Please wait a minute...
中国腐蚀与防护学报  2023, Vol. 43 Issue (5): 971-982     CSTR: 32134.14.1005.4537.2022.333      DOI: 10.11902/1005.4537.2022.333
  综合评述 本期目录 | 过刊浏览 |
微型金属氧化物pH电极的制备及腐蚀防护应用进展
顾玉慧1,2, 董亮1(), 宋沁峰1
1.常州大学石油与天然气工程学院 江苏省油气储运技术重点实验室 常州 213164
2.中国石化润滑油有限公司江苏销售分公司 南京 210003
Preparation of Micro Metal Oxide pH Electrode and Its Application in Corrosion and Protection
GU Yuhui1,2, DONG Liang1(), SONG Qinfeng1
1.Jiangsu Key Laboratory of Oil & Gas Storage and Transportation Technology, School of Petroleum and Natural Gas Engineering, Changzhou University, Changzhou 213164, China
2.Sinopec Lubricants Co., Ltd. Sales Branch, Nanjing 210003, China
全文: PDF(8789 KB)   HTML
摘要: 

归纳总结了铱/氧化铱、钛基、钨/氧化钨和氧化锰pH电极的响应机理、性能参数及其研究进展。其中,铱氧化物pH电极稳定性好、响应斜率高 (-59.5~-74.91 mV/pH),应用最为广泛。介绍了电化学沉积法、电化学生长法、热氧化法和溶胶-凝胶法等微型pH电极的常用制备方法,对制备方法中不同工艺参数对电极性能的影响进行分析总结。其中,电化学沉积法应用前景广阔、成本低,制备的电极响应斜率高、响应速率快,但在长期使用过程中的电位漂移问题尚待解决。针对金属pH电极的电位漂移、老化时间久等问题,阐述了水合、热处理及水热处理等后处理工艺对电极性能的改善作用及应用机制。总结了金属氧化物pH微电极在点蚀、电偶腐蚀和应力腐蚀等局部腐蚀与阴极保护方面的应用,包括使用微型金属氧化物pH电极、复合双管pH电极以及将pH电极与扫描电化学显微镜技术 (SECM) 相结合等应用模式。金属氧化物pH电极具有易于微型化、响应快速、性能稳定等特点,使其在监测因局部阳极腐蚀或阴极还原反应形成的金属/介质界面微区环境pH值变化的过程中表现出良好的效果。最后对微型金属氧化物pH电极制备工艺的优缺点进行了总结,并展望了其制备工艺优化及应用趋势。

关键词 微型pH电极金属/金属氧化物pH电极制备腐蚀防护局部腐蚀阴极保护    
Abstract

Metal oxide electrode is widely used for pH examination in food, biology and medical industries due to its characteristics of wide pH response range (pH measurement range can reach 2-12, even 0-14) and easy to be miniaturized. It can be used for in situ measurement of pH value at the vicinity of metal/electrolyte interface, thus providing important parameters for deducing the possible electrochemical reactions, explaining specific corrosion behavior and revealing the relevant corrosion mechanism. In this paper, the response performance, performance parameters and the research progress of metal oxide electrodes made of iridium, manganese, titanium, tungsten and the relevant oxides were summarized. Among which, the iridium oxide electrode was most widely used as a pH detector for its stability and high response slope (-59.5 - -74.91 mV/pH). The commonly used preparation methods for micro metal oxide pH electrodes such as electrochemical deposition method, thermal oxidation method, sol-gel method, screen printing method, etc. as well as the effect of different process parameters were also summarized. The electrochemical deposition method had a broad application prospect, and with which the prepared electrodes had the characteristics of low cost, high response slope and fast response rate, but their potential drift for the long-term service needed to be solved. Aiming at the matter of potential drift and long aging time of metal pH electrodes, the effect of post-treatment processes such as hydration, heat treatment and hydrothermal treatment on the electrode performance were introduced. The applications of metal oxide pH micro-electrodes for the examination of pitting corrosion, galvanic corrosion, stress corrosion and other local corrosion, as well as for the monitoring cathodic protection were reviewed, including the micro metal oxide pH electrode, composite double-tube pH electrode and the combination of pH electrode and scanning electrochemical microscopy technology (SECM), etc. The metal oxide electrode was easy to be miniaturized and had a stable response, which made it show good response performance in the process of monitoring the change of pH value nearby the metal/electrolyte interface formed during local anodic corrosion or cathodic reduction reaction. Lastly, the preparation technology and application trend of the micro metal oxide electrode were also prospected.

