214038);博士启动基金(EA201901056)
通讯作者: 师超,E-mail:shichao@nchu.edu.cn,研究方向为金属材料的腐蚀与防护
Corresponding author: SHI Chao, E-mail: shichao@nchu.edu.cn
作者简介: 周 龙,男,2001年生,本科生
图1  不同植酸盐的微观形貌及EDS分析结果
ExtractingCOPZnCaMnAl
Zinc phosphate23.1624.4915.2437.11000
Zinc phytate23.6956.2110.659.45000
Calcium phytate19.7163.638.7407.9200
Manganese phytate21.4558.349.570010.630
Aluminum phytate19.3535.823.8200041.01
表1  不同植酸盐的原子分数
图2  不同植酸盐的FT-IR谱
图3  不同植酸盐的XRD谱
Extracting

Concentration of metal ion

mol·L-1

Concentration of phytate

mol·L-1

Zinc phytate8.31 × 10-41.39 × 10-4
Calcium phytate7.55 × 10-41.26 × 10-4
Manganese phytate3.92 × 10-46.53 × 10-5
Aluminum phytate1.06 × 10-33.53 × 10-4
表2  滴定数据
图4  不同植酸盐浸出液中Q235钢电极开路电位变化
图5  Q235钢电极在不同植酸盐浸出液中的电化学阻抗图
图6  等效电路图
ExtractingRs / Ω·cm2Ct / Ω·cm-2·S nnRt / Ω·cm2ƞ / %
Zinc phosphate7.9228.986 × 10-40.688135256.36
Zinc phytate6.5353.524 × 10-40.692320481.59
Calcium phytate5.7033.775 × 10-40.738178967.02
Manganese phytate5.9505.739 × 10-40.704212172.18
Aluminum phytate5.6213.980 × 10-40.784362-62.98
Contrast6.0188.851 × 10-40.752590/
表3  EIS测试结果的拟合参数
图7  不同植酸盐浸出液中Q235钢电极的Tafel曲线
ExtractingIcorr / A·cm-2Cathodic Tafel slopeAnodic Tafel slopeη / %
Zinc phosphate7.99 × 10-63.31817.27669.86
Zinc phytate2.01 × 10-69.5817.1792.46
Calcium phytate3.85 × 10-63.53530.77585.48
Manganese phytate2.74 × 10-65.12915.03889.66
Aluminum phytate5.53 × 10-54.4878.654-108.68
Contrast2.65 × 10-52.1737.684/
表 4  不同植酸盐浸出液中Q235钢电极Tafel拟合参数
图8  Q235钢在磷酸锌、植酸锌、植酸钙、植酸锰、植酸铝浸出液中浸泡不同时间后的表面形貌
图9  Q235钢在不同植酸盐浸出液中浸泡48 h后表面形貌及EDS分析结果
ExtractingCOPZnCaMnAlFe
Zinc phosphate16.1031.571.091.1800050.07
Zinc phytate21.3416.235.691.0500055.69
Calcium phytate12.8132.689.5602.370042.57
Manganese phytate15.6537.703.59001.56041.51
Aluminum phytate16.4444.543.820002.4936.53
表5  Q235钢在磷酸锌、植酸锌、植酸钙、植酸锰、植酸铝浸出液中浸泡48 h后表面成分分析结果
1 Li N, Ge J, Wang Y S. Research progress of coating preservatives [J]. Henan Build. Mater., 2018, (6): 107
1 李 娜, 葛 晶, 王杨松. 涂料防腐剂的研究进展 [J]. 河南建材, 2018, (6): 107
2 Peng X. Research on electrochemical corrosion behaviors and parameters of rusted carbon steel in marine environment [D]. Qingdao: Ocean University of China, 2013
2 彭 欣. 海水环境中带锈碳钢腐蚀电化学行为及相关参数的研究 [D]. 青岛: 中国海洋大学, 2013
3 Jin L B, Liang X Y, Wang Z, et al. Research progress of carbon steel corrosion in seawater full immersion zone [J]. Corros. Prot., 2020, 41(10): 33
3 金立兵, 梁新亚, 王 珍 等. 碳钢在海水全浸区腐蚀的研究进展 [J]. 腐蚀与防护, 2020, 41(10): 33
4 Funke W. Problems and progress in organic coatings science and technology [J]. Prog. Org. Coat., 1997, 31: 5
doi: 10.1016/S0300-9440(97)00013-1
5 Deyá C, Blustein G, del Amo B, et al. Evaluation of eco-friendly anticorrosive pigments for paints in service conditions [J]. Prog. Org. Coat., 2010, 69: 1
doi: 10.1016/j.porgcoat.2010.03.011
6 Li K C, Zhuo M Q, Yi F Y, et al. Technological innovation trend of phosphate antirust ppigments [J]. Technol. Dev. Chem. Ind., 2021, 50(7): 46
6 李开成, 卓民权, 易芬远 等. 磷酸盐防锈颜料技术发展态势研究 [J]. 化工技术与开发, 2021, 50(7): 46
