Please wait a minute...
中国腐蚀与防护学报  2023, Vol. 43 Issue (5): 983-991     CSTR: 32134.14.1005.4537.2022.332      DOI: 10.11902/1005.4537.2022.332
  综合评述 本期目录 | 过刊浏览 |
金属材料腐蚀预测模型研究进展
姚勇1, 刘国军1, 黎石竹1, 刘淼然2(), 陈川2, 黄廷城2, 林海3, 李展江3, 刘雨薇4, 王振尧4
1.广东能源集团科学院技术研究院有限公司 广州 510630
2.中国电器科学研究院股份有限公司 广州 510799
3.湛江海关技术中心 湛江 524000
4.中国科学院金属研究所 沈阳 110016
Research Progress on Corrosion Prediction Model of Metallic Materials for Electrical Equipment
YAO Yong1, LIU Guojun1, LI Shizhu1, LIU Miaoran2(), CHEN Chuan2, HUANG Tingcheng2, LIN Hai3, LI Zhanjiang3, LIU Yuwei4, WANG Zhenyao4
1.Guangdong Energy Group Science and Technology Research Institute Co., Ltd., Guangzhou 510630, China
2.China National Electric Apparatus Research Institute Co., Ltd., Guangzhou 510799, China
3.Zhanjiang Customs Technology Center, Zhanjiang 524000, China
4.Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
全文: PDF(1058 KB)   HTML
摘要: 

对现有腐蚀领域常用腐蚀预测方法,包括函数模型、灰色理论模型、神经网络预测模型,剂量响应函数模型和随机森林模型等进行总结分析,并将现有的腐蚀预测模型分为腐蚀-时间和腐蚀-环境预测模型,介绍了不同腐蚀预测模型的特点和适用范围等。最后,根据电力行业的特点对金属材料的腐蚀预测研究提出了一些展望。

关键词 金属材料腐蚀预测模型数据处理电力设备    
Abstract

Metallic materials for electrical equipment are affected by many factors related with environment during service, and their corrosion behavior is very complex, therefore, which is difficult to be accurately predicted. The development of computer technology and data analysis technology enriches the prediction methods for corrosion behavior of metallic materials with better accuracy. This paper summarizes and analyzes the existing common corrosion prediction methods in the field of corrosion, including function model, grey theory model, neural network prediction model, dose response function model and random forest model etc., and which then are classified into two types, namely corrosion-time models and corrosion-environment prediction models. Furthermore, the characteristics and application scope of different corrosion prediction models are introduced. Finally, prospects for the corrosion prediction of metallic materials are put forward especially in terms of the demands of power industry.

Key wordsmetallic material    corrosion    prediction model    data processing    electrical equipment
收稿日期: 2022-10-25      32134.14.1005.4537.2022.332
ZTFLH:  TG174.42  
基金资助:广东能源集团科学技术研究院有限公司科技项目(STI-PY-21009)
通讯作者: 刘淼然,E-mail: liumr@cei1958.com,研究方向为金属材料大气腐蚀   
Corresponding author: LIU Miaoran, E-mail: liumr@cei1958.com   
作者简介: 姚勇,男,1981年生,高级工程师

引用本文:

姚勇, 刘国军, 黎石竹, 刘淼然, 陈川, 黄廷城, 林海, 李展江, 刘雨薇, 王振尧. 金属材料腐蚀预测模型研究进展[J]. 中国腐蚀与防护学报, 2023, 43(5): 983-991.