Key wordsmicro pH electrode    metal/metal oxide pH electrode    preparation technology    corrosion and protection    local corrosion    cathodic protection
收稿日期: 2022-10-28      32134.14.1005.4537.2022.333
ZTFLH:  TG174  
基金资助:国家自然科学基金(51401017);江苏省研究生科研与实践创新计划(SJCX21_1269)
通讯作者: 董亮,E-mail: dongliang@cczu.edu.cn,研究方向为金属材料的腐蚀与防护   
Corresponding author: DONG Liang, E-mail: dongliang@cczu.edu.cn   
作者简介: 顾玉慧,女,1998年生,硕士生

引用本文:

顾玉慧, 董亮, 宋沁峰. 微型金属氧化物pH电极的制备及腐蚀防护应用进展[J]. 中国腐蚀与防护学报, 2023, 43(5): 971-982.
GU Yuhui, DONG Liang, SONG Qinfeng. Preparation of Micro Metal Oxide pH Electrode and Its Application in Corrosion and Protection. Journal of Chinese Society for Corrosion and protection, 2023, 43(5): 971-982.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2022.333      或      https://www.jcscp.org/CN/Y2023/V43/I5/971

图1  铱氧化物电极在700,750,800和870 ℃下加热不同时间后的表面形貌 [48]
图2  未使用和使用水合处理后的氧化铱电极表面形貌图[37]
图3  原始和超临界处理的氧化铱电极的Ir 4f精细XPS谱图[51]
ElectrodesMethodsResponse rangeResponse slopeResponse timeRef.
Iridium oxide pH electrodeHigh temperature oxidation2~12-59.5 mV/pH<30 s[35]
High temperature oxidation1~12-58.4 mV/pH1~3 min[34]
High temperature oxidation20~80 s[48]
High-temperature carbonate oxidation0~14-59~-65 mV/pH-[36]
Cyclic oxidative quenching1~13-55~-57 mV/pH10 s~60 s[37]
Electrochemical deposition1~13-55.5~-65.5 mV/pH-[31]
Constant current deposition--74.91 mV/pH67 s[42]
Sol-gel method1.5~12-51.1~-51.7 mV/pH<2 s[39]
Electrochemical deposition--72.5±1.1 mV/pH-[45]
Cyclic voltammetry--57~-72 mV/pH-[43]
Electrochemical deposition2.38~11.61-59 mV/pH[38]
Silk-screen printing--59 mV/pH-[40]
Melt oxidation1~13-58.92 mV/pH<0.2 s[41]
Titanium-based pH electrodeElectron impact ion source1~12-55 mV/pH2~5 min[53]
Ionic nitriding11~14-60 mV/pH<1 min[68]
Sol-gel method1~11-58.73 mV/pH-[69]
Tungsten oxide pH electrodeChemical oxidation2~11-56.0±0.9 mV/pH-[61]
Magnetron sputtering2~12-41 mV/pH<90 s[59]
Sol-gel method2~11-52.6 mV/pH<1 min[60]
Constant groove pressure method2~11-50 mV/pH<3 min[62]
Thermal oxidation2~12-53.83 mV/pH<1 min[70]
Manganese oxide pH electrodeSilk-screen printing2~12-78.3 mV/pH-[64]
表1  电极制备方法及性能汇总
1 Wahyuni W T, Putra B R, Marken F. Voltammetric detection of vitamin B1 (thiamine) in neutral solution at a glassy carbon electrode via in situ pH modulation [J]. Analyst, 2020, 145: 1903
doi: 10.1039/c9an02186h pmid: 31984381
2 Kemer B, Demir E. A novel potentiometric pH electrode based on sulfated natural Fe3O4 and analytical application in food samples [J]. J. Food Measure. Charact., 2018, 12: 2256
3 Hou J X, Liu Z L, Zhou Y, et al. An experimental study of pH distributions within an electricity-producing biofilm by using pH microelectrode [J]. Electrochim. Acta, 2017, 251: 187
doi: 10.1016/j.electacta.2017.08.101
