Please wait a minute...
中国腐蚀与防护学报  2022, Vol. 42 Issue (5): 867-872    DOI: 10.11902/1005.4537.2021.293
  海洋材料腐蚀与防护专栏 本期目录 | 过刊浏览 |
深浅交变环境牺牲阳极电化学性能研究
张海兵, 张一晗, 马力(), 邢少华, 段体岗, 闫永贵
中国船舶重工集团公司第七二五研究所 海洋腐蚀与防护重点实验室 青岛 266237
Electrochemical Performance of Sacrificial Anodes in Alternating Depth and Shallowness of Seawater Environments
ZHANG Haibing, ZHANG Yihan, MA Li(), XING Shaohua, DUAN Tigang, YAN Yonggui
State Key Laboratory for Marine Corrosion and Protection, Luoyang Ship Material Research Institute, Qingdao 266237, China
全文: PDF(6684 KB)   HTML
摘要: 

在前期研究工作基础上,在Al-Zn-Ga-Si低电位牺牲阳极材料中分别添加Sn、Bi、Ti、Sb等合金元素改善阳极综合性能。通过常规海水环境中的电化学性能测试,在制备的多种阳极材料中遴选出符合要求的低驱动电位牺牲阳极材料。将遴选出的综合电化学性能良好的Al-Zn-Ga-Si-Sb阳极进行模拟深浅海交变环境电化学性能测试,考察Sb含量对阳极电化学性能影响;采用三维视频和宏观表征来分析Sb对溶解形貌的影响。实验结果表明,添加适量Sb可以促进阳极材料的均匀活化溶解,提高复杂环境下阳极活化性能,并减少局部腐蚀的作用,当Sb含量为0.5% (质量分数) 时阳极综合电化学性能良好,满足高强钢阴极保护准则要求,可进一步开发Al-Zn-Ga-Si-0.5Sb牺牲阳极在深浅海交变环境下的高强钢阴极保护应用。

关键词 深浅交变铝合金阳极电化学阴极保护    
Abstract

Based on the previous research work, Sn, Bi, Ti, Sb and other alloying elements were added to the Al-Zn-Ga-Si low-potential sacrificial anode material to improve its overall performance of the anode. By conducting the electrochemical performance test in the conventional seawater environment, a sacrificial anode material with a low driving potential, that meets the requirements, is selected from a variety of prepared anode materials. The selected Al-Zn-Ga-Si-Sb anodes with good comprehensive electrochemical performance were further assessed in a simulated alternating depth and shallowness of seawater environment, especially in terms of its electrochemical performance, while the influence of Sb content on the electrochemical performance of the anode was also investigated through electrochemical performance test and three-dimensional video observation. The results show that the addition of an appropriate amount of Sb can promote the uniform activation and dissolution of the anode materials, therewith improve the activation performance of anodes in complex environments, and reduce the effect of local corrosion. When the Sb content is 0.5% (mass fraction), the comprehensive electrochemical performance of the anode is good and meets the requirements in accord with the general cathodic protection guidelines for high-strength steel. Thus, it may be expected that the Al-Zn-Ga-Si-0.5Sb sacrificial anodes can further be developed to meet the requirement for the high-strength steel cathodic protection in alternating depth and shallowness of seawater environments.

Key wordsalternating deep and shallow    aluminum alloy anode    electrochemistry    cathodic protection
收稿日期: 2021-10-20     
ZTFLH:  TG172  
通讯作者: 马力     E-mail: mal@sunrui.net
Corresponding author: MA Li     E-mail: mal@sunrui.net
作者简介: 张海兵,男,1983年生,硕士,高级工程师

引用本文:

张海兵, 张一晗, 马力, 邢少华, 段体岗, 闫永贵. 深浅交变环境牺牲阳极电化学性能研究[J]. 中国腐蚀与防护学报, 2022, 42(5): 867-872.
Haibing ZHANG, Yihan ZHANG, Li MA, Shaohua XING, Tigang DUAN, Yonggui YAN. Electrochemical Performance of Sacrificial Anodes in Alternating Depth and Shallowness of Seawater Environments. Journal of Chinese Society for Corrosion and protection, 2022, 42(5): 867-872.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2021.293      或      https://www.jcscp.org/CN/Y2022/V42/I5/867

