|
|
金属材料腐蚀预测模型研究进展 |
姚勇1, 刘国军1, 黎石竹1, 刘淼然2( ), 陈川2, 黄廷城2, 林海3, 李展江3, 刘雨薇4, 王振尧4 |
1.广东能源集团科学院技术研究院有限公司 广州 510630 2.中国电器科学研究院股份有限公司 广州 510799 3.湛江海关技术中心 湛江 524000 4.中国科学院金属研究所 沈阳 110016 |
|
Research Progress on Corrosion Prediction Model of Metallic Materials for Electrical Equipment |
YAO Yong1, LIU Guojun1, LI Shizhu1, LIU Miaoran2( ), CHEN Chuan2, HUANG Tingcheng2, LIN Hai3, LI Zhanjiang3, LIU Yuwei4, WANG Zhenyao4 |
1.Guangdong Energy Group Science and Technology Research Institute Co., Ltd., Guangzhou 510630, China 2.China National Electric Apparatus Research Institute Co., Ltd., Guangzhou 510799, China 3.Zhanjiang Customs Technology Center, Zhanjiang 524000, China 4.Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China |
引用本文:
姚勇, 刘国军, 黎石竹, 刘淼然, 陈川, 黄廷城, 林海, 李展江, 刘雨薇, 王振尧. 金属材料腐蚀预测模型研究进展[J]. 中国腐蚀与防护学报, 2023, 43(5): 983-991.
YAO Yong,
LIU Guojun,
LI Shizhu,
LIU Miaoran,
CHEN Chuan,
HUANG Tingcheng,
LIN Hai,
LI Zhanjiang,
LIU Yuwei,
WANG Zhenyao.
Research Progress on Corrosion Prediction Model of Metallic Materials for Electrical Equipment. Journal of Chinese Society for Corrosion and protection, 2023, 43(5): 983-991.
链接本文:
https://www.jcscp.org/CN/10.11902/1005.4537.2022.332
或
https://www.jcscp.org/CN/Y2023/V43/I5/983
|
1 |
Li X G, Dong C F, Xiao K, et al. Initial Behavior and Mechanism of Metal Atmospheric Corrosion [M]. Beijing: Science Press, 2009
|
1 |
李晓刚, 董超芳, 肖 葵 等. 金属大气腐蚀初期行为与机理 [M]. 北京: 科学出版社, 2009
|
2 |
Cao C N. Corrosion of Chinese Materials in Natural Environment [M]. Beijing: Chemical Industry Press, 2005
|
2 |
曹楚南. 中国材料的自然环境腐蚀 [M]. 北京: 化学工业出版社, 2005
|
3 |
Xiao Y D, Zhang S P, Cao X L, et al. Recent development in atmospheric corrosion study of materials in China (the end) [J]. Equip. Environ. Eng., 2006, 3(2): 1
|
3 |
萧以德, 张三平, 曹献龙 等. 我国大气腐蚀研究进展(续完) [J]. 装备环境工程, 2006, 3(2): 1
|
4 |
Wang C, Wang Z Y, Wei W, et al. Statistical analysis and predictive model in corrosion research [J]. J. Chin. Soc. Corros. Prot., 2010, 30: 306
|
4 |
汪 川, 王振尧, 魏 伟 等. 腐蚀研究中的统计分析方法和预测模型 [J]. 中国腐蚀与防护学报, 2010, 30: 306
|
5 |
Wang C, Wang Z R, Ke W. Statistical analysis in corrosion research [A]. The 10th National Youth Corrosion and Protection Scientific and Technological Papers Evaluation Meeting of the Yuxiang Cup and the 8th Chinese Youth Corrosion and Protection Symposium Proceedings [C]. Shenyang, 2007: 444
|
5 |
汪 川, 王振尧, 柯 伟. 腐蚀研究中的统计分析方法 [A]. 裕祥杯第十届全国青年腐蚀与防护科技论文讲评会暨第八届中国青年腐蚀与防护研讨会论文集 [C]. 沈阳, 2007: 444
|
6 |
Song S Z, Wang G Y, Wang S Y. Proceeding of research on national natural environmental corrosion data processing [J]. J. Chin. Soc. Corros. Prot., 2003, 23: 56
|
6 |
宋诗哲, 王光雍, 王守琰. 我国材料自然环境腐蚀数据处理研究进展 [J]. 中国腐蚀与防护学报, 2003, 23: 56
|
7 |
Sabir S, Ibrahim A A. Influence of atmospheric pollution on corrosion of materials in Saudi Arabia [J]. Corros. Eng. Sci. Technol., 2017, 52: 276
doi: 10.1080/1478422X.2016.1274839
|
8 |
Hou W, Liang C. Eight-year atmospheric corrosion exposure of steels in China [J]. Corrosion, 1999, 55: 65
doi: 10.5006/1.3283967
|
9 |