4 Uria N, Abramova N, Bratov A, et al. Miniaturized metal oxide pH sensors for bacteria detection [J]. Talanta, 2016, 147: 364
doi: 10.1016/j.talanta.2015.10.011 pmid: 26592620
5 Wang M, Ha Y. An electrochemical approach to monitor pH change in agar media during plant tissue culture [J]. Biosens. Bioelectron., 2007, 22: 2718
pmid: 17178219
6 Prats-Alfonso E, Abad L, Casañ-Pastor N, et al. Iridium oxide pH sensor for biomedical applications. Case urea-urease in real urine samples [J]. Biosens. Bioelectron., 2013, 39: 163
doi: 10.1016/j.bios.2012.07.022 pmid: 22857994
7 Savvas I, Raptopoulos D, Rallis T. A "Light Meal" three hours preoperatively decreases the incidence of gastro-esophageal reflux in dogs [J]. J. Am. Anim. Hosp. Assoc., 2016, 52: 357
pmid: 27685364
8 Yang X Z, Zhang H W. A review on Pourbaix diagrams and their applications in metal corrosion and its prevention [J]. J. Shandong Inst. Technol., 1982, (2): 1
8 杨熙珍, 张鹤呜. 布拜图及其在金属腐蚀与防护中的应用 (综论) [J]. 山东工学院学报, 1982, (2): 1
9 Zohdy K M, El-Sherif R M, El-Shamy A M. Corrosion and passivation behaviors of tin in aqueous solutions of different pH [J]. J. Bio- Tribo-Corros., 2021, 7: 74
doi: 10.1007/s40735-021-00515-6
10 Da Silva M M, Mascaro L H, Pereira E C, et al. Near-surface solution pH measurements during the pitting corrosion of AISI 1020 steel using a ring-shaped sensor [J]. J. Electroanal. Chem., 2016, 780: 379
doi: 10.1016/j.jelechem.2016.02.017
11 Lin C J, Luo J L, Sun H Y, et al. Scanning combination micro pH electrode for in-situ pH imaging in the localized corrosion [J]. Electrochemistry, 1996, 2(4): 373
11 林昌健, 骆静利, 孙海燕 等. 扫描复合微pH电极原位测量局部腐蚀体系pH分布图象 [J]. 电化学, 1996, 2(4): 373
12 Zhu Z J, Ye Z N, Zhang Q H, et al. Novel dual Pt-Pt/IrO x ultramicroelectrode for pH imaging using SECM in both potentiometric and amperometric modes [J]. Electrochem. Commun., 2018, 88: 47
doi: 10.1016/j.elecom.2018.01.018
13 Zhu Z J, Zhang Q H, Liu P, et al. Application of microelectrochemical sensors in monitoring of localized interface pH [J]. J. Chin. Soc. Corros. Prot., 2019, 39: 367
13 朱泽洁, 张勤号, 刘 盼 等. 微型电化学传感器在界面微区pH值监测中的应用 [J]. 中国腐蚀与防护学报, 2019, 39: 367
doi: 10.11902/1005.4537.2019.136
14 Sun K Q, Gao H, Hu J Q, et al. Effect of pH on the corrosion and crack growth behavior of the ZK60 magnesium alloy [J]. Corros. Sci., 2021, 179: 109135
doi: 10.1016/j.corsci.2020.109135
15 L’Haridon-Quaireau S, Laot M, Colas K, et al. Effects of temperature and pH on uniform and pitting corrosion of aluminium alloy 6061-T6 and characterisation of the hydroxide layers [J]. J. Alloy. Comp., 2020, 833: 155146
doi: 10.1016/j.jallcom.2020.155146
16 Tada E, Sugawara K, Kaneko H. Distribution of pH during galvanic corrosion of a Zn/steel couple [J]. Electrochim. Acta, 2004, 49: 1019
