中国腐蚀与防护学报, 2023, 43(5): 971-982 DOI: 10.11902/1005.4537.2022.333

综合评述

微型金属氧化物pH电极的制备及腐蚀防护应用进展

顾玉慧1,2, 董亮,1, 宋沁峰1

1.常州大学石油与天然气工程学院 江苏省油气储运技术重点实验室 常州 213164

2.中国石化润滑油有限公司江苏销售分公司 南京 210003

Preparation of Micro Metal Oxide pH Electrode and Its Application in Corrosion and Protection

GU Yuhui1,2, DONG Liang,1, SONG Qinfeng1

1.Jiangsu Key Laboratory of Oil & Gas Storage and Transportation Technology, School of Petroleum and Natural Gas Engineering, Changzhou University, Changzhou 213164, China

2.Sinopec Lubricants Co., Ltd. Sales Branch, Nanjing 210003, China

通讯作者: 董亮,E-mail:dongliang@cczu.edu.cn,研究方向为金属材料的腐蚀与防护

收稿日期: 2022-10-28   修回日期: 2022-11-21  

基金资助: 国家自然科学基金.  51401017
江苏省研究生科研与实践创新计划.  SJCX21_1269

Corresponding authors: DONG Liang, E-mail:dongliang@cczu.edu.cn

Received: 2022-10-28   Revised: 2022-11-21  

Fund supported: National Natural Science Foundation of China.  51401017
Jiangsu Province Graduate Research and Practice Innovation Program.  SJCX21_1269

作者简介 About authors

顾玉慧,女,1998年生,硕士生

摘要

归纳总结了铱/氧化铱、钛基、钨/氧化钨和氧化锰pH电极的响应机理、性能参数及其研究进展。其中,铱氧化物pH电极稳定性好、响应斜率高 (-59.5~-74.91 mV/pH),应用最为广泛。介绍了电化学沉积法、电化学生长法、热氧化法和溶胶-凝胶法等微型pH电极的常用制备方法,对制备方法中不同工艺参数对电极性能的影响进行分析总结。其中,电化学沉积法应用前景广阔、成本低,制备的电极响应斜率高、响应速率快,但在长期使用过程中的电位漂移问题尚待解决。针对金属pH电极的电位漂移、老化时间久等问题,阐述了水合、热处理及水热处理等后处理工艺对电极性能的改善作用及应用机制。总结了金属氧化物pH微电极在点蚀、电偶腐蚀和应力腐蚀等局部腐蚀与阴极保护方面的应用,包括使用微型金属氧化物pH电极、复合双管pH电极以及将pH电极与扫描电化学显微镜技术 (SECM) 相结合等应用模式。金属氧化物pH电极具有易于微型化、响应快速、性能稳定等特点,使其在监测因局部阳极腐蚀或阴极还原反应形成的金属/介质界面微区环境pH值变化的过程中表现出良好的效果。最后对微型金属氧化物pH电极制备工艺的优缺点进行了总结,并展望了其制备工艺优化及应用趋势。

关键词: 微型pH电极 ; 金属/金属氧化物pH电极 ; 制备 ; 腐蚀防护 ; 局部腐蚀 ; 阴极保护

Abstract

Metal oxide electrode is widely used for pH examination in food, biology and medical industries due to its characteristics of wide pH response range (pH measurement range can reach 2-12, even 0-14) and easy to be miniaturized. It can be used for in situ measurement of pH value at the vicinity of metal/electrolyte interface, thus providing important parameters for deducing the possible electrochemical reactions, explaining specific corrosion behavior and revealing the relevant corrosion mechanism. In this paper, the response performance, performance parameters and the research progress of metal oxide electrodes made of iridium, manganese, titanium, tungsten and the relevant oxides were summarized. Among which, the iridium oxide electrode was most widely used as a pH detector for its stability and high response slope (-59.5 - -74.91 mV/pH). The commonly used preparation methods for micro metal oxide pH electrodes such as electrochemical deposition method, thermal oxidation method, sol-gel method, screen printing method, etc. as well as the effect of different process parameters were also summarized. The electrochemical deposition method had a broad application prospect, and with which the prepared electrodes had the characteristics of low cost, high response slope and fast response rate, but their potential drift for the long-term service needed to be solved. Aiming at the matter of potential drift and long aging time of metal pH electrodes, the effect of post-treatment processes such as hydration, heat treatment and hydrothermal treatment on the electrode performance were introduced. The applications of metal oxide pH micro-electrodes for the examination of pitting corrosion, galvanic corrosion, stress corrosion and other local corrosion, as well as for the monitoring cathodic protection were reviewed, including the micro metal oxide pH electrode, composite double-tube pH electrode and the combination of pH electrode and scanning electrochemical microscopy technology (SECM), etc. The metal oxide electrode was easy to be miniaturized and had a stable response, which made it show good response performance in the process of monitoring the change of pH value nearby the metal/electrolyte interface formed during local anodic corrosion or cathodic reduction reaction. Lastly, the preparation technology and application trend of the micro metal oxide electrode were also prospected.

Keywords: micro pH electrode ; metal/metal oxide pH electrode ; preparation technology ; corrosion and protection ; local corrosion ; cathodic protection

PDF (8789KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

顾玉慧, 董亮, 宋沁峰. 微型金属氧化物pH电极的制备及腐蚀防护应用进展. 中国腐蚀与防护学报[J], 2023, 43(5): 971-982 DOI:10.11902/1005.4537.2022.333

GU Yuhui, DONG Liang, SONG Qinfeng. Preparation of Micro Metal Oxide pH Electrode and Its Application in Corrosion and Protection. Journal of Chinese Society for Corrosion and Protection[J], 2023, 43(5): 971-982 DOI:10.11902/1005.4537.2022.333

pH值是环境介质中氢离子活度 (氢离子浓度较低时等于浓度) 的常用对数的负值,是表征介质酸碱度的重要参数,广泛应用于环境、食品[1, 2]、农业[3~5]和医疗[6, 7]等行业中。在腐蚀与防护领域中,pH值是体现介质腐蚀性的重要参数,基于pH值和金属电极电位构成的电位-pH图[8, 9]是研究金属腐蚀电极反应和腐蚀机理的重要工具。pH值在点蚀[10~15]、电偶腐蚀[16, 17]、应力腐蚀[18, 19]、杂散电流腐蚀[20]的腐蚀行为和机理研究,阴极保护防腐效果与机制[21, 22]等研究中有着良好的应用。

常见的pH值测量方法包括指示剂法和电位法两种。其中,指示剂法测量方便快捷,但测量精度较低,且在测量金属近表面pH值时需要取液,破坏了原有表面环境介质状态[23];电位法测量的精度相对较高,能够实现原位测量,在腐蚀防护研究中的应用最为广泛。电位法测量工具由参比电极和指示电极构成,参比电极的电极电位不随溶液改变而变化,指示电极的电极电位随着溶液中氢离子浓度改变而变化,其电极电位与氢离子浓度 (即对应于pH值) 的关系主要符合Nernst方程。常见的pH值测量用指示电极包括玻璃电极和金属氧化物电极。玻璃电极易碎且体积较大,目前市面上的最小尺寸在毫米级,而金属氧化物电极可以微型化,达到微米级[24~31]

由于腐蚀过程中pH值在微米级及以下的近表面溶液中的变化较大,需要开展微区pH值原位测量,微型pH电极是监测腐蚀过程pH值最有效的手段,采用金属氧化物制作微型pH电极并开展多种腐蚀与防护的具体应用成为研究热点[10~13]。目前制作微型pH电极的金属基有W、Ir、Ti等材料,这些材料耐腐蚀、硬度较好,制成的金属氧化物电极具有机械性能良好、测量精度高、线性范围宽和测量响应迅速等优点。微型金属氧化物pH电极制备方法较多,最常见的有热氧化法、电化学沉积法和溶胶-凝胶法等,不同制备方法制得的电极性能有较大差异。本文综述了氧化铱pH电极、钛基pH电极、氧化钨pH电极及氧化锰pH电极的研究进展,对微型金属氧化物pH电极在腐蚀与防护方面的应用进行了总结和分析,以期为金属氧化物pH电极的研发和腐蚀防护应用提供参考。

1 微型pH电极类型及制备方法

1.1 微型pH电极类型及制备

早期使用的金属/金属氧化物pH电极主要是锑、铅氧化物pH电极,但其pH响应范围小、电极电位E-pH线性关系不佳[32],逐渐被其他性能优异的金属氧化物pH电极代替,最常见为铱氧化物pH电极、钛基pH电极、氧化钨pH电极与氧化锰pH电极。其中,对铱氧化物pH电极的研究最为普遍。

1.1.1 铱/氧化铱pH电极

金属铱/氧化铱电极稳定性好、选择性高、滞后效应小,被认为是极具应用前景的金属氧化物pH电极[33]。氧化铱pH电极的pH响应机理较为复杂,主要涉及以下3种可能的氧化还原机制:

IrO2+4H++4e-=Ir+2H2O
E0=0.925 V(SHE)
Ir2O3+6H++6e-=2Ir+3H2O
E0=0.925 V(SHE)
2IrO2+2H++2e-=Ir2O3+H2O
E0=0.925 V(SHE)

以上反应的E0均为0.925 V (SHE),氢离子数和电子数相同,电极的电位E随着pH的变化均呈Nernst线性变化,即:

E=E0-2.303RTFpH=E0-0.05916pH

25.0 ℃时,该电极的pH理论响应斜率为-59 mV/pH,大部分研究者制备的氧化铱pH电极的pH响应斜率均接近该值[34~41],也有一些研究者获得的pH响应斜率更高,可达到-70 mV/pH左右[31,42~45],这与电极制备工艺和后处理工艺不同形成了新的电极反应有关。如Burke等[46]和Olthuis等[47]认为介质中络合物的存在可能会导致出现新的电极反应。从他们研究质子交换的一般平衡式

Ir2O(OH)3O33-+3H++2e-=2Ir(OH)2O-+H2O

可以看出,该电极反应中产生的氢离子数大于电子数,且反应和生成的阴离子即络合物活度等均会改变pH响应斜率。不同的制备工艺导致电极表面生成的氧化膜层不同,可分为无水氧化膜与含水氧化膜,采用热氧化法与溅射法制备的氧化铱pH电极表面多为无水氧化铱膜,响应斜率为近Nernst响应 (-59 mV/pH),电化学沉积法与电化学生长法制备的氧化铱电极膜层为含水氧化铱薄膜,响应斜率表现为超Nernst响应 (接近-75 mV/pH)。

(1) 无水氧化铱pH电极的制备

常见的热氧化法包括热分解法、高温氧化法和高温碳酸盐氧化法。热分解法主要是将三氯化铱溶于乙醇溶液或水中,涂刷在钛、铂等非铱金属基底上,待干燥后置于炉内高温氧化,重复操作多次制得;高温氧化法主要是采用NaOH浸泡铱丝后,将铱丝置于高温炉中氧化,获得蓝黑色氧化铱薄膜;高温碳酸盐氧化法主要是将铱丝浸入熔融碳酸盐中进行氧化。热氧化法工艺简单,后两种方法研究居多,制得的pH电极膜层致密,电极氧化膜层为无水氧化膜,吸附力较好。采用溅射沉积法制备的铱氧化物薄膜与热氧化法一样为无水氧化膜,电极响应斜率为近Nernst响应。溅射沉积法可以结合光刻等技术制备微型pH电极,不需要特定的基底材料。相比于热氧化法,制备条件简单,但不同的工作气体氛围、温度、湿度以及工作气体中的氧浓度等都会导致溅射铱氧化物薄膜结构的变化,且制备过程中的氧浓度较难监测,因而溅射沉积法应用较少。由于无水氧化铱膜电极表面粗糙有裂纹、未经水合导致电极表面铱价态不稳定等,使其在使用过程中存在电位漂移[36,37,48]等问题。为此,研究者们主要通过调节加热温度、时间和冷却方式等各项工艺参数,并配合后处理方法来改善pH电极性能。

使用热氧化法制备氧化铱pH电极时,不同的加热时间和加热温度,会导致不同的电极响应斜率及响应速率。高璐璐等[49]在750和850 ℃条件下加热5 h制备铱/氧化铱pH电极。其中,850 ℃下制备的电极表面氧化膜覆盖最为均匀,响应斜率也最佳,为-59.58 mV/pH。Huang等[48]扩大了加热温度范围,增加了700 ℃的温度参数,将850 ℃改为870 ℃,并探索了不同加热时间 (0.5、1、1.5和2 h) 对制备的氧化铱pH电极的影响,制备的铱氧化物pH电极表面形貌如图1所示[48]。当加热温度低于800 ℃时,氧化不充分,膜层不能均匀覆盖,800 ℃时氧化膜厚度增加但膜层厚薄不一,只有870 ℃电极表面覆盖有颗粒状的氧化膜,且氧化膜覆盖最为均匀,并且上述氧化膜的厚度并不会由于加热时间的变化而产生变化,多数研究者也采用了800~870 ℃作为加热温度。同时,不同温度下加热1.5 h制备的电极表现出最高的响应速率和最小的响应时间差。当制备参数为800 ℃、1.5 h时,电极响应斜率为近Nernst响应,响应时间为20~80 s,但3个月内氧化铱电极漂移的电位在160.40~417.90 mV之间,电位漂移问题仍然存在。

图1

图1   铱氧化物电极在700,750,800和870 ℃下加热不同时间后的表面形貌 [48]

Fig.1   Surface morphologies of IrOx electrode heated at 700 ℃ (a1-d1), 750 ℃ (a2-d2), 800 ℃ (a3-d3), and 870 ℃ (a4-d4) for 0.5 h (a1-a4), 1.0 h (b1-b4), 1.5 h (c1-c4) and 2 h (d1-d4) [48]


Xi等[50]采用溅射沉积法制备氧化铱膜层,在温度与湿度稳定的情况下,研究工作气体分压和溅射时间对溅射氧化铱层的影响。当制备过程中的Ar流速为10 mL/min,溅射时间为15 min时,可加入O2来制备氧化铱层,此时的制备工艺较为稳定。随着O2流量的增加,氧化铱pH电极的响应斜率降低、响应时间增加,因此设定O2流速为10 mL/min。采用上述制备参数沉积制备的氧化铱pH电极,电极在pH 1~13的范围内响应斜率接近Nernst响应 (-59.5 mV/pH),响应速率快 (6.5 s),但该电极存在一定的电位漂移问题,在24 h内电极电位变化达到2.5 mV。

制备参数的研究对后续制备铱氧化物pH电极有一定的参考价值,但仍无法解决无水氧化铱pH电极的电位漂移问题。更多的研究者将关注点置于电极后处理方面,通过优化后处理工艺来改善电极性能。水合处理是最常见的性能改善后处理工艺,由图2所示[37],未经水合处理过的氧化铱膜层表面疏松有裂纹,经水合处理后的电极表面膜层颗粒更加饱满致密,铱氧化物间晶体间距减小。陈重升和曹履诚[34]、范宏斌[35]与黄菲菲[37]改变了传统高温氧化法中炉内缓慢降温的方法,将铱丝灼烧后置于去离子水中冷却,电位漂移问题得到了一定的改善,在3个月内响应斜率会上升约50 mV[37],在水合时间较少时,电极响应斜率仍表现为近Nernst响应。黄若双等[36]在采用高温碳酸盐氧化法制备了IrO2微型pH电极后,将水合时间提升为一个月,稳定后响应斜率趋于-59~-65 mV/pH之间。但考虑其一个月的老化时间,使用该电极面临制备工期长的问题,并且在电极老化过程中,电极膜层发生水合作用,生成不稳定的羟基氧化物,导致电位漂移问题。当水合达到平衡时,电极响应斜率才开始趋于稳定。针对上述问题可以采用水热法对电极进行后处理,水热法是增加水合程度、减少水合时间的一个有效手段,同时水热法也可有效解决电极在使用过程中常见的电位漂移问题。与室温的电极水合相比,水热法制备的电极具有较好的稳定性和较高的灵敏度。Wang等[44]采用热氧化法制备pH电极,在220 °C的条件下对制备的电极进行水热处理,水热处理后IrO2颗粒的微观结构更加有序和均匀,电极具有良好的稳定性。同时水热处理增加了水合程度,导致羟基的增加,使电极呈现超Nernst响应 (-70.5±0.3 mV/pH),改善了热氧化法制备电极响应斜率低的问题,X射线光电子能谱分析 (XPS) 证实了水热处理电极中氢氧化物的增加,表明水热处理可能是加速水合过程的有效方法。

图2

图2   未使用和使用水合处理后的氧化铱电极表面形貌图[37]

Fig.2   Surface morphologies of IrO x electrode without (a) and with (b) hydration treatment[37]


超临界处理也是水合处理的一种,经水热处理后的电极响应斜率增加,但超临界处理后的电极响应斜率仍为近Nernst响应。Dai等[51]将热氧化法制备的氧化铱pH电极置于去离子水中在400 ℃和35 MPa下处理3 h,电极响应斜率变化不大,但具有较好的长期使用稳定性。这是由于超临界处理过程中的高温高压促进了电极表面膜层内的进一步反应,使表面颗粒更加致密,电极表面晶体生长更加均匀,图3[51]XPS所示电极表面原本的Ir6+与Ir4+被还原为Ir4+与Ir3+,这也是电极响应斜率不再表现为超Nernst响应的一个原因,而表面膜层中的高价态可能导致电极的高响应斜率。

图3

图3   原始和超临界处理的氧化铱电极的Ir 4f精细XPS谱图[51]

Fig.3   XPS fine peaks of Ir 4f of IrO x electrode without (a) and with (b) supercritical treatment[51]