YAO Yong, LIU Guojun, LI Shizhu, LIU Miaoran, CHEN Chuan, HUANG Tingcheng, LIN Hai, LI Zhanjiang, LIU Yuwei, WANG Zhenyao. Research Progress on Corrosion Prediction Model of Metallic Materials for Electrical Equipment. Journal of Chinese Society for Corrosion and protection, 2023, 43(5): 983-991.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2022.332      或      https://www.jcscp.org/CN/Y2023/V43/I5/983

图1  不同国家碳钢腐蚀损失随时间变化的动力学曲线[14, 15]
图2  神经网络元示意图
图3  神经网络模型示意图
1 Li X G, Dong C F, Xiao K, et al. Initial Behavior and Mechanism of Metal Atmospheric Corrosion [M]. Beijing: Science Press, 2009
1 李晓刚, 董超芳, 肖 葵 等. 金属大气腐蚀初期行为与机理 [M]. 北京: 科学出版社, 2009
2 Cao C N. Corrosion of Chinese Materials in Natural Environment [M]. Beijing: Chemical Industry Press, 2005
2 曹楚南. 中国材料的自然环境腐蚀 [M]. 北京: 化学工业出版社, 2005
3 Xiao Y D, Zhang S P, Cao X L, et al. Recent development in atmospheric corrosion study of materials in China (the end) [J]. Equip. Environ. Eng., 2006, 3(2): 1
3 萧以德, 张三平, 曹献龙 等. 我国大气腐蚀研究进展(续完) [J]. 装备环境工程, 2006, 3(2): 1
4 Wang C, Wang Z Y, Wei W, et al. Statistical analysis and predictive model in corrosion research [J]. J. Chin. Soc. Corros. Prot., 2010, 30: 306
4 汪 川, 王振尧, 魏 伟 等. 腐蚀研究中的统计分析方法和预测模型 [J]. 中国腐蚀与防护学报, 2010, 30: 306
5 Wang C, Wang Z R, Ke W. Statistical analysis in corrosion research [A]. The 10th National Youth Corrosion and Protection Scientific and Technological Papers Evaluation Meeting of the Yuxiang Cup and the 8th Chinese Youth Corrosion and Protection Symposium Proceedings [C]. Shenyang, 2007: 444
5 汪 川, 王振尧, 柯 伟. 腐蚀研究中的统计分析方法 [A]. 裕祥杯第十届全国青年腐蚀与防护科技论文讲评会暨第八届中国青年腐蚀与防护研讨会论文集 [C]. 沈阳, 2007: 444
6 Song S Z, Wang G Y, Wang S Y. Proceeding of research on national natural environmental corrosion data processing [J]. J. Chin. Soc. Corros. Prot., 2003, 23: 56
6 宋诗哲, 王光雍, 王守琰. 我国材料自然环境腐蚀数据处理研究进展 [J]. 中国腐蚀与防护学报, 2003, 23: 56
7 Sabir S, Ibrahim A A. Influence of atmospheric pollution on corrosion of materials in Saudi Arabia [J]. Corros. Eng. Sci. Technol., 2017, 52: 276
doi: 10.1080/1478422X.2016.1274839
8 Hou W, Liang C. Eight-year atmospheric corrosion exposure of steels in China [J]. Corrosion, 1999, 55: 65
doi: 10.5006/1.3283967
9 Feliu S, Morcillo M, Feliu Jr S. The prediction of atmospheric corrosion from meteorological and pollution parameters—I. Annual corrosion [J]. Corros. Sci., 1993, 34: 403
doi: 10.1016/0010-938X(93)90112-T
10 Feliu S, Morcillo M, Feliu Jr S. The prediction of atmospheric corrosion from meteorological and pollution parameters—II. Long-term forecasts [J]. Corros. Sci., 1993, 34: 415
doi: 10.1016/0010-938X(93)90113-U
11 Liang C F, Hou W T. Sixteen-year atmospheric corrosion exposure study of steels [J]. J. Chin. Soc. Corros. Prot., 2005, 25: 1
11 梁彩凤, 侯文泰. 碳钢、低合金钢16年大气暴露腐蚀研究 [J]. 中国腐蚀与防护学报, 2005, 25: 1
12 Xing S B, Li X G, Li L, et al. Corrosion behavior of 7A04 aluminum alloy in Xisha marine atmosphere [J]. Corros. Prot., 2013, 34(09): 796
12 邢士波, 李晓刚, 李 丽 等. 7A04铝合金在西沙海洋大气中的腐蚀行为 [J]. 腐蚀与防护, 2013, 34(09): 796
13 Ma Y T, Li Y, Wang F H. Corrosion of low carbon steel in atmospheric environments of different chloride content [J]. Corros. Sci., 2009, 51: 997
doi: 10.1016/j.corsci.2009.02.009
14 Panchenko Y M, Marshakov A I, Igonin T N, et al. Long-term forecast of corrosion mass losses of technically important metals in various world regions using a power function [J]. Corros. Sci., 2014, 88: 306