doi: 10.1016/j.electacta.2003.10.012
17 Shao M H, Huang R S, Hu R G, et al. Fabrication of combination scanning micro pH electrode and its application in localized corrosion [J]. Acta Phys. Chim. Sin., 2002, 18: 934
doi: 10.3866/PKU.WHXB20021014
17 邵敏华, 黄若双, 胡融刚 等. 复合型扫描微pH电极及其在局部腐蚀中的应用 [J]. 物理化学学报, 2002, 18: 934
18 Li Y, Liu Z Y, Fan E D, et al. The effect of crack tip environment on crack growth behaviour of a low alloy steel at cathodic potentials in artificial seawater [J]. J. Mater. Sci. Technol., 2020, 54: 119
doi: 10.1016/j.jmst.2020.04.034
19 Cui Z Y. Electrochemical and stress corrosion cracking behavior and mechanism of X70 pipeline steel in a near-netrual pH environment [D]. Beijing: University of Science and Technology Beijing, 2015
19 崔中雨. X70钢近中性pH环境中电化学及应力腐蚀行为与机理研究 [D]. 北京: 北京科技大学, 2015
20 Büchler M. On the mechanism of cathodic protection and its implications on criteria including AC and DC interference conditions [J]. Corrosion, 2020, 76: 451
doi: 10.5006/3379
21 Huo Y, Tan M Y J, Forsyth M. Investigating effects of potential excursions and pH variations on cathodic protection using new electrochemical testing cells [J]. Corros. Eng. Sci. Technol., 2016, 51: 171
doi: 10.1179/1743278215Y.0000000044
22 Chen X, Du C W, Li X G, et al. Effects of cathodic potential on the local electrochemical environment under a disbonded coating [J]. J. Appl. Electrochem., 2009, 39: 697
doi: 10.1007/s10800-008-9711-3
23 Qin H M, Du Y X, Lu M X, et al. Effect of dynamic DC stray current on corrosion behavior of X70 steel [J]. Mater. Corros., 2020, 71: 35
doi: 10.1002/maco.201911022
24 McMurray H N, Douglas P, Abbot D. Novel thick-film pH sensors based on ruthenium dioxide-glass composites [J]. Sens. Actuators, 1995, 28B: 9
25 Lattach Y, Rivera J F, Bamine T, et al. Iridium oxide-polymer nanocomposite electrode materials for water oxidation [J]. ACS Appl. Mater. Interfaces, 2014, 6: 12852
doi: 10.1021/am5027852
26 Huang X R, Ren Q Q, Yuan X J, et al. Iridium oxide based coaxial pH ultramicroelectrode [J]. Electrochem. Commun., 2014, 40: 35
doi: 10.1016/j.elecom.2013.12.012
27 Hu J. Fabrication, characterisation, and optical applications of electrochemically deposited nanostructured IrO x films [D]. Southampton: University of Southampton, 2008
28 Chu J, Zhao Y, Li S H, et al. An integrated solid-state pH microelectrode prepared using microfabrication [J]. Electrochim. Acta, 2015, 152: 6
doi: 10.1016/j.electacta.2014.11.102
29 Sadig H R, Cheng L, Xiang T F. Synthesis of tetra-metal oxide system based pH sensor via branched cathodic electrodeposition on different substrates [J]. Arab. J. Chem., 2019, 12: 610
doi: 10.1016/j.arabjc.2018.10.010
30 Liu R, Zhang M, Meng Q H, et al. Oscillations of pH at the Fe│H2SO4 interface during anodic dissolution [J]. Electrochem. Commun., 2017, 82: 103