溶胶-凝胶法与丝网印刷技术虽然研究较少,但其成本低、尺寸小、成功率较高,弥补了电化学活化法在制备工艺上的缺陷。溶胶-凝胶法通常使用金属有机盐或金属盐作为前驱体,但金属有机盐价格昂贵。文献[39, 52]将无水氯化铱溶解于乙醇中,再加入醋酸并搅拌形成镀膜液,以2 cm/min的速率浸渍镀膜液形成氧化铱薄膜。浸渍包覆后,样品在2 h内加热至300 ℃,恒温加热5 h,最后冷却至室温。溶胶-凝胶法制备的铱氧化物pH电极尺寸小,最大的特点是在可变形的衬底上也能有较好的传感性能,这使得溶胶-凝胶法制备的电极可以监测复杂环境下的pH变化。由于溶胶-凝胶法制备的电极膜层为无水氧化膜,其氧化铱膜孔隙率低,氧化还原过程中的质子、电子转移变少,因此溶胶-凝胶法制备的pH响应斜率为接近Nernst响应斜率。Jović等[40]基于氧化铱纳米粒子与聚二烯丙基二甲基铵聚合物 (PDDA) 研发了一种喷墨打印技术,用喷墨打印技术制备氧化铱pH电极,制备电极响应斜率为-59 mV/pH。该项技术满足了大规模制作电极的需求,并且可通过增加印刷层的数量来对纳米颗粒进行覆盖,从而进一步改进电极性能,也为制备pH电极提供了更先进、便捷的思路。

(2) 含水氧化铱pH电极的制备

电化学沉积法与电化学生长法制备的铱氧化物pH电极膜层多为含水氧化膜,电极表面呈多孔结构,使得不止一个电子参与电极表面反应的电子转移。由于不同的羟基氧化物带电量不同,对氢离子的响应也就不一样,这导致制备的pH电极的响应斜率会高于理论值-59 mV/pH (25 ℃)。电化学沉积法分为恒电流沉积法、扫描循环伏安法等,主要采用非铱导电金属 (Ti、Pt) 作为基底,常用的电镀沉积液为IrCl4溶液,即将0.075 g IrCl4·H2O溶解于50 mL去离子水中搅拌30 min,加入0.5 mL H2O2搅拌10 min,然后加入0.25 g草酸搅拌10 min,最后使用K2O3将溶液调节至pH 10.5,静置2 d。迄今为止,很多电化学沉积法都是基于上述配比进行操作,或对其进行调整来改良pH电极。例如,排除或添加一种化学品,采用相似的化学物质进行代替,如采用K2C2O4代替草酸、采用IrCl3·xH2O代替IrCl4·H2O等,电沉积原理主要为:

[Ir(COO)2(OH)4]2-=IrO2+2CO2+2H2O+2e-

电沉积法制备pH电极一般稳定性较好,响应速率较快,但电沉积法制备的电极其沉积层与基体之间的结合力较差,不够致密,电极膜层在使用过程中易脱落,导致电极响应不稳定。黄若双等[36]采用电沉积法制备的铱氧化物pH电极也进一步验证了这个问题的存在。为改进这一问题,Kim和Yang[38]提出对电极进行热处理加工,采用恒电流沉积法在玻璃基片上沉积以Au为基底的氧化铱pH电极。由于玻璃基片不耐高温,所以在400 ℃下处理的pH电极。加热后的氧化铱薄膜变得更致密且孔隙较少,响应斜率从超Nernst响应降为-59.5 mV/pH,响应速率较快,可在2 s内快速响应,这表明电极表面氧化还原反应发生非常迅速。其次,该电极沉积速率稳定,电极的重现性好,多个电极的电位偏差小于10 mV,这也是电沉积法所制备电极的优点。杜振兴[42]研究了恒电流沉积法中电流密度对铱氧化物pH电极性能的影响。电流密度过大时,电镀液的沉积速率变快,裂缝孔洞较多,膜层质量低,制备电极响应慢,稳定性较差;电流密度太小又会导致沉积不完全。当电流密度为1 mA/cm2时,电极响应性能最佳,这也是恒电流沉积法中最普遍采用的电流密度。此时制备的pH电极响应斜率为-74.91 mV/pH,响应时间在67 s左右,可以看出未经过热处理的铱氧化物pH电极就会出现响应较慢的问题。此外考虑到使用一段时间后的电位漂移问题,Mingels等[45]定期对氧化铱电极校准以满足长期使用需求。

扫描循环伏安法与恒电流沉积法的不同就是可通过改变电沉积电势范围来控制pH电极的电位-pH响应斜率,并通过电极制备图观察电极的氧化还原情况。Zhu等[31]采用扫描循环伏安法,分别在0.1~0.65 V、0.2~0.75 V和0.3~0.85 V的扫描范围下制备氧化铱pH电极,研究表明,阳极电流峰值随着电位扫描范围的正移而升高,这说明了铱氧化膜层厚度的增加,制得的铱氧化物pH电极响应斜率分别为-59、-60和-74 mV/pH,即制得的铱氧化物pH电极响应斜率随着扫描范围而升高。该方法制备的电极重现性很好,同一批次的电极电位差值在10 mV之内,pH电极在所有可响应pH范围内响应时间都维持在几秒之内。但在强碱溶液中响应变得迟缓,这可能是由于强碱性溶液中的氢氧根离子会更深地渗透到电极氧化膜层中,以及氧化铱逐渐水解成其氢氧化物所致。

电化学生长法主要是通过施加电能,使金属Ir表面在电解质中电化学转化为氧化铱,最经常使用的电解质是H2SO4。施加电能的方法包括循环伏安法和脉冲伏安法。循环伏安法的扫描速率、圈数、扫描范围等会影响电极表面膜层的产物,也会影响产物的电荷密度。El-Giar和Wipf[43]在硼硅酸盐吸管的末端密封铱粒子并采用电化学循环伏安法制备氧化铱pH电极,该方法与其他微型化pH电极的方法如刻蚀铱丝相比,制备成本更低,方法也更简单。制备后水合12 h,此时的pH电极响应斜率为-74 mV/pH,在两个月内,电极进行老化,稳定后电极响应斜率为-60 mV/pH。该电极响应时间基本在10 s内,但老化时间较长 (两个月),电极电位从最初的-74.04 mV/pH降至-66.31 mV/pH,对制备的新鲜电极进行水热处理可进一步优化性能。此外,由于该电极的硼硅酸盐玻璃尖端特别脆弱,在氧化过程中经常破裂,制备难度较大,实验结束后仅有50%的成功率。

1.1.2 钛基pH电极

Ti具有高强度、耐腐蚀和耐高温等优点,且相对于贵价金属,Ti的价格便宜,也常用于制备pH电极。钛基pH电极一般包含氧化钛与氮化钛。以往使用电化学氧化法和热氧化法制备氧化钛pH电极,但这两种方法制备的氧化钛电极性能不好,响应时间也很长,这是由于TiO2属于“电子云退化”的电子导电型半导体化合物 (正常金属电子密度约1024/cm3,TiO2的电子密度约1021/cm3),这种性能影响了它与H+的电子交换反应[53]

为改善TiO2 pH电极的响应性能,可采取掺杂金属离子或改善电极表面膜层等方法,例如将锑氢氧化物的等离子体在含水电解质中电解氧化,制得含Ti/TiO2、SbO x 的pH电极[54]。其中含锑氧化物的元素组成可以达到1%,在pH为2~10的范围内,具有近Nernst响应斜率 (-53±1 mV/pH) 。SbO x 大多存在于氧化钛膜层的表面层中,能够致密地填充电极表面缝隙,并且电解质中阴离子锑羟基络合物及TiO2层中锑的存在,都使Ti和TiO2更加稳定,即通过氧化锑对氧化钛膜层进行改性是可取并有成效的。

氮化钛作为具有NaCl型晶体结构的间隙化合物,H+可以进入晶体的有限间隙,并从晶格的间隙位置跳到相邻的另一个间隙位置,形成扩散,通过晶格网络传导电荷[55]。采用离子氮化技术制备的氮化钛pH电极导电性高,响应斜率可达-60 mV/pH,响应时间小于1 min,但该电极仅能在pH 11~14的范围内响应良好。

为解决氮化钛pH电极响应范围过窄的问题,丰达明等[53]与鲁建等[56]在离子氮化技术的基础中,引入微量的含氧气氛,从而改进电极性能。首先,在离子轰击炉中装入钛丝,用纯氮、H2和Ar混合,气体流量为1~1.5 L/h;然后,调节电源达到稳定的辉光放电,在750~950 ℃下将离子轰击到钛电极表面,6~8 h后在钛电极表面生成一层金黄色的氮化钛;最后,送入微量的含氧气氛,使钛电极表面生成氧化钛组织:

2TiN+2O2=2TiO2+N2

氧化钛高度分散于氮化钛中,活性中心多,与H+接触面大,易与H+发生反应,制备的新型钛基pH电极的响应机理主要为Ti/TiO2电极对与H+的反应[27]