doi: 10.1016/j.corsci.2014.07.049
15 Panchenko Y M, Marshakov A I. Long-term prediction of metal corrosion losses in atmosphere using a power-linear function [J]. Corros. Sci., 2016, 109: 217
doi: 10.1016/j.corsci.2016.04.002
16 Morcillo M, Chico B, Díaz I, et al. Atmospheric corrosion data of weathering steels. A review [J]. Corros. Sci., 2013, 77: 6
doi: 10.1016/j.corsci.2013.08.021
17 De La Fuente D, Díaz I, Simancas J, et al. Long-term atmospheric corrosion of mild steel [J]. Corros. Sci., 2011, 53: 604
doi: 10.1016/j.corsci.2010.10.007
18 Organization I S. Corrosion of Metals and Alloys—Corrosivity of Atmospheres—Guiding Values for the Corrosivity Categories [M]. Geneva: International Standards Organization, 2012
19 Liu Z G, Gao X H, Du L X, et al. Corrosion behaviour of low-alloy steel with titanium addition exposed to seawater environment [J]. Int. J. Electrochem. Sci., 2016, 11: 6540
doi: 10.20964/2016.08.25
20 Deng J L. Grey Control System [M]. Wuhan: Huazhong University of Science and Technology Press, 1990
20 邓聚龙. 灰色系统理论教程 [M]. 武汉: 华中理工大学出版社, 1990
21 Wang Z F, Wang W Q, Hui Q. Grey predication of corrosion on oil atmospheric distillation equipment [A]. 2009 4th IEEE Conference on Industrial Electronics and Applications [C]. Xi'an, 2009
22 Yin W K, Li F, Zhao W B. Gray prediction model of corrosion life of coatings of steel tower for transmission line and its application [J]. Water Res. Power, 2019, 37(4): 163
22 尹文阔, 李 峰, 赵文彬. 输电线路钢结构杆塔涂层腐蚀寿命灰色预测模型及应用 [J]. 水电能源科学, 2019, 37(4): 163
23 Wang H T, Han E-H, Ke W. Prediction and analysis of seawater corrosion of carbon steel and low alloy steels by gray theory [J]. Corros. Prot., 2005, 26(09): 373
23 王海涛, 韩恩厚, 柯 伟. 灰色理论对碳钢、低合金钢海水腐蚀的预测和分析 [J]. 腐蚀与防护, 2005, 26(09): 373
24 Zhang X Y, Zhang H Y. Research on the marine corrosion model of ferrous metal based on PLS and grey relational analysis [J]. Appl. Mech. Mater., 2011, 128/129: 237
25 Cai J P, Ke W. Application of neural networks to atmospheric corrosion of carbon steel and low alloy steels [J]. J. Chin. Soc. Corros. Prot., 1997, 17: 303
25 蔡建平, 柯 伟. 应用人工神经网络预测碳钢、低合金钢的大气腐蚀 [J]. 中国腐蚀与防护学报, 1997, 17: 303
26 Wang H T, Han E-H, Ke W. Artificial neural network modeling for atmospheric corrosion of carbon steel and low alloy steel [J]. Corros. Sci. Prot. Technol., 2006, 18: 144
26 王海涛, 韩恩厚, 柯 伟. 用人工神经网络构建碳钢、低合金钢大气腐蚀模型 [J]. 腐蚀科学与防护技术, 2006, 18: 144
27 Wang H T, Han E-H, Ke W. Predictive model for atmospheric corrosion of aluminium alloy by artificial neural network [J]. J. Chin. Soc. Corros. Prot., 2006, 26: 272
27 王海涛, 韩恩厚, 柯 伟. 基于人工神经网络模型的铝合金大气腐蚀的预测 [J]. 中国腐蚀与防护学报, 2006, 26: 272
28 Guo Z H, Xing Z L, Jin M H, et al. Predicting corrosion rate of mild steel in soil based on artificial neural network [J]. J. Chin. Soc. Corros. Prot., 1996, 16: 307
28 郭稚弧, 邢政良, 金名惠 等. 基于人工神经网络的金属土壤腐蚀预测方法 [J]. 中国腐蚀与防护学报, 1996, 16: 307
29 Hua G R, Li W H, Guo Y Y. Corrosion rate prediction of Q235 steel in Hainan substation grounding grid based on neural network models [J]. Corros. Prot., 2017, 38: 573
29 花广如, 李文浩, 郭阳阳. 基于神经网络模型的海南变电站接地网Q235钢腐蚀率预测 [J]. 腐蚀与防护, 2017, 38: 573
30 Zhao X F, Fu D M, Pei Z B, et al. Optimization of sectional dose-response function and determination method of corrosion category for carbon steel [J]. Corros. Prot., 2018, 39: 805
30 赵兴锋, 付冬梅, 裴梓博 等. 分段式剂量响应函数优化及碳钢腐蚀等级判别方法 [J]. 腐蚀与防护, 2018, 39: 805