SampleOpen circuit potential / V vs SCEWorking potential / V vs SCEActual capacity / A·h·kg-1Current efficiency / %
1-0.956-0.701~-0.8042505.5684.70
2-0.904-0.720~-0.8162507.4284.77
3-0.882-0.707~-0.8672556.7386.43
4-0.876-0.713~-0.8272533.8785.66
5-0.865-0.700~-0.7972508.5484.81
6-0.863-0.695~-0.9682540.8785.90
7-0.840-0.710~-0.8062468.5983.45
8-1.038-0.691~-0.8032515.4385.04
9-0.906-0.712~-0.8122422.9281.91
10-0.956-0.735~-0.8132524.2285.34
11-0.961-0.746~-0.8062482.8783.94
12-1.063-0.743~-0.8042466.4983.38
表1  牺牲阳极电化学性能测试结果
图1  牺牲阳极试样在常规海水环境中的溶解形貌
SampleEnvironmentOpen Circuit Potential/ V vs. SCEWorking Potential/ V vs. SCEActual capacity A·h·kg-1Current efficiency / %
10Shallow sea environemnt-0.956-0.735~-0.8132524.2285.34%
Deep sea environemnt-0.938-0.715~-0.8182584.1487.36%
Alternating deep and shallow environment-0.932-0.741~-0.8292526.3585.06%
11Shallow sea environemnt-0.961-0.746~-0.8062482.8783.94%
Deep sea environemnt-0.928-0.752~-0.8092516.7785.08%
Alternating deep and shallow environment-0.949-0.751~-0.8142522.1884.92%
12Shallow sea environemnt-1.063-0.743~-0.8042466.4983.38%
Deep sea environemnt-0.996-0.753~-0.8022488.3384.12%
Alternating deep and shallow environment-0.993-0.753~-0.8132493.2383.95%
表2  Al-Zn-Ga-Si-Sb牺牲阳极电化学性能
图2  Al-Zn-Ga-Si-Sb牺牲阳极试样在深浅交变环境下的溶解形貌和微观形貌
图3  Al-Zn-Ga-Si-0.5Sb牺牲阳极在深浅交变环境下的电化学阻抗谱
图4  Al-Zn-Ga-Si-0.5Sb牺牲阳极在不同环境下的极化曲线
图5  Al-Zn-Ga-Si-0.5Sb牺牲阳极表面SKP谱图
图6  Al-Zn-Ga-Si-0.5Sb牺牲阳极表面微观溶解形貌
图7  Al-Zn-Ga-Si-0.5Sb牺牲阳极腐蚀产物XRD图谱
1 Fernandez J. Retracted: Stress corrosion cracking of high strength stainless steels for use as strand in prestressed marine environment concrete construction [J]. Mater. Corros., 2015, 66: 1269
2 Billingham J, Sharp J V, Spurrier J, et al. Review of the performance of high strength steels used offshore [R]. Suffolk, UK: Health and Safety Executive, 2003: 111
3 Gao X X, Guo J Z, Zhang H B. Hydrogen embrittlement susceptibility of 1000 MPa grade high strength steel weldment [J]. Mater. Rev., 2017, 31(6): 93
doi: 10.1179/imr.1986.31.1.93
3 高心心, 郭建章, 张海兵. 1000 MPa级高强钢焊接件的氢脆敏感性研究 [J]. 材料导报, 2017, 31(6): 93
4 Sun H J, Qin M, Li L. Performance of Al-Zn-In-Mg-Ti sacrificial anode in simulated low dissolved oxygen deep water environment [J]. J. Chin. Soc. Corros. Prot., 2020, 40: 508
4 孙海静, 覃明, 李琳. 深海低溶解氧环境下Al-Zn-In-Mg-Ti牺牲阳极性能研究 [J]. 中国腐蚀与防护学报, 2020, 40: 508
5 Li W L, Yan Y G, Chen G, et al. Effect of alloy elements on electrochemical performance of aluminum sacrificial anode [J]. J. Chin. Soc. Corros. Prot., 2012, 32: 127
5 李威力, 闫永贵, 陈光 等. 合金元素对铝基牺牲阳极性能的影响 [J]. 中国腐蚀与防护学报, 2012, 32: 127
6 Song Y H, Guo Z C, Fan A M, et al. Current state of research on sacrificial anode materials [J]. Corros. Sci. Prot. Technol., 2004, 16: 24
6 宋曰海, 郭忠诚, 樊爱民 等. 牺牲阳极材料的研究现状 [J]. 腐蚀科学与防护技术, 2004, 16: 24
7 Gurrappa I, Karnik J A. Effect on tin-activated aluminum-alloy anodes of the addition of bismuth [J]. Corros. Prev. Contr., 1994, 41: 117