TiO2+4H++4e-=Ti+2H2O

该钛基pH电极响应范围为pH 1~12,响应斜率为-55 mV/pH,响应时间在2~5 min,同时电极有很长的工作寿命,在使用两年后,其性能基本维持不变。

1.1.3 钨/氧化钨pH电极

钨/氧化钨pH电极具有机械强度高、制备简单,易于小型化及其几乎不受流体力学效应影响的特点,尽管制备的钨/氧化钨pH电极响应斜率往往低于理论值 (-59.1 mV/pH),却仍被应用成为pH监测电极以及流动注射电位传感器[57]。钨/氧化钨pH电极的制备方法较多,且不同的制备方法生成不同的氧化物,导致钨/氧化钨pH电极的响应机理比较复杂[58]。Zhang和Xu[59]用磁控溅射法在碳纳米管上镀上一层WO3纳米颗粒,此时电极膜层为黄色,电极响应范围为pH 2~12,响应斜率为-41 mV/pH。陈东初等[60]采用溶胶-凝胶法制备WO3 pH电极,采用浸涂法在钨丝上涂敷氧化钨胶体溶液,然后在200 ℃下进行热处理生成氧化钨膜层。该电极在pH 2~11内有良好的响应性能,响应斜率为-52.6 mV/pH,电极响应机制为:

WO3+H++e-=HWO3

热处理时产生的缝隙也更有利于氢离子的扩散,电极响应速率小于1 min。当采用化学氧化法时,例如Dimitrakopoulos等[61]将钨丝浸泡在KOH溶液中处理后,可以观察到表面呈现出深棕色与蓝色,推测表面成分为WO2与W2O5,响应机制为:

WO2+4H++4e-=W+2H2O
W2O5+2H++2e-=2WO2+H2O

电极在pH 2~11内的响应斜率为-42.4 mV/pH左右,电极响应斜率过低可能是因为pH缓冲液中存在溶解氧导致。通过氮气鼓泡从pH缓冲溶液中去除溶解氧后,响应斜率为-56.0±0.9 mV/pH,接近Nernst响应。

上述仅阐述了pH电极在最佳响应区间的响应机理,并且各电极的pH响应区间存在一定差异。董亚男等[62]研究了氧化钨pH电极在不同pH区间的响应机理,新鲜制作出的pH电极膜层主要是WO3与水合物,但在测量过程中,氧化膜层转变为WO x 及水合物。在pH<2时,电极表面发生WO3的聚合反应,但对电极响应没有影响;在pH 2~7时,电极表面主要发生如下反应[62]

WO3+xH++xe-=HxWO3
W2O5+H2O=2WO3+2H++2e-
WO2+H2O=WO3+2H++2e-

在pH 7~12范围内电极响应斜率为-50 mV/pH左右,电极表面主要发生:

2WO2+H2O=W2O5+2H++2e-

电极反应所对应的Nernst方程可以用下式表示:

E=constant+RTnFlnαH+1-RTnFlnαH+s

其中,n为H+/e-系数比,n=1,l代表液体,s代表固体,理论响应斜率为-59.1 mV/pH,25 ℃。在pH 11~13范围内,电极电位值波动达到-50~-80 mV/pH。此时电极氧化膜层开始溶解,基底W裸露后重新开始氧化,氧化后继续溶解,同时伴随着W4+与W5+的平衡反应:

W+8OH-=WO42-+4H2O+6e-
2WO2+2OH-=W2O5+H2O+2e-

1.1.4 氧化锰pH电极

氧化锰pH电极的研究与应用相对较少,但MnO2作为一种新型的性能稳定、价格实惠、对环境友好的金属电极材料,其放电过程为质子和电子的扩散过程[63]。因此,MnO2具有一定的pH响应性能,可作为电极阳极材料。氧化锰pH电极制备方法主要有阳极电沉积法、丝网印刷技术等。

舒友琴等[64, 65]采用室温固相反应制得的纳米MnO2为材料,再利用丝网印刷技术制备MnO2电极。主要是通过涂刷器与制板将碳浆与氧化锰的混合液印刷在聚氯乙烯 (PVC) 片上,在70 ℃下加热30 min使其固化,制得的电极在pH 3~10的响应范围内响应斜率为-78.3 mV/pH。但当溶液的pH进一步分别向酸性 (pH 2) 与碱性 (pH 11~12) 转化时,电极的响应斜率发生改变,分别为-55.7 mV/pH与-81.5 mV/pH,这也说明MnO2电极的pH响应机理不是简单的离子交换机理。目前对于MnO2 pH电极的响应机制研究较少,李清文等[66]推测其主要是高、低价态的氧化锰与H+的氧化还原反应。假设低价态氧化物为Mn3O4,此时的响应机制为:

3MnO2+4H++4e-=H2O+Mn3O4

理论响应斜率为-78.9 mV/pH。丝网印刷技术制备的氧化锰pH电极响应斜率与理论值相符,进一步验证了推测的响应机制的合理性,但该推理也无法解释其在酸性及碱性溶液中响应斜率发生变化的现象,还有待进一步研究。

阳极电沉积法也是制备氧化锰pH电极的常见方法,沉积原理为:

Mn2++2H2O+2e-=MnO2+H2

但影响阳极沉积法的工艺参数 (pH值、温度和离子浓度等) 较多。史艳华等[67]总结了参数对电极性能的影响,发现随着pH减小、Mn2+离子浓度增加,电极催化活性提高;随着阳极电沉积温度升高,电流效率提高,沉积厚度增加,电极致密性增强。研究探讨出最佳的制备参数为pH处于0.33~0.5,Mn2+离子浓度在0.2 mol/L以上,阳极电沉积温度低于90 ℃。

1.2 制备方法总结

表1汇总了电极的制备方法及其性能,采用金属Ir制备的铱氧化物pH电极响应范围都较广,基本可以达到pH 3~11的响应范围,响应速率也较快,响应时间在1~3 min内。铱氧化物pH电极主要包括含水pH电极与无水pH电极,电沉积法制备的含水pH电极的表面氧化膜有更多的多孔表面,引入较多羟基,所以制备的pH电极响应斜率往往表现为超Nernst响应。由于电沉积法制备成本较低,易于小型化,以及较好的稳定性使其成为制备pH电极的较为广泛的方法。热氧化法与溅射法制备的铱氧化物pH电极长期使用时都存在电位漂移的问题,需要定期对电极校准,为优化pH电极在使用过程中的电位漂移问题,可采用热处理、水合和水热处理等后处理工艺。

表1   电极制备方法及性能汇总

Table 1  Summary of preparation method and performance of electrodes

ElectrodesMethodsResponse rangeResponse slopeResponse timeRef.
Iridium oxide pH electrodeHigh temperature oxidation2~12-59.5 mV/pH<30 s[35]
High temperature oxidation1~12-58.4 mV/pH1~3 min[34]
High temperature oxidation20~80 s[48]
High-temperature carbonate oxidation0~14-59~-65 mV/pH-[36]
Cyclic oxidative quenching1~13-55~-57 mV/pH10 s~60 s[37]
Electrochemical deposition1~13-55.5~-65.5 mV/pH-[31]
Constant current deposition--74.91 mV/pH67 s[42]
Sol-gel method1.5~12-51.1~-51.7 mV/pH<2 s[39]
Electrochemical deposition--72.5±1.1 mV/pH-[45]
Cyclic voltammetry--57~-72 mV/pH-[43]
Electrochemical deposition2.38~11.61-59 mV/pH[38]
Silk-screen printing--59 mV/pH-[40]
Melt oxidation1~13-58.92 mV/pH<0.2 s[41]
Titanium-based pH electrodeElectron impact ion source1~12-55 mV/pH2~5 min[53]
Ionic nitriding11~14-60 mV/pH<1 min[68]
Sol-gel method1~11-58.73 mV/pH-[69]
Tungsten oxide pH electrodeChemical oxidation2~11-56.0±0.9 mV/pH-[61]
Magnetron sputtering2~12-41 mV/pH<90 s[59]
Sol-gel method2~11-52.6 mV/pH<1 min[60]
Constant groove pressure method2~11-50 mV/pH<3 min[62]
Thermal oxidation2~12-53.83 mV/pH<1 min[70]
Manganese oxide pH electrodeSilk-screen printing2~12-78.3 mV/pH-[64]

新窗口打开| 下载CSV


钛基pH电极最常用的制备方法主要是离子轰击法与离子氮化法。离子氮化法制备的电极表面仅有氮化钛,pH电极的响应范围为11~14。离子轰击法在其基础上引进氧化钛,Ti/TiO2电极对与H+进行响应,电极响应范围为1~12。氧化钨pH电极的制备方法主要为热氧化法与化学氧化法,制备的电极表面含WO2与W2O5,电极表现出近Nernst响应;采用恒槽压法制备的电极响应时间较长 (3 min),电极响应斜率也不高 (-50 mV/pH)。