doi: 10.1016/j.elecom.2017.08.006
31 Zhu Z J, Liu X Y, Ye Z N, et al. A fabrication of iridium oxide film pH micro-sensor on Pt ultramicroelectrode and its application on in-situ pH distribution of 316L stainless steel corrosion at open circuit potential [J]. Sens. Actuators, 2018, 255B: 1974
32 Fog A, Buck R P. Electronic semiconducting oxides as pH sensors [J]. Sens. Actuators, 1984, 5: 137
doi: 10.1016/0250-6874(84)80004-9
33 Wang H J. Progress in pH electrodes and sensors [J]. Chem. Sens., 1987, 7 (1): 1
doi: 10.1093/chemse/7.1.1
33 汪厚基. pH电极和传感器的进展 [J]. 化学传感器, 1987, 7 (1): 1
34 Chen C S, Cao L C. Preparation and properties of iridium pH electrode [J]. Chem. Sens., 1982, (2): 46
34 陈重升, 曹履诚. 铱pH电极的制备和性能 [J]. 离子选择电极通讯, 1982, (2): 46
35 Fan H B. Preparation and properties of iridium pH electrode [J]. Chemical sensors, 1996, 16 (2): 99
35 范宏斌. 金属铱/氧化铱pH电极的研制 [J]. 化学传感器, 1996, 16 (2): 99
36 Huang R S, Hu R G, Du R G, et al. Fabrication of IrO2-pH microelectrode and its application in study of chemical micro-environment at steel/concrete interface [J]. Corros. Sci. Prot. Technol., 2002, 14: 305
36 黄若双, 胡融刚, 杜荣归 等. IrO2-pH微电极的研制及钢筋/混凝土界面pH的测量 [J]. 腐蚀科学与防护技术, 2002, 14: 305
37 Huang F F. IrO x -pH electrode fabrication, response mechanism and its application study [D]. Beijing: University of Science and Technology Beijing, 2016
37 黄菲菲. IrO x pH电极制备、响应机理及其应用研究 [D]. 北京: 北京科技大学, 2016
38 Kim T Y, Yang S. Fabrication method and characterization of electrodeposited and heat-treated iridium oxide films for pH sensing [J]. Sens. Actuators, 2014, 196B: 31
39 Huang W D, Cao H N, Deb S, et al. A flexible pH sensor based on the iridium oxide sensing film [J]. Sens. Actuator., 2011, 169A: 1
40 Jović M, Hidalgo-Acosta J C, Lesch A, et al. Large-scale layer-by-layer inkjet printing of flexible iridium-oxide based pH sensors [J]. J. Electroanal. Chem., 2018, 819: 384
doi: 10.1016/j.jelechem.2017.11.032
41 Yao S, Wang M, Madou M. A pH electrode based on Melt-Oxidized iridium oxide [J]. J. Electrochem. Soc., 2001, 148: H29
doi: 10.1149/1.1353582
42 Du Z X. Preparation and characterization of IrO x pH sensor [D]. Qingdao: Qingdao University of Technology, 2017
42 杜振兴. 铱氧化物pH传感器制备及性能表征 [D]. 青岛: 青岛理工大学, 2017
43 El-Giar E E D M, Wipf D O. Microparticle-based iridium oxide ultramicroelectrodes for pH sensing and imaging [J]. J. Electroanal. Chem., 2007, 609: 147
doi: 10.1016/j.jelechem.2007.06.022
44 Wang D D, Yang C, Xia J F, et al. Improvement of the Ir/IrO2 pH electrode via hydrothermal treatment [J]. Ionics, 2017, 23: 2167
doi: 10.1007/s11581-017-2058-1
45 Mingels R H G, Kalsi S, Cheong Y, et al. Iridium and ruthenium oxide miniature pH sensors: Long-term performance [J]. Sens. Actuator., 2019, 297B: 126779