8 Reding J T, Newport J J. The influence of alloying elements on aluminum anodes in sea water [J]. Mater. Prot., 1966, 5: 15
9 Ma L, Zeng H J, Yan Y G, et al. Effects of Ga content on electrochemical properties of Al-Ga sacrificial anodes [J]. Corros. Sci. Prot. Technol., 2009, 21: 125
9 马力, 曾红杰, 闫永贵 等. Ga含量对Al-Ga牺牲阳极电化学性能的影响 [J]. 腐蚀科学与防护技术, 2009, 21: 125
10 Pautasso J P, Le Guyader H, Debout V. Low voltage cathodic protection for high strength steels. Part 1: Definition of a new Aluminum galvanic anode material [A]. Corrosion 1998 [C]. San Diego, CA, 1996: 1
11 Pan D W, Gao X X, Ma L, et al. Cathodic protection criteria of high strength steel in simulated deep-sea environment [J]. Corros. Prot., 2016, 37: 225
11 潘大伟, 高心心, 马力 等. 模拟深海环境中高强钢的阴极保护准则 [J]. 腐蚀与防护, 2016, 37: 225
12 Ma J L, Wen J B, Lu X W, et al. Electrochemical impedance spectroscopy of aluminum alloy anode during corrosion process [J]. Corros. Prot., 2009, 30: 373
12 马景灵, 文九巴, 卢现稳 等. 铝合金阳极腐蚀过程的电化学阻抗谱研究 [J]. 腐蚀与防护, 2009, 30: 373
13 Ma J L, Wen J B. Corrosion and electrochemical performance of Al-Mg-Sn-Si-In alloy in different solutions [J]. Corros. Sci. Prot. Technol., 2015, 27: 425
13 马景灵, 文九巴. Al-Mg-Sn-Si-In铝合金在不同溶液中的腐蚀与电化学性能研究 [J]. 腐蚀科学与防护技术, 2015, 27: 425
14 Wang J, Cao C N, Lin H C. Features of AC impedance of pitting corroded electrodes during pits propagation [J]. J. Chin. Soc. Corros. Prot., 1989, 9: 271
14 王佳, 曹楚南, 林海潮. 孔蚀发展期的电极阻抗频谱特征 [J]. 中国腐蚀与防护学报, 1989, 9: 271
[1] 赵国仙, 王映超, 张思琦, 宋洋. H2S/CO2对J55钢腐蚀的影响机制[J]. 中国腐蚀与防护学报, 2022, 42(5): 785-790.
[2] 鲍晨宇, 李建民, 叶梦颖, 高荣杰. 复合电解液中TiO2纳米管阵列的制备及光生阴极保护性能[J]. 中国腐蚀与防护学报, 2022, 42(5): 759-764.
[3] 冯丽, 张胜涛, 郑思远, 胡志勇, 朱海林, 马雪梅. 卤素阴离子对离子液体缓蚀性能的影响[J]. 中国腐蚀与防护学报, 2022, 42(5): 791-797.
[4] 吕迎玺. 高Mo超级奥氏体不锈钢耐Cl-腐蚀性能分析[J]. 中国腐蚀与防护学报, 2022, 42(5): 765-770.
[5] 王嘉琪, 李莉, 刘婷婷. 工业建筑屋面用铝锰合金的腐蚀行为[J]. 中国腐蚀与防护学报, 2022, 42(4): 693-698.
[6] 王通, 孟惠民, 葛鹏飞, 李全德, 巩秀芳, 倪荣, 姜英, 龚显龙, 戴君, 隆彬. 2Cr-1Ni-1.2Mo-0.2V钢在NH4H2PO4溶液中的电化学腐蚀行为研究[J]. 中国腐蚀与防护学报, 2022, 42(4): 551-562.
[7] 温佳源, 宋贵宏, 韦小园, 赵鑫, 吴玉胜, 杜昊, 贺春林. Cr含量对Cu合金表面Ni/Ni-Cr/Ni-Cr-Al-Si膜层耐蚀性的影响[J]. 中国腐蚀与防护学报, 2022, 42(4): 638-646.
[8] 陈昊, 樊志彬, 陈志坚, 周学杰, 郑鹏华, 吴军. Cl-与HSO3-对建筑用439不锈钢腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2022, 42(3): 493-500.
[9] 徐迪, 杨小佳, 李清, 程学群, 李晓刚. 材料大气环境腐蚀试验方法与评价技术进展[J]. 中国腐蚀与防护学报, 2022, 42(3): 447-457.
[10] 梁泰贺, 朱雪梅, 张振卫, 王新建, 张彦生. 铝硅复合对Fe32Mn7Cr3Al2Si钢氧化改性层耐蚀性的影响[J]. 中国腐蚀与防护学报, 2022, 42(2): 317-323.
[11] 苏娜, 叶梦颖, 李建民, 高荣杰. ZIF-8/TiO2纳米复合材料的制备及光生阴极保护性能[J]. 中国腐蚀与防护学报, 2022, 42(2): 267-273.
[12] 王淇萱, 吕文生, 杨鹏, 诸利一, 廖文景, 朱远乐. 尾矿库埋入式传感器不锈钢外壳腐蚀研究[J]. 中国腐蚀与防护学报, 2022, 42(2): 331-337.
[13] 王晶, 王斯琰, 张崇, 王文涛, 曹星, 樊宁, 徐宏妍. 氮掺杂对碳纳米颗粒缓蚀性能的影响[J]. 中国腐蚀与防护学报, 2022, 42(1): 85-92.
[14] 王中琪, 许春香, 杨丽景, 田林海, 黄涛, 史义轩, 杨文甫. 医用可降解Mg-2Y-1Zn-xZr合金微观组织和耐蚀性能研究[J]. 中国腐蚀与防护学报, 2022, 42(1): 113-119.
[15] 邓佳丽, 闫茂成, 高博文, 张辉. 高铁动态交流干扰下管道钢的腐蚀行为试验研究[J]. 中国腐蚀与防护学报, 2022, 42(1): 127-134.