溶胶-凝胶法为金属氧化物薄膜的低温制备提供了一种更经济、简单可行的方法[71]。溶胶-凝胶法具有工艺简单、薄膜成分易于控制等优点[72],但加工温度一般也要100~400 ℃,对于基底的要求较高。由于金属氧化物pH电极所涉及的制备方法面临单次制作数量少且重现性差的问题,研究者开始研究采用丝网印刷技术制备各种氧化物电极,该技术采用半自动的丝网印刷机来制备氧化物电极,使用方法简便且可以批量制备。但该方法要先制备纳米氧化物颗粒,再采用印刷机进行涂刷,成本较高。

2 pH电极在腐蚀防护中的应用

2.1 在局部腐蚀研究中的应用

金属/溶液界面微区pH分布是影响局部腐蚀的因素之一,采用微型pH电极探索金属表面微区的pH分布,可进一步研究金属局部腐蚀的发生过程和机理,如常见的点蚀、电偶腐蚀和应力腐蚀等金属局部腐蚀。

2.1.1 在点蚀研究中的应用

pH对金属点蚀有很大的影响,pH差异导致金属腐蚀产物的保护作用不同,而金属点蚀程度的不同又会进一步改变溶液的pH,pH增加也会导致金属点蚀逐渐转变为金属大面积腐蚀[14,15]。为研究点蚀的产生及发展过程与pH的关系,Da Silva等[10]在玻璃衬底上煅烧制备氧化铱环形pH传感器,环形传感器可以充分包围在试样钢表面,可以更好的监测溶液碳钢点蚀过程中钝化和钝化膜破裂期间近表面pH。

除此之外,pH金属电极的微型化也是检测点蚀坑微区pH环境的一个重要手段。林昌健等[11]研制复合型Pt/IrO2-pH电极,检测溶液界面的pH分布变化,根据pH变化准确地显示主动点蚀的位置,同时还能监测点蚀发生的过程。在此基础上,Zhu等[12]将pH金属微电极与扫描电化学显微镜技术 (SECM) 电位响应模式相结合,扫描电极电位分布并转换为pH分布图,监测316L不锈钢的点蚀状况。但该方法无法确定电极与点蚀位置的垂直距离,使得pH测量值出现微小误差。为改善这一不足,朱泽洁等[13]制备了复合型双管Pt-Pt/IrO x -pH超微传感器电极与SECM相结合监测316L不锈钢界面微区pH变化,一根Pt超微电极制成Pt/IrO x -pH电极监测近表面微区pH值,另一根Pt超微电极用作电流响应型探针控制探针距基底的距离,用以精确控制pH电极的位置。

2.1.2 在电偶腐蚀研究中的应用

为掌握电偶腐蚀过程,需要确定水环境中腐蚀金属上阴极和阳极的位置并确定它们的电化学特性,在电化学过程中测量表面附近pH以助于研究。邵敏华等[17]用复合型氧化铱pH电极扫描,得到Al/Cu样品在NaCl溶液电偶腐蚀过程中表面微区pH分布图。在Al/Cu电偶体系中,由于Cu腐蚀电位高,作为阴极,Al作为阳极,阳极发生腐蚀反应,该反应中阴极区pH升高,阳极区pH降低,样品腐蚀孔内H+的聚集导致局部腐蚀持续发展。为进一步了解电偶体系的空间pH分布,Tada等[16]研究Zn/钢在NaCl溶液中电偶腐蚀过程时,将氧化钨pH电极分别沿着Zn/钢电偶表面水平与垂直方向进行扫描,结果表明当距电偶表面的垂直范围大于1.5 mm时,pH无明显变化,这为腐蚀过程研究提供了很好的参数。

2.1.3 在应力腐蚀研究中的应用

pH会影响金属材料腐蚀开裂行为,使用pH电极测量钢裂纹尖端pH,可以研究应力腐蚀中的裂纹生长行为。为研究低合金钢-E690在人工海水中阴极电位作用下的应力腐蚀行为,Li等[18]在裂纹尖端安装了微型pH探针。结果表明,在阴极电位下,裂纹尖端pH呈酸性,并随着阴极电位的降低而增加,这反应了阳极溶解的发生。此外,当施加恒定应力时,pH升高,当切换回循环载荷时,裂尖pH下降,表明裂纹尖端的应力和应变状态也会使pH发生变化[19]

2.2 在阴极保护研究中的应用

处于腐蚀性土壤或水介质中的金属结构广泛应用阴极保护提供有效防护,金属/介质表面因发生吸氧反应或析氢反应而呈碱性,但当金属所处环境苛刻或受杂散电流干扰影响,其阴极保护作用效果或腐蚀机制可通过测定金属/介质表面微区环境pH提供佐证。Büchler[20]使用微区pH电极,在阴极保护过程中当阳极放电时,pH下降,浓差极化导致钢表面的酸化,从而导致腐蚀。但在10 ms范围内的极短阳极极化条件下,表面pH的损失不会对腐蚀造成有害影响,即只要保持钢材表面的高pH,阴极保护中断或发生阳极电流放电也不会影响防腐效果。为监测pH对阴极保护系统效率及腐蚀行为的影响,Huo等[21]设计一种新型含水电化学电池,模拟钢材在阴极保护与腐蚀下的环境,以往的含水电化学电池阴极与阳极区域的溶液完全混合,电池中的溶液pH接近中性,因此无法模拟埋地钢材的经常出现的高pH环境,接近中性的pH也无法诱导钢材钝化。在这基础上,Huo等[21]采用离子选择性导电膜将阴、阳极区的电解质分开,可模拟钢表面的高pH条件,并采用微型pH电极实时监测阴阳极的pH。通过改变电解液的类型、成分来控制测试参数,结合现场观察与监测pH研究腐蚀过程。Chen等[22]设计了一个特殊的三电极系统电池来模拟阴极保护下的缝隙腐蚀环境,采用pH微电极检测溶液pH以研究阴极保护对缝隙内脱粘涂层腐蚀环境的影响,当关闭阴极保护时,没有额外的电流流入缝隙,此时钢体处于自由腐蚀的状态,这也是导致pH降低的原因。

3 展望

(1) 相比于Mn、Ti等金属,Ir是制备金属氧化物pH电极最常见的材料,且铱/氧化铱微型pH电极在较宽的pH响应范围都表现出较高的响应斜率、较快的响应速率,铱/氧化铱微型pH电极也是在腐蚀防护监检测应用最多的,具有广阔的研究与应用前景。

(2) 电极制备方法与保存方式对电极的pH响应均有较大的影响。电化学循环伏安法与电化学沉积法制备的氧化物膜层为含水氧化膜,响应斜率较高,通常表现为超Nernst响应;热氧化法、溅射法制备的膜层为无水膜层,响应斜率接近Nernst响应。水合作用与热处理可以进一步改善pH电极的电位漂移等问题,是后续优化电极的研究方向。

(3) 氧化物微型pH电极在点蚀、电偶腐蚀、应力腐蚀与阴极保护研究中应用较多,未来针对特定腐蚀工况如杂散电流干扰腐蚀,还需要根据工况需求进一步研究响应速率和抗杂散电流干扰能力。此外,随着技术发展,复合型微型pH电极以及将微型pH电极作为探针应用于扫描技术中也是未来的重要发展方向之一。

参考文献

Wahyuni W T, Putra B R, Marken F.

Voltammetric detection of vitamin B1 (thiamine) in neutral solution at a glassy carbon electrode via in situ pH modulation

[J]. Analyst, 2020, 145: 1903

DOI      PMID      [本文引用: 1]

Voltammetric analysis is often dependent on pH and on the addition of buffer reagents to optimise the analytical procedure. This approach is not always possible for in situ analytical measurements, for example when studying biological fluids or ingredients in food. Therefore, a method is proposed herein, which employs a working electrode to do both, that is, to locally modulate the pH value and to measure the analytical response. As a model system, thiamine (vitamin B1) is detected in aqueous KCl with a pH modulation brought about with negative potentials applied to the working electrode. Interferences from ascorbic acid and uric acid are considered. Exploratory data are presented and methods for improving the detection limit are suggested. Their potential for applications in electroanalysis (and in a broader range of processes) is discussed and the detection of thiamine in rice is demonstrated.

Kemer B, Demir E.

A novel potentiometric pH electrode based on sulfated natural Fe3O4 and analytical application in food samples

[J]. J. Food Measure. Charact., 2018, 12: 2256

[本文引用: 1]

Hou J X, Liu Z L, Zhou Y, et al.

An experimental study of pH distributions within an electricity-producing biofilm by using pH microelectrode

[J]. Electrochim. Acta, 2017, 251: 187

DOI      URL     [本文引用: 1]

Uria N, Abramova N, Bratov A, et al.