46 Burke L D, Lyons M E, O'sullivan E J M, et al. Influence of hydrolysis on the redox behaviour of hydrous oxide films [J]. J. Electroanal. Chem. Interfacial Electrochem., 1981, 122: 403
doi: 10.1016/S0022-0728(81)80176-3
47 Olthuis W, Robben M A M, Bergveld P, et al. PH sensor properties of electrochemically grown iridium oxide [J]. Sens. Actuator., 1990, 2B: 247
48 Huang F F, Bi P, Wan Z W, et al. Insight into the factors of thermal oxidation Influencing properties of iridium oxide electrodes [J]. Sens. Mater., 2020, 32: 3313
49 Gao L L, Cui Z B, Liu F G, et al. Fabrication and application of Ir/IrO2 electrode [J]. Mater. Rev., 2013, 27 (10): 31
49 高璐璐, 崔振邦, 刘福国 等. 铱/氧化铱电极的制备及应用 [J]. 材料导报, 2013, 27 (10): 31
50 Xi Y, Guo Z J, Wang L C, et al. Fabrication and characterization of iridium oxide pH microelectrodes based on sputter deposition method [J]. Sensors, 2021, 21: 4996
doi: 10.3390/s21154996
51 Dai M T, Xia J F, Xue Z H, et al. Improved iridium/iridium oxide pH electrode through supercritical treatment [J]. J. Electroanal. Chem., 2022, 922: 116740
doi: 10.1016/j.jelechem.2022.116740
52 Nishio K, Tsuchiya T. Electrochromic thin films prepared by sol-gel process [J]. Sol. Energy Mater. Sol. Cells, 2001, 68: 279
doi: 10.1016/S0927-0248(00)00362-7
53 Feng D M, Li H T, Lv D K, et al. Preparation of novel titanium-based pH electrodes [J]. Chem. Sensors, 1997, 17: 305
53 丰达明, 李海涛, 吕帝康 等. 新型钛基pH电极的研制 [J]. 化学传感器, 1997, 17: 305
54 Vasilyeva M S, Rudnev V S, Zabudskaya N E, et al. Preparation and study of Ti/TiO2, SbO x pH Electrodes [J]. J. Anal. Chem., 2020, 75: 246
doi: 10.1134/S1061934820020173
55 Lu M L, Yuan H Y, Xiao D. A novel pH electrode based on titanium nitride [J]. Chem. J. Chin. Univ., 2003, 24: 1400
55 鲁勖琳, 袁红雁, 肖 丹. 基于氮化钛的全固态碱性pH电极的研制 [J]. 高等学校化学学报, 2003, 24: 1400
56 Lu J, Lv D K, Liang H R, et al. Study on a Ti-based pH electrode by the ionic nitriding treatment [J]. J. Guangdong Non-Ferr. Met., 1997, 7: 51
56 鲁 建, 吕帝康, 梁汉荣 等. 用离子氮化技术制备钛基pH电极的研究 [J]. 广东有色金属学报, 1997, 7: 51
57 Wen Y Z, Wang X P. Characterization and application of a metallic tungsten electrode for potentiometric pH measurements [J]. J. Electroanal. Chem., 2014, 714/715: 45
58 Guo Q, Wu X Q, Han E H, et al. pH response behaviors and mechanisms of different tungsten/tungsten oxide electrodes for long-term monitoring [J]. J. Electroanal. Chem., 2016, 782: 91
doi: 10.1016/j.jelechem.2016.10.026
59 Zhang W D, Xu B. A solid-state pH sensor based on WO3-modified vertically aligned multiwalled carbon nanotubes [J]. Electrochem. Commun., 2009, 11: 1038
doi: 10.1016/j.elecom.2009.03.006
60 Chen D C, Fu C Y, Zhen J S, et al. Preparation of tungsten oxide pH sensor and its application to F- and sol solutions [J]. J. South China Univ. Technol. (Nat. Sci. Ed.), 2006, 34 (3): 15