7 Naderi R, Mahdavian M, Darvish A. Electrochemical examining behavior of epoxy coating incorporating zinc-free phosphate-based anticorrosion pigment [J]. Prog. Org. Coat., 2013, 76: 302
doi: 10.1016/j.porgcoat.2012.09.026
8 Heydarpour M R, Zarrabi A, Attar M M, et al. Studying the corrosion protection properties of an epoxy coating containing different mixtures of strontium aluminum polyphosphate (SAPP) and zinc aluminum phosphate (ZPA) pigments [J]. Prog. Org. Coat., 2014, 77: 160
9 Shi C, Shao Y W, Xiong Y, et al. Influence of silane coupling agent modified zinc phosphate on anticorrosion property of epoxy coating [J]. J. Chin. Soc. Corros. Prot., 2020, 40: 38
9 师 超, 邵亚薇, 熊 义 等. 硅烷偶联剂改性磷酸锌对环氧涂层防腐性能的影响 [J]. 中国腐蚀与防护学报, 2020, 40: 38
10 Yang L H, Li J Q, Lin C G, et al. Study of molybdenum/lanthanum-based composite conversion coatings on AZ31 magnesium alloy [J]. Appl. Surf. Sci., 2011, 257: 2838
doi: 10.1016/j.apsusc.2010.10.077
11 Calado L M, Taryba M G, Morozov Y, et al. Novel smart and self-healing cerium phosphate-based corrosion inhibitor for AZ31 magnesium alloy [J]. Corros. Sci., 2020, 170: 108648
doi: 10.1016/j.corsci.2020.108648
12 Morozov Y, Calado L M, Shakoor R A, et al. Epoxy coatings modified with a new cerium phosphate inhibitor for smart corrosion protection of steel [J]. Corros. Sci., 2019, 159: 108128
doi: 10.1016/j.corsci.2019.108128
13 Shi C, Shao Y W, Wang Y Q, et al. Influence of submicron-sheet zinc phosphate synthesised by sol–gel method on anticorrosion of epoxy coating [J]. Prog. Org. Coat., 2018, 117: 102
14 Shi C, Shao Y W, Wang Y Q, et al. Influence of submicro-sheet zinc phosphate modified by urea-formaldehyde on the corrosion protection of epoxy coating [J]. Surf. Interfaces, 2020, 18: 100403
15 Lu Y, Feng H X, Zhang X F. An overview on study of phytic acid conversion coatings on metal surface [J]. Mater. Rep., 2019, 33: 1455
15 卢 勇, 冯辉霞, 张晓芳. 金属表面植酸转化膜研究进展 [J]. 材料导报, 2019, 33: 1455
16 Zeng J Y, Guo X W, Peng L M, et al. Research progress of phytic acid chemical conversion coatings on magnesium alloy [J]. Mater. Prot., 2019, 52(12): 124
16 曾纪勇, 郭兴伍, 彭立明 等. 镁合金植酸化学转化膜研究进展 [J]. 材料保护, 2019, 52(12): 124
17 Wang Q, Shi W Z, Li X G. Corrosion inhibition of 16 Mn steel by phytic acid salt [J]. Mater. Prot., 2007, 40(2): 20
17 王 强, 时维振, 李晓光. 植酸盐对16锰钢缓蚀性能影响的研究 [J]. 材料保护, 2007, 40(2): 20
18 Wang R X. Effect of phytate on the protection performance of epoxy coating with rust [D]. Harbin: Harbin Engineering University, 2018
18 王荣祥. 植酸盐对环氧带锈涂装涂层防护性能影响的研究 [D]. 哈尔滨: 哈尔滨工程大学, 2018
19 Chen X Y, Tao Y Y, Peng S S, et al. Corrosion inhibition of zinc phytate nanoparticles and protective performance of the composite epoxy coating [J]. Surf. Technol., 2022, 51(5): 32
19 陈星云, 陶烨寅, 彭叔森 等. 纳米植酸锌缓蚀效果及其复合环氧涂层的防护性能 [J]. 表面技术, 2022, 51(5): 32
20 Yan S P, He W, Sun C Y, et al. The biomimetic synthesis of zinc phosphate nanoparticles [J]. Dyes Pigm., 2009, 80: 254