Miniaturized metal oxide pH sensors for bacteria detection

[J]. Talanta, 2016, 147: 364

DOI      PMID     

It is well known that the metabolic activity of some microorganisms results in changes of pH of the culture medium, a phenomenon that can be used for detection and quantification of bacteria. However, conventional glass electrodes that are commonly used for pH measurements are bulky, fragile and expensive, which hinders their application in miniaturized systems and encouraged to the search for alternatives. In this work, two types of metal oxide pH sensors have been tested to detect the metabolic activity of the bacterium Escherichia coli (E. coli). These pH sensors were produced on silicon chips with platinum metal contacts, onto which thin layers of IrOx or Ta2O5 were incorporated by two different methods (electrodeposition and e-beam sputtering, respectively). In order to facilitate measurement in small sample volumes, an Ag/AgCl pseudo-reference was also screen-printed in the chip and was assayed in parallel to an external Ag/AgCl reference electrode. As it is shown, the developed sensors generated results indistinguishable from those provided by a conventional glass pH-electrode but could be operated in significantly smaller sample volumes. After optimization of the detection conditions, the metal oxide sensors are successfully applied for detection of increasing concentrations of viable E. coli, with detection of less than 10(3)cfu mL(-1) in undiluted culture medium in just 5h.Copyright © 2015 Elsevier B.V. All rights reserved.

Wang M, Ha Y.

An electrochemical approach to monitor pH change in agar media during plant tissue culture

[J]. Biosens. Bioelectron., 2007, 22: 2718

PMID      [本文引用: 1]

In this work, metal oxide microelectrodes were developed to monitor pH change in agar media during plant tissue culture. An antimony wire was produced by a new approach "capillary melt method". The surface of the obtained antimony wire was oxidized in a potassium nitrate melt to fabricate an antimony oxide film for pH sensing. Characterization results show that the oxide layer grown on the wire surface consists of Sb(2)O(3) crystal phase. The sensing response, open-circuit potential, of the electrode has a good linear relationship (R(2)=1.00) with pH value of the test solution. Adding organic compounds into the test media would not affect the linear relationship, although the slope of the lines varied with different ingredients added. The antimony oxide electrodes were employed to continuously monitor pH change of agar culture media during a 2-week plant tissue culture of Dendrobium candidum. The antimony oxide electrode fabricated this way has the advantages of low cost, easy fabrication, fast response, and almost no contamination introduced into the system. It would be suitable for in situ and continuous pH measurement in many bio applications.

Prats-Alfonso E, Abad L, Casañ-Pastor N, et al.

Iridium oxide pH sensor for biomedical applications. Case urea-urease in real urine samples

[J]. Biosens. Bioelectron., 2013, 39: 163

DOI      PMID      [本文引用: 1]

This work demonstrates the implementation of iridium oxide films (IROF) grown on silicon-based thin-film platinum microelectrodes, their utilization as a pH sensor, and their successful formatting into a urea pH sensor. In this context, Pt electrodes were fabricated on Silicon by using standard photolithography and lift-off procedures and IROF thin films were growth by a dynamic oxidation electrodeposition method (AEIROF). The AEIROF pH sensor reported showed a super-Nerstian (72.9±0.9mV/pH) response between pH 3 and 11, with residual standard deviation of both repeatability and reproducibility below 5%, and resolution of 0.03 pH units. For their application as urea pH sensors, AEIROF electrodes were reversibly modified with urease-coated magnetic microparticles (MP) using a magnet. The urea pH sensor provided fast detection of urea between 78μM and 20mM in saline solution, in sample volumes of just 50μL. The applicability to urea determination in real urine samples is discussed.Copyright © 2012 Elsevier B.V. All rights reserved.

Savvas I, Raptopoulos D, Rallis T.

A "Light Meal" three hours preoperatively decreases the incidence of gastro-esophageal reflux in dogs

[J]. J. Am. Anim. Hosp. Assoc., 2016, 52: 357

PMID      [本文引用: 1]

Emerging evidence from veterinary and medical clinical research shows that reducing preoperative fasting time may reduce the incidence of gastro-esophageal reflux (GER) intraoperatively. In order to evaluate the effect of two different preoperative fasting times on the incidence of GER during general anesthesia, 120 dogs were randomly assigned to two groups: administration of canned food 3 h before premedication (group C3, n = 60) and administration of canned food 10 h before premedication (group C10, n = 60). The animals were premedicated with propionyl-promazine. Anesthesia was induced with thiopental sodium and maintained with halothane. A pH electrode was introduced into the esophagus, and the esophageal pH was constantly monitored. Esophageal pH of less than 4 or greater than 7.5 was taken as an indication of GER. Three of the 60 dogs of group C3 and 12 of the 60 dogs of group C10 experienced a GER episode, the difference being statistically significant (P =.025). Feeding the dog 3 h before anesthesia at a half daily rate reduces significantly the incidence of GER during anesthesia, compared to the administration of the same amount and type of food 10 h before anesthesia. The administration of a half daily dose of an ordinary canine diet may be useful in clinical practice.

Yang X Z, Zhang H W.

A review on Pourbaix diagrams and their applications in metal corrosion and its prevention

[J]. J. Shandong Inst. Technol., 1982, (2): 1

[本文引用: 1]

杨熙珍, 张鹤呜.

布拜图及其在金属腐蚀与防护中的应用 (综论)

[J]. 山东工学院学报, 1982, (2): 1

[本文引用: 1]

Zohdy K M, El-Sherif R M, El-Shamy A M.

Corrosion and passivation behaviors of tin in aqueous solutions of different pH

[J]. J. Bio- Tribo-Corros., 2021, 7: 74

DOI      [本文引用: 1]

Da Silva M M, Mascaro L H, Pereira E C, et al.

Near-surface solution pH measurements during the pitting corrosion of AISI 1020 steel using a ring-shaped sensor

[J]. J. Electroanal. Chem., 2016, 780: 379

DOI      URL     [本文引用: 3]

Lin C J, Luo J L, Sun H Y, et al.

Scanning combination micro pH electrode for in-situ pH imaging in the localized corrosion

[J]. Electrochemistry, 1996, 2(4): 373

[本文引用: 1]

林昌健, 骆静利, 孙海燕 .

扫描复合微pH电极原位测量局部腐蚀体系pH分布图象

[J]. 电化学, 1996, 2(4): 373

[本文引用: 1]

Zhu Z J, Ye Z N, Zhang Q H, et al.

Novel dual Pt-Pt/IrO x ultramicroelectrode for pH imaging using SECM in both potentiometric and amperometric modes

[J]. Electrochem. Commun., 2018, 88: 47

DOI      URL     [本文引用: 1]

Zhu Z J, Zhang Q H, Liu P, et al.

Application of microelectrochemical sensors in monitoring of localized interface pH

[J]. J. Chin. Soc. Corros. Prot., 2019, 39: 367

[本文引用: 2]

朱泽洁, 张勤号, 刘 盼 .

微型电化学传感器在界面微区pH值监测中的应用

[J]. 中国腐蚀与防护学报, 2019, 39: 367

DOI      [本文引用: 2]

微型pH电化学传感器被广泛应用于界面局部pH值在线监测。本文简要介绍了近年来pH电化学传感器的研究进展,重点阐述了如何结合不同微区扫描探针技术的电位响应模式,应用于界面微区pH值分布的监测,并简要介绍了本课题组在界面微区pH电化学传感器方面的研究工作,展望其在腐蚀界面微区领域的应用前景。

Sun K Q, Gao H, Hu J Q, et al.

Effect of pH on the corrosion and crack growth behavior of the ZK60 magnesium alloy

[J]. Corros. Sci., 2021, 179: 109135

DOI      URL     [本文引用: 1]

L’Haridon-Quaireau S, Laot M, Colas K, et al.

Effects of temperature and pH on uniform and pitting corrosion of aluminium alloy 6061-T6 and characterisation of the hydroxide layers

[J]. J. Alloy. Comp., 2020, 833: 155146

DOI      URL     [本文引用: 2]

Tada E, Sugawara K, Kaneko H.

Distribution of pH during galvanic corrosion of a Zn/steel couple

[J]. Electrochim. Acta, 2004, 49: 1019

DOI      URL     [本文引用: 2]

Shao M H, Huang R S, Hu R G, et al.

Fabrication of combination scanning micro pH electrode and its application in localized corrosion

[J]. Acta Phys. Chim. Sin., 2002, 18: 934

DOI      URL     [本文引用: 2]

邵敏华, 黄若双, 胡融刚 .

复合型扫描微pH电极及其在局部腐蚀中的应用

[J]. 物理化学学报, 2002, 18: 934

[本文引用: 2]

Li Y, Liu Z Y, Fan E D, et al.