60 陈东初, 付朝阳, 郑家燊 等. 氧化钨pH传感器制备及其在F-和胶体溶液中的应用 [J]. 华南理工大学学报 (自然科学版), 2006, 34 (3): 15
61 Dimitrakopoulos L T, Dimitrakopoulos T, Alexander P W, et al. A tungsten oxide coated wire electrode used as a pH sensor in flow injection potentiometry [J]. Anal. Commun., 1998, 35: 395
doi: 10.1039/a807697i
62 Dong Y N. Study on the performance of W/WO3 pH electrode and its response mechanism [D]. Wuhan: Huazhong University of Science and Technology, 2015
62 董亚男. W/WO3 pH电极的性能与响应机理研究 [D]. 武汉: 华中科技大学, 2015
63 Kozawa A, Yeager J F. The cathodic reduction mechanism of electrolytic manganese dioxide in alkaline electrolyte [J]. J. Electrochem. Soc., 2019, 112: 959
doi: 10.1149/1.2423350
64 Shu Y Q, Yuan D Q. Fabrication of MnO2-based solid pH electrode [J]. Anal. Test. Technol. Instrum., 2000, 6: 109
64 舒友琴, 袁道强. 氧化锰型固态pH电极的研制 [J]. 分析测试技术与仪器, 2000, 6: 109
65 Shu Y Q, Li Q W, Luo G A. The fabrication of Nanosized MnO2 pH electrode and its application to the corrosion system containing hydrofluoric acid [J]. Anal. Chem., 2000, 28: 657
65 舒友琴, 李清文, 罗国安. 纳米二氧化锰型固体pH电极的研制及其在含氟腐蚀体系中的应用 [J]. 分析化学, 2000, 28: 657
66 Li Q W, Luo G A, Shu Y Q, et al. Fabrication of metal oxide-based solid pH electrode [J]. Chem. J. Chin. Univ., 2000, 21: 1380
66 李清文, 罗国安, 舒友琴 等. 丝网印刷纳米金属氧化物型固态pH电极的研制 [J]. 高等学校化学学报, 2000, 21: 1380
67 Shi Y H, Meng H M, Sun D B, et al. The research of manganese oxide coating electrode by anode electrodeposit process [J]. Heat Treat. Technol. Equip., 2008, 29 (1): 39
67 史艳华, 孟惠民, 孙冬柏 等. 阳极电沉积法制备锰类氧化物涂层电极的研究 [J]. 热处理技术与装备, 2008, 29 (1): 39
68 Lv D K, Feng D M. Study on the ionbombardment for surface treatment of titanium-base pH electro de [J]. J. Guangdong Non-Ferr. Met., 1999, 9: 141
68 吕帝康, 丰达明. 钛基pH电极表面离子轰击处理的研究 [J]. 广东有色金属学报, 1999, 9: 141
69 Liao Y H, Chou J C. Preparation and characterization of the titanium dioxide thin films used for pH electrode and procaine drug sensor by sol-gel method [J]. Mater. Chem. Phys., 2009, 114: 542
doi: 10.1016/j.matchemphys.2008.10.014
70 Ling X, Dai J H, Yang Y M, et al. The preparation and application of a wolfram/wolfram oxide micro-needle composite pH sensor [J]. J. Yunnan Nationalities Univ.: Nat. Sci. Ed., 2016, 25: 34
70 凌 茜, 戴建辉, 杨元梦 等. 针型复合钨/氧化钨微型pH复合电极的研制及应用 [J]. 云南民族大学学报: 自然科学版, 2016, 25: 34
71 Manjakkal L, Szwagierczak D, Dahiya R. Metal oxides based electrochemical pH sensors: Current progress and future perspectives [J]. Prog. Mater. Sci., 2019, 109: 100635
doi: 10.1016/j.pmatsci.2019.100635
72 Chou J C, Wang Y F. Preparation and study on the drift and hysteresis properties of the tin oxide gate ISFET by the sol-gel method [J]. Sens. Actuator., 2002, 86B: 58
[1] 董红梅, 李宝毅, 冉博元, 王琦, 牛宇岚, 丁莉峰, 强玉杰. 一种环保型缓蚀剂利拉利汀对紫铜在硫酸中的缓蚀机理研究[J]. 中国腐蚀与防护学报, 2023, 43(5): 1031-1040.