31 Panchenko Y M, Marshakov A I. Prediction of first-year corrosion losses of carbon steel and zinc in continental regions [J]. Materials (Basel), 2017, 10: 422
doi: 10.3390/ma10040422
32 Ye D, Zhao D W, Zhang D B. Dose-response functions for atmospheric corrosion on metals [J]. J. Chin. Soc. Corros. Prot., 2006, 26: 351
32 叶 堤, 赵大为, 张冬保. 金属材料大气腐蚀破坏的剂量响应函数研究 [J]. 中国腐蚀与防护学报, 2006, 26: 351
33 Leuenberger-Minger A U, Buchmann B, Faller M. Dose-response functions for weathering steel, copper and zinc obtained from a four-year exposure programme in Switzerland [J]. Corros. Sci., 2002, 44: 675
doi: 10.1016/S0010-938X(01)00097-X
34 Ríos-Rojas J F, Aperador-Rodríguez D, Hernández-García E A, et al. Annual atmospheric corrosion rate and dose-response function for carbon steel in Bogotá [J]. Atmósfera, 2017, 30: 53
doi: 10.20937/ATM
35 Qu Z H, Tang D Z, Hu L H, et al. Prediction of H2S corrosion products and corrosion rate based on optimized random forest [J]. Surf. Technol., 2020, 49(3): 42
35 曲志豪, 唐德志, 胡丽华 等. 基于优化随机森林的H2S腐蚀产物类型及腐蚀速率预测 [J]. 表面技术, 2020, 49(3): 42
36 Luo Z S, Song Y Y, Wang X W, et al. Corrosion prediction of gathering pipelines in condensate gas field [J]. China Saf. Sci. J., 2019, 29(11): 135
36 骆正山, 宋莹莹, 王小完 等. 凝析气田集输管线腐蚀预测研究 [J]. 中国安全科学学报, 2019, 29(11): 135
doi: 10.16265/j.cnki.issn1003-3033.2019.11.022
37 Chun P J, Ujike I, Mishima K, et al. Random forest-based evaluation technique for internal damage in reinforced concrete featuring multiple nondestructive testing results [J]. Constr. Build. Mater., 2020, 253: 119238
doi: 10.1016/j.conbuildmat.2020.119238
38 Fang S F, Wang M P, Qi W H, et al. Hybrid genetic algorithms and support vector regression in forecasting atmospheric corrosion of metallic materials[J]. Comput. Mater. Sci., 2009, 44: 647
doi: 10.1016/j.commatsci.2008.05.010
39 Fu Z D, Fu D M, Li X G. Atmospheric corrosion modelling with SVM based feature selection [A]. 2009 International Conference on Computational Intelligence and Software Engineering [C]. Wuhan, 2009
40 Tian Y W. Study on the corrosion mechanism of the high-strength corrosion-resistance steel reinforcement and inhibitor in marine structures [D]. Beijing: University of Science and Technology Beijing, 2021
40 田玉琬. 海工用高强耐蚀钢筋的腐蚀机理及阻锈剂研究 [D]. 北京: 北京科技大学, 2021
41 Qiu X T, Fu D M, Fu Z D. Feature selection of atmospheric corrosion data based on SVM-RFE Method [J]. Adv. Comp. Sci. Appl., 2013, 2: 443
42 Wen Y F, Cai C Z, Liu X H, et al. Corrosion rate prediction of 3C steel under different seawater environment by using support vector regression [J]. Corros. Sci., 2009, 51: 349
doi: 10.1016/j.corsci.2008.10.038
43 Bi A R, Luo Z S, Qiao W, et al. Prediction of pipeline inner-corrosion based on principal component analysis and particle swarm optimization-support vector machine [J]. Surf. Technol., 2018, 47(9): 133
43 毕傲睿, 骆正山, 乔 伟 等. 基于主成分和粒子群优化支持向量机的管道内腐蚀预测 [J]. 表面技术, 2018, 47(9): 133
44 Li K. Study on corrosion mechanism and prediction model of SPHC in Tianjin atmospheric environment [D]. Tianjin: Civil Aviation University of China, 2021
44 李 柯. SPHC在天津大气环境下的腐蚀机理与预测模型研究 [D]. 天津: 中国民航大学, 2021
45 Yan L C, Diao Y P, Lang Z Y, et al. Corrosion rate prediction and influencing factors evaluation of low-alloy steels in marine atmosphere using machine learning approach [J]. Sci. Technol. Adv. Mater., 2020, 21: 359
doi: 10.1080/14686996.2020.1746196
[1] 肖文涛, 刘静, 彭晶晶, 张弦, 吴开明. 两种电弧喷涂涂层在中性盐雾环境下的耐蚀性能对比研究[J]. 中国腐蚀与防护学报, 2023, 43(5): 1003-1014.