The effect of crack tip environment on crack growth behaviour of a low alloy steel at cathodic potentials in artificial seawater

[J]. J. Mater. Sci. Technol., 2020, 54: 119

DOI      [本文引用: 2]

The environment at crack tip and its effect on the crack growth behaviour of low alloy steel- E690 steel were studied at cathodic potentials in artificial seawater. The results showed that the micro environment at crack tip and crack growth behaviour were related to the electrochemical reactions at crack tip, which were affected by the stress state and applied potentials. The crack tip environment was acidified under cyclic loading, resulting from the crack tip anodic dissolution reaction and corresponding hydrolysis reaction. Because of the hydrogen evolution and the inhibited anodic dissolution inside the crack, the crack tip pH increases as the cathodic potential decreases. The effect of cathodic potentials on the electrochemical reactions caused the variation of the hydrogen content, which influenced the crack growth rate because the crack growth behaviour was controlled by hydrogen embrittlement mechanism. This resulted in a fact that with the negative decrease of potential, the crack growth rate first decreased and then increased, with the minimum rate at -0.75 V. And the crack growth path exhibited transgranular fracture.

Cui Z Y.

Electrochemical and stress corrosion cracking behavior and mechanism of X70 pipeline steel in a near-netrual pH environment

[D]. Beijing: University of Science and Technology Beijing, 2015

[本文引用: 2]

崔中雨.

X70钢近中性pH环境中电化学及应力腐蚀行为与机理研究

[D]. 北京: 北京科技大学, 2015

[本文引用: 2]

Büchler M.

On the mechanism of cathodic protection and its implications on criteria including AC and DC interference conditions

[J]. Corrosion, 2020, 76: 451

DOI      URL     [本文引用: 2]

In recent years, a wide agreement with respect to the processes associated with cathodic protection (CP) has been reached within the CP industry. The increase of the pH value at the steel surface and the generation of passivating conditions as a result of the CP current are widely accepted as the relevant underlying mechanism. Based on this understanding it was possible to identify the relevant processes with respect to AC and DC interference and explain the empirical observations. This led to the development of ISO 18086 and has significantly influenced the work on ISO/DIS 21857. This paper summarizes present state of knowledge, the more recent developments, and their implications with respect to the CP criteria. It summarizes the relevant aspects in association with interference conditions and highlights possible future approaches with respect to the assessment of the effectiveness of CP.

Huo Y, Tan M Y J, Forsyth M.

Investigating effects of potential excursions and pH variations on cathodic protection using new electrochemical testing cells

[J]. Corros. Eng. Sci. Technol., 2016, 51: 171

DOI      URL     [本文引用: 3]

Chen X, Du C W, Li X G, et al.

Effects of cathodic potential on the local electrochemical environment under a disbonded coating

[J]. J. Appl. Electrochem., 2009, 39: 697

DOI      URL     [本文引用: 2]

Qin H M, Du Y X, Lu M X, et al.

Effect of dynamic DC stray current on corrosion behavior of X70 steel

[J]. Mater. Corros., 2020, 71: 35

DOI      [本文引用: 1]

Corrosion behavior of X70 steel under the application of dynamic DC stray current was investigated in simulated soil solution by immersion tests and electrochemical measurements. Experimental results indicated that the corrosion rate of X70 steel under dynamic DC stray current was strongly influenced by the dynamic period. When the dynamic period was <80 s, the corrosion rate was only approximately 1-7% of that caused by an equivalent amount of steady direct current. However, as the dynamic period became >80 s, the corrosion rate increased significantly with the dynamic period. And finally when the dynamic period was >1 hr, the corrosion rate was nearly equal to 100% of that caused by an equivalent amount of steady direct current. Meanwhile, the surface examination showed that the specimens experienced uniform corrosion under the experimental conditions. On the basis of the experiment results, the dynamic DC stray current corrosion mechanism of X70 steel under the experimental conditions was discussed, which was closely related to the electric double-layer structure at the electrode/solution interface and dynamic electrochemical reactions under dynamic stray current.

McMurray H N, Douglas P, Abbot D.

Novel thick-film pH sensors based on ruthenium dioxide-glass composites

[J]. Sens. Actuators, 1995, 28B: 9

[本文引用: 1]

Lattach Y, Rivera J F, Bamine T, et al.

Iridium oxide-polymer nanocomposite electrode materials for water oxidation

[J]. ACS Appl. Mater. Interfaces, 2014, 6: 12852

DOI      URL    

Huang X R, Ren Q Q, Yuan X J, et al.

Iridium oxide based coaxial pH ultramicroelectrode

[J]. Electrochem. Commun., 2014, 40: 35

DOI      URL    

Hu J.

Fabrication, characterisation, and optical applications of electrochemically deposited nanostructured IrO x films

[D]. Southampton: University of Southampton, 2008

[本文引用: 1]

Chu J, Zhao Y, Li S H, et al.

An integrated solid-state pH microelectrode prepared using microfabrication

[J]. Electrochim. Acta, 2015, 152: 6

DOI      URL    

Sadig H R, Cheng L, Xiang T F.

Synthesis of tetra-metal oxide system based pH sensor via branched cathodic electrodeposition on different substrates

[J]. Arab. J. Chem., 2019, 12: 610

DOI      URL    

Liu R, Zhang M, Meng Q H, et al.

Oscillations of pH at the Fe│H2SO4 interface during anodic dissolution

[J]. Electrochem. Commun., 2017, 82: 103

DOI      URL    

Zhu Z J, Liu X Y, Ye Z N, et al.

A fabrication of iridium oxide film pH micro-sensor on Pt ultramicroelectrode and its application on in-situ pH distribution of 316L stainless steel corrosion at open circuit potential

[J]. Sens. Actuators, 2018, 255B: 1974

[本文引用: 4]

Fog A, Buck R P.

Electronic semiconducting oxides as pH sensors

[J]. Sens. Actuators, 1984, 5: 137

DOI      URL     [本文引用: 1]

Wang H J.

Progress in pH electrodes and sensors

[J]. Chem. Sens., 1987, 7 (1): 1

DOI      URL     [本文引用: 1]

汪厚基.

pH电极和传感器的进展

[J]. 化学传感器, 1987, 7 (1): 1

[本文引用: 1]

Chen C S, Cao L C.

Preparation and properties of iridium pH electrode

[J]. Chem. Sens., 1982, (2): 46

[本文引用: 3]

陈重升, 曹履诚.

铱pH电极的制备和性能

[J]. 离子选择电极通讯, 1982, (2): 46

[本文引用: 3]

Fan H B.

Preparation and properties of iridium pH electrode

[J]. Chemical sensors, 1996, 16 (2): 99

[本文引用: 2]

范宏斌.

金属铱/氧化铱pH电极的研制

[J]. 化学传感器, 1996, 16 (2): 99

[本文引用: 2]

Huang R S, Hu R G, Du R G, et al.

Fabrication of IrO2-pH microelectrode and its application in study of chemical micro-environment at steel/concrete interface

[J]. Corros. Sci. Prot. Technol., 2002, 14: 305

[本文引用: 4]

黄若双, 胡融刚, 杜荣归 .

IrO2-pH微电极的研制及钢筋/混凝土界面pH的测量

[J]. 腐蚀科学与防护技术, 2002, 14: 305

[本文引用: 4]

Huang F F.

IrO x -pH electrode fabrication, response mechanism and its application study

[D]. Beijing: University of Science and Technology Beijing, 2016

[本文引用: 7]

黄菲菲.

IrO x pH电极制备、响应机理及其应用研究

[D]. 北京: 北京科技大学, 2016

[本文引用: 7]

Kim T Y, Yang S.

Fabrication method and characterization of electrodeposited and heat-treated iridium oxide films for pH sensing

[J]. Sens. Actuators, 2014, 196B: 31

[本文引用: 2]

Huang W D, Cao H N, Deb S, et al.

A flexible pH sensor based on the iridium oxide sensing film

[J]. Sens. Actuator., 2011, 169A: 1

[本文引用: 2]

Jović M, Hidalgo-Acosta J C, Lesch A, et al.

Large-scale layer-by-layer inkjet printing of flexible iridium-oxide based pH sensors

[J]. J. Electroanal. Chem., 2018, 819: 384

DOI      URL     [本文引用: 2]

Yao S, Wang M, Madou M.

A pH electrode based on Melt-Oxidized iridium oxide

[J]. J. Electrochem. Soc., 2001, 148: H29

DOI      URL     [本文引用: 2]

Du Z X.

Preparation and characterization of IrO x pH sensor

[D]. Qingdao: Qingdao University of Technology, 2017

[本文引用: 3]

杜振兴.

铱氧化物pH传感器制备及性能表征

[D]. 青岛: 青岛理工大学, 2017

[本文引用: 3]

El-Giar E E D M, Wipf D O.

Microparticle-based iridium oxide ultramicroelectrodes for pH sensing and imaging

[J]. J. Electroanal. Chem., 2007, 609: 147

DOI      URL     [本文引用: 2]

Wang D D, Yang C, Xia J F, et al.

Improvement of the Ir/IrO2 pH electrode via hydrothermal treatment

[J]. Ionics, 2017, 23: 2167

DOI      URL     [本文引用: 1]

Mingels R H G, Kalsi S, Cheong Y, et al.

Iridium and ruthenium oxide miniature pH sensors: Long-term performance

[J]. Sens. Actuator., 2019, 297B: 126779

[本文引用: 3]

Burke L D, Lyons M E, O'sullivan E J M, et al.