[2] 倪雨朦, 于英杰, 严慧, 王嵬, 李瑛. 铜铝/镍石墨可磨耗封严涂层相选择性溶解机制有限元研究[J]. 中国腐蚀与防护学报, 2023, 43(4): 855-861.
[3] 刘超, 陈天奇, 李晓刚. 低合金钢中夹杂物诱发局部腐蚀萌生机制的研究进展[J]. 中国腐蚀与防护学报, 2023, 43(4): 746-754.
[4] 邓成满, 刘喆, 夏大海, 胡文彬. 5083-H111铝合金在模拟动态海水环境中的局部腐蚀机制[J]. 中国腐蚀与防护学报, 2023, 43(4): 683-692.
[5] 李强, 路程, 唐颖浩, 唐建峰, 刘炳成. 湿气管道积液区X70CO2 局部腐蚀行为研究[J]. 中国腐蚀与防护学报, 2023, 43(4): 837-846.
[6] 寇杰, 任哲. 基于数值计算的罐底板阴极保护电位分布研究进展与展望[J]. 中国腐蚀与防护学报, 2023, 43(4): 871-881.
[7] 黄家和, 袁曦, 陈文, 闫文静, 金正宇, 柳海宪, 刘宏芳, 刘宏伟. 温度对CO2饱和页岩气压裂液环境中N80和TP125V钢腐蚀行为影响研究[J]. 中国腐蚀与防护学报, 2023, 43(2): 251-260.
[8] 毛英畅, 祝钰, 孙圣凯, 秦真波, 夏大海, 胡文彬. 5083铝合金在模拟海洋浪花飞溅区的局部腐蚀行为[J]. 中国腐蚀与防护学报, 2023, 43(1): 47-54.
[9] 李长春, 何仁碧, 陈以龙, 何仁洋, 王政骁. 交流干扰与阴极保护共同作用对X65管线钢的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2023, 43(1): 179-185.
[10] 庞涛, 刘静, 黄峰, 李闯, 赵国知, 黄先球, 郑建国, 程鹏. 武汉地铁钢轨在典型隧道环境中的腐蚀现状分析[J]. 中国腐蚀与防护学报, 2022, 42(5): 798-804.
[11] 鲍晨宇, 李建民, 叶梦颖, 高荣杰. 复合电解液中TiO2纳米管阵列的制备及光生阴极保护性能[J]. 中国腐蚀与防护学报, 2022, 42(5): 759-764.
[12] 张海兵, 张一晗, 马力, 邢少华, 段体岗, 闫永贵. 深浅交变环境牺牲阳极电化学性能研究[J]. 中国腐蚀与防护学报, 2022, 42(5): 867-872.
[13] 赵海洋, 高多龙, 张童, 吕由, 张宇鹏, 张欣欣, 石鑫, 魏晓静, 刘冬梅, 董泽华. 电弧增材制造航空AA2024铝合金的微观结构及其腐蚀行为研究[J]. 中国腐蚀与防护学报, 2022, 42(4): 621-628.
[14] 文家新, 张欣, 刘云霞, 周永福, 刘克建. 掺杂pH敏感性智能纳米容器BTA@MSNs-SO3H-PDDA碳钢智能防腐涂层的制备及性能研究[J]. 中国腐蚀与防护学报, 2022, 42(2): 309-316.
[15] 苏娜, 叶梦颖, 李建民, 高荣杰. ZIF-8/TiO2纳米复合材料的制备及光生阴极保护性能[J]. 中国腐蚀与防护学报, 2022, 42(2): 267-273.