Feliu S, Morcillo M, Feliu Jr S. The prediction of atmospheric corrosion from meteorological and pollution parameters—I. Annual corrosion [J]. Corros. Sci., 1993, 34: 403
doi: 10.1016/0010-938X(93)90112-T
|
10 |
Feliu S, Morcillo M, Feliu Jr S. The prediction of atmospheric corrosion from meteorological and pollution parameters—II. Long-term forecasts [J]. Corros. Sci., 1993, 34: 415
doi: 10.1016/0010-938X(93)90113-U
|
11 |
Liang C F, Hou W T. Sixteen-year atmospheric corrosion exposure study of steels [J]. J. Chin. Soc. Corros. Prot., 2005, 25: 1
|
11 |
梁彩凤, 侯文泰. 碳钢、低合金钢16年大气暴露腐蚀研究 [J]. 中国腐蚀与防护学报, 2005, 25: 1
|
12 |
Xing S B, Li X G, Li L, et al. Corrosion behavior of 7A04 aluminum alloy in Xisha marine atmosphere [J]. Corros. Prot., 2013, 34(09): 796
|
12 |
邢士波, 李晓刚, 李 丽 等. 7A04铝合金在西沙海洋大气中的腐蚀行为 [J]. 腐蚀与防护, 2013, 34(09): 796
|
13 |
Ma Y T, Li Y, Wang F H. Corrosion of low carbon steel in atmospheric environments of different chloride content [J]. Corros. Sci., 2009, 51: 997
doi: 10.1016/j.corsci.2009.02.009
|
14 |
Panchenko Y M, Marshakov A I, Igonin T N, et al. Long-term forecast of corrosion mass losses of technically important metals in various world regions using a power function [J]. Corros. Sci., 2014, 88: 306
doi: 10.1016/j.corsci.2014.07.049
|
15 |
Panchenko Y M, Marshakov A I. Long-term prediction of metal corrosion losses in atmosphere using a power-linear function [J]. Corros. Sci., 2016, 109: 217
doi: 10.1016/j.corsci.2016.04.002
|
16 |
Morcillo M, Chico B, Díaz I, et al. Atmospheric corrosion data of weathering steels. A review [J]. Corros. Sci., 2013, 77: 6
doi: 10.1016/j.corsci.2013.08.021
|
17 |
De La Fuente D, Díaz I, Simancas J, et al. Long-term atmospheric corrosion of mild steel [J]. Corros. Sci., 2011, 53: 604
doi: 10.1016/j.corsci.2010.10.007
|
18 |
Organization I S. Corrosion of Metals and Alloys—Corrosivity of Atmospheres—Guiding Values for the Corrosivity Categories [M]. Geneva: International Standards Organization, 2012
|
19 |
Liu Z G, Gao X H, Du L X, et al. Corrosion behaviour of low-alloy steel with titanium addition exposed to seawater environment [J]. Int. J. Electrochem. Sci., 2016, 11: 6540
doi: 10.20964/2016.08.25
|
20 |
Deng J L. Grey Control System [M]. Wuhan: Huazhong University of Science and Technology Press, 1990
|
20 |
邓聚龙. 灰色系统理论教程 [M]. 武汉: 华中理工大学出版社, 1990
|
21 |
Wang Z F, Wang W Q, Hui Q. Grey predication of corrosion on oil atmospheric distillation equipment [A]. 2009 4th IEEE Conference on Industrial Electronics and Applications [C]. Xi'an, 2009
|
22 |
Yin W K, Li F, Zhao W B. Gray prediction model of corrosion life of coatings of steel tower for transmission line and its application [J]. Water Res. Power, 2019, 37(4): 163
|
22 |
尹文阔, 李 峰, 赵文彬. 输电线路钢结构杆塔涂层腐蚀寿命灰色预测模型及应用 [J]. 水电能源科学, 2019, 37(4): 163
|
23 |
Wang H T, Han E-H, Ke W. Prediction and analysis of seawater corrosion of carbon steel and low alloy steels by gray theory [J]. Corros. Prot., 2005, 26(09): 373
|
23 |
王海涛, 韩恩厚, 柯 伟. 灰色理论对碳钢、低合金钢海水腐蚀的预测和分析 [J]. 腐蚀与防护, 2005, 26(09): 373
|