Influence of hydrolysis on the redox behaviour of hydrous oxide films

[J]. J. Electroanal. Chem. Interfacial Electrochem., 1981, 122: 403

DOI      URL     [本文引用: 1]

Olthuis W, Robben M A M, Bergveld P, et al.

PH sensor properties of electrochemically grown iridium oxide

[J]. Sens. Actuator., 1990, 2B: 247

[本文引用: 1]

Huang F F, Bi P, Wan Z W, et al.

Insight into the factors of thermal oxidation Influencing properties of iridium oxide electrodes

[J]. Sens. Mater., 2020, 32: 3313

[本文引用: 6]

Gao L L, Cui Z B, Liu F G, et al.

Fabrication and application of Ir/IrO2 electrode

[J]. Mater. Rev., 2013, 27 (10): 31

[本文引用: 1]

高璐璐, 崔振邦, 刘福国 .

铱/氧化铱电极的制备及应用

[J]. 材料导报, 2013, 27 (10): 31

[本文引用: 1]

Xi Y, Guo Z J, Wang L C, et al.

Fabrication and characterization of iridium oxide pH microelectrodes based on sputter deposition method

[J]. Sensors, 2021, 21: 4996

DOI      URL     [本文引用: 1]

pH value plays an important role in many fields such as chemistry and biology; therefore, rapid and accurate pH measurement is very important. Because of its advantages in preparation, wide test range, rapid response, and good biocompatibility, iridium oxide material has received more and more attention. In this paper, we present a method for preparing iridium oxide pH microelectrodes based on the sputter deposition method. The sputtering parameters of iridium oxide are also studied and optimized. Open-circuit potential tests show that microelectrodes exhibit near-Nernstian pH response with good linearity (about 60 mV/pH), fast response, high stability (a slight periodic fluctuation of potential change &lt;2.5 mV in 24 h), and good reversibility in the pH range of 1.00–13.00.

Dai M T, Xia J F, Xue Z H, et al.

Improved iridium/iridium oxide pH electrode through supercritical treatment

[J]. J. Electroanal. Chem., 2022, 922: 116740

DOI      URL     [本文引用: 4]

Nishio K, Tsuchiya T.

Electrochromic thin films prepared by sol-gel process

[J]. Sol. Energy Mater. Sol. Cells, 2001, 68: 279

DOI      URL     [本文引用: 1]

Feng D M, Li H T, Lv D K, et al.

Preparation of novel titanium-based pH electrodes

[J]. Chem. Sensors, 1997, 17: 305

[本文引用: 3]

丰达明, 李海涛, 吕帝康 .

新型钛基pH电极的研制

[J]. 化学传感器, 1997, 17: 305

[本文引用: 3]

Vasilyeva M S, Rudnev V S, Zabudskaya N E, et al.

Preparation and study of Ti/TiO2, SbO x pH Electrodes

[J]. J. Anal. Chem., 2020, 75: 246

DOI      [本文引用: 1]

Lu M L, Yuan H Y, Xiao D.

A novel pH electrode based on titanium nitride

[J]. Chem. J. Chin. Univ., 2003, 24: 1400

[本文引用: 1]

鲁勖琳, 袁红雁, 肖 丹.

基于氮化钛的全固态碱性pH电极的研制

[J]. 高等学校化学学报, 2003, 24: 1400

[本文引用: 1]

Lu J, Lv D K, Liang H R, et al.

Study on a Ti-based pH electrode by the ionic nitriding treatment

[J]. J. Guangdong Non-Ferr. Met., 1997, 7: 51

[本文引用: 1]

鲁 建, 吕帝康, 梁汉荣 .

用离子氮化技术制备钛基pH电极的研究

[J]. 广东有色金属学报, 1997, 7: 51

[本文引用: 1]

Wen Y Z, Wang X P.

Characterization and application of a metallic tungsten electrode for potentiometric pH measurements

[J]. J. Electroanal. Chem., 2014, 714/715: 45

[本文引用: 1]

Guo Q, Wu X Q, Han E H, et al.

pH response behaviors and mechanisms of different tungsten/tungsten oxide electrodes for long-term monitoring

[J]. J. Electroanal. Chem., 2016, 782: 91

DOI      URL     [本文引用: 1]

Zhang W D, Xu B.

A solid-state pH sensor based on WO3-modified vertically aligned multiwalled carbon nanotubes

[J]. Electrochem. Commun., 2009, 11: 1038

DOI      URL     [本文引用: 2]

Chen D C, Fu C Y, Zhen J S, et al.

Preparation of tungsten oxide pH sensor and its application to F- and sol solutions

[J]. J. South China Univ. Technol. (Nat. Sci. Ed.), 2006, 34 (3): 15

[本文引用: 2]

陈东初, 付朝阳, 郑家燊 .

氧化钨pH传感器制备及其在F-和胶体溶液中的应用

[J]. 华南理工大学学报 (自然科学版), 2006, 34 (3): 15

[本文引用: 2]

Dimitrakopoulos L T, Dimitrakopoulos T, Alexander P W, et al.

A tungsten oxide coated wire electrode used as a pH sensor in flow injection potentiometry

[J]. Anal. Commun., 1998, 35: 395

DOI      URL     [本文引用: 2]

Dong Y N.

Study on the performance of W/WO3 pH electrode and its response mechanism

[D]. Wuhan: Huazhong University of Science and Technology, 2015

[本文引用: 3]

董亚男.

W/WO3 pH电极的性能与响应机理研究

[D]. 武汉: 华中科技大学, 2015

[本文引用: 3]

Kozawa A, Yeager J F.

The cathodic reduction mechanism of electrolytic manganese dioxide in alkaline electrolyte

[J]. J. Electrochem. Soc., 2019, 112: 959

DOI      URL     [本文引用: 1]

Shu Y Q, Yuan D Q.

Fabrication of MnO2-based solid pH electrode

[J]. Anal. Test. Technol. Instrum., 2000, 6: 109

[本文引用: 2]

舒友琴, 袁道强.

氧化锰型固态pH电极的研制

[J]. 分析测试技术与仪器, 2000, 6: 109

[本文引用: 2]

Shu Y Q, Li Q W, Luo G A.

The fabrication of Nanosized MnO2 pH electrode and its application to the corrosion system containing hydrofluoric acid

[J]. Anal. Chem., 2000, 28: 657

[本文引用: 1]

舒友琴, 李清文, 罗国安.

纳米二氧化锰型固体pH电极的研制及其在含氟腐蚀体系中的应用

[J]. 分析化学, 2000, 28: 657

[本文引用: 1]

Li Q W, Luo G A, Shu Y Q, et al.

Fabrication of metal oxide-based solid pH electrode

[J]. Chem. J. Chin. Univ., 2000, 21: 1380

[本文引用: 1]

李清文, 罗国安, 舒友琴 .

丝网印刷纳米金属氧化物型固态pH电极的研制

[J]. 高等学校化学学报, 2000, 21: 1380

[本文引用: 1]

Shi Y H, Meng H M, Sun D B, et al.

The research of manganese oxide coating electrode by anode electrodeposit process

[J]. Heat Treat. Technol. Equip., 2008, 29 (1): 39

[本文引用: 1]

史艳华, 孟惠民, 孙冬柏 .

阳极电沉积法制备锰类氧化物涂层电极的研究

[J]. 热处理技术与装备, 2008, 29 (1): 39

[本文引用: 1]

Lv D K, Feng D M.

Study on the ionbombardment for surface treatment of titanium-base pH electro de

[J]. J. Guangdong Non-Ferr. Met., 1999, 9: 141

[本文引用: 1]

吕帝康, 丰达明.

钛基pH电极表面离子轰击处理的研究

[J]. 广东有色金属学报, 1999, 9: 141

[本文引用: 1]

Liao Y H, Chou J C.

Preparation and characterization of the titanium dioxide thin films used for pH electrode and procaine drug sensor by sol-gel method

[J]. Mater. Chem. Phys., 2009, 114: 542

DOI      URL     [本文引用: 1]

Ling X, Dai J H, Yang Y M, et al.

The preparation and application of a wolfram/wolfram oxide micro-needle composite pH sensor

[J]. J. Yunnan Nationalities Univ.: Nat. Sci. Ed., 2016, 25: 34

[本文引用: 1]

凌 茜, 戴建辉, 杨元梦 .

针型复合钨/氧化钨微型pH复合电极的研制及应用

[J]. 云南民族大学学报: 自然科学版, 2016, 25: 34

[本文引用: 1]

Manjakkal L, Szwagierczak D, Dahiya R.

Metal oxides based electrochemical pH sensors: Current progress and future perspectives

[J]. Prog. Mater. Sci., 2019, 109: 100635

DOI      URL     [本文引用: 1]

Chou J C, Wang Y F.

Preparation and study on the drift and hysteresis properties of the tin oxide gate ISFET by the sol-gel method

[J]. Sens. Actuator., 2002, 86B: 58

[本文引用: 1]

/