doi: 10.1016/j.dyepig.2008.06.010
21 Zhou X M, Du H J, Ma H, et al. Facile Preparation and characterization of zinc phosphate with self-assembled flower-like micro-nanostructures [J]. J. Phys. Chem. Solids, 2015, 78: 1
doi: 10.1016/j.jpcs.2014.10.020
22 Yuan A Q, Liao S, Tong Z F, et al. Synthesis of nanoparticle zinc phosphate dihydrate by solid state reaction at room temperature and its thermochemical study [J]. Mater. Lett., 2006, 60: 2110
doi: 10.1016/j.matlet.2005.12.082
23 Wan L F, Wang F, Guo Y H, et al. Inhibition of iron surface with Na-salt of phytic acid self-assembled monolayers from corrosion: observed by electrochemistry [J]. J. Shanghai Norm. Univ. (Nat. Sci.), 2011, 40: 500
23 万琉方, 王 芳, 郭玉辉 等. 铁表面植酸钠自组装层缓蚀性能的电化学研究 [J]. 上海师范大学学报(自然科学版), 2011, 40: 500
24 Guo Y M, Li Q J, Yu Y, et al. Applications of electrochemical impedance spectroscopy in undergraduate experimental teaching [J]. Phys. Exp. Coll., 2016, 29(4): 4
24 郭友敏, 李秋菊, 于 一 等. 电化学阻抗谱在本科实验教学中的应用 [J]. 大学物理实验, 2016, 29(4): 4
25 Cao C N. Principles of Corrosion electrochemistry (3rd Edition) [M]. Beijing: Chemical Industry Press, 2008
25 曹楚南. 腐蚀电化学原理(第三版) [M]. 北京: 化学工业出版社,2008
26 Zhang Y J, Shao Y W, Liu X L, et al. A study on corrosion protection of different polyaniline coatings for mild steel [J]. Prog. Org. Coat., 2017, 111: 240
[1] 李禅, 王庆田, 杨承刚, 张宪伟, 韩冬傲, 刘雨薇, 刘智勇. 904L超级奥氏体不锈钢在模拟核电一回路环境中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2024, 44(3): 716-724.
[2] 张照易, 周学杰, 陈昊, 吴军, 陈志飈, 陈志坚. CCSAQ235B钢在长江淡水环境中腐蚀行为研究[J]. 中国腐蚀与防护学报, 2024, 44(3): 735-744.
[3] 张明, 龚宁, 张博, 霍宏博, 李浩男, 钟显康. 基于腐蚀预测和强度计算的油管服役寿命评估[J]. 中国腐蚀与防护学报, 2024, 44(3): 781-788.
[4] 解辉, 于超, 花靖, 蒋秀. NH+4浓度对N80钢在饱和CO2 的3%NaCl溶液中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2024, 44(3): 745-754.
[5] 邢少华, 彭文山, 钱峣, 李相波, 马力, 张大磊. 海水流速对经抛光和钝化表面处理的2205不锈钢点蚀的影响[J]. 中国腐蚀与防护学报, 2024, 44(3): 658-668.
[6] 孙佳钰, 彭文山, 邢少华. 应力-溶解氧耦合对Ni-Cr-Mo-V高强钢腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2024, 44(3): 755-764.
[7] 耿真真, 张钰柱, 杜小将, 吴汉辉. S2-Cl-316L奥氏体不锈钢的腐蚀钝化行为的协同作用[J]. 中国腐蚀与防护学报, 2024, 44(3): 797-806.
[8] 丁昱智, 曹金鑫, 曹凤婷, 李涛, 陶建涛, 王铁钢, 杲广尧, 范其香. 基于风险的检验技术在石油炼化领域中的研究进展[J]. 中国腐蚀与防护学报, 2024, 44(3): 553-566.
[9] 胡琪, 耿树江, 王金龙, 王福会, 孙清云, 吴勇, 夏思瑶. Inconel 718及其渗铝涂层在Na2SO4 + 5%NaCl混合盐膜下的热腐蚀行为[J]. 中国腐蚀与防护学报, 2024, 44(3): 623-634.
[10] 张成龙, 张斌, 朱敏, 袁永锋, 郭绍义, 尹思敏. CoCrNi中熵合金在不同浓度NH4Cl溶液中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2024, 44(3): 725-734.
[11] 岑远遥, 廖光萌, 朱玉琴, 赵方超, 刘聪, 何建新, 周堃. 基于布拉格光纤光栅的铝合金应力腐蚀裂纹扩展监测技术[J]. 中国腐蚀与防护学报, 2024, 44(3): 815-822.
[12] 麻衡, 田会云, 刘宇茜, 王月香, 何康, 崔中雨, 崔洪芝. S420海工钢在不同海洋区带环境下的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2024, 44(3): 635-644.
[13] 邓双九, 李昌, 余梦辉, 韩兴. IN625激光熔覆层腐蚀致微裂纹扩展机理研究[J]. 中国腐蚀与防护学报, 2024, 44(3): 645-657.
[14] 徐佳新, 耿树江, 王金龙, 王福会, 孙清云, 吴勇, 夏思瑶. K452合金表面CVD渗铝涂层制备温度对其750℃硫酸盐热腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2024, 44(3): 612-622.
[15] 戴威, 刘园园, 涂闻芮, 孙阳庭, 李劲, 蒋益明. 外加电位下Ag/Sn电偶的腐蚀行为[J]. 中国腐蚀与防护学报, 2024, 44(3): 700-706.