[2] 何静, 于航, 傅梓瑛, 岳鹏辉. 水溶性缓蚀剂对建筑管道用Q235钢腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2023, 43(5): 1041-1048.
[3] 轩星雨, 屈少鹏, 赵行娅. CeO2@MWCNTs/EP复合涂层的制备与性能研究[J]. 中国腐蚀与防护学报, 2023, 43(5): 992-1002.
[4] 石践, 胡学文, 何博, 浦红, 郭锐, 汪飞. 经济型高耐候钢耐大气腐蚀性能研究[J]. 中国腐蚀与防护学报, 2023, 43(5): 1159-1164.
[5] 胡杰珍, 蓝文杰, 邓培昌, 吴敬权, 曾俊昊. E690钢在热带海洋大气环境下的初期腐蚀行为研究[J]. 中国腐蚀与防护学报, 2023, 43(5): 1140-1144.
[6] 李佳媛, 曾天昊, 刘友通, 吴晓春. 加铜4Cr16Mo马氏体不锈钢在应力作用下的腐蚀研究[J]. 中国腐蚀与防护学报, 2023, 43(5): 1094-1100.
[7] 顾玉慧, 董亮, 宋沁峰. 微型金属氧化物pH电极的制备及腐蚀防护应用进展[J]. 中国腐蚀与防护学报, 2023, 43(5): 971-982.
[8] 罗维华, 王海涛, 于林, 许实, 刘朝信, 郭宇, 王廷勇. Zn含量对Al-Zn-In-Mg牺牲阳极电化学性能的影响[J]. 中国腐蚀与防护学报, 2023, 43(5): 1071-1078.
[9] 李田雨, 王维康, 李扬涛, 包腾飞, 赵梦凡, 沈欣欣, 倪磊, 马庆磊, 田惠文. 超高性能海水海砂混凝土的硫酸盐腐蚀破坏机理研究[J]. 中国腐蚀与防护学报, 2023, 43(5): 1101-1110.
[10] 周浩, 尤世界, 王胜利. 铜质文物在CO2 环境中的腐蚀行为及缓蚀剂研究[J]. 中国腐蚀与防护学报, 2023, 43(5): 1049-1056.
[11] 高秋英, 曾文广, 王恒, 刘元聪, 扈俊颖. 流体冲刷作用对SRB的腐蚀行为影响研究[J]. 中国腐蚀与防护学报, 2023, 43(5): 1087-1093.
[12] 陈震宇, 朱忠亮, 马辰昊, 张乃强, 刘宇桐. 加载条件对镍基617合金在超临界水中腐蚀疲劳裂纹扩展速率的影响[J]. 中国腐蚀与防护学报, 2023, 43(5): 1057-1063.
[13] 汪洋, 刘元海, 慕仙莲, 刘淼然, 王俊, 李秋平, 陈川. 海洋气候大气腐蚀过程环境因素对薄液膜内物质传递的影响[J]. 中国腐蚀与防护学报, 2023, 43(5): 1015-1021.
[14] 李忠诚, 陈圣刚, 郭全全, 郭俊营. 基于COMSOL的核电站安全壳钢衬里外侧腐蚀研究[J]. 中国腐蚀与防护学报, 2023, 43(5): 1133-1139.
[15] 潘代龙, 司晓东, 吕金洪. 流速对碳钢弯管段流动加速腐蚀速率的影响[J]. 中国腐蚀与防护学报, 2023, 43(5): 1064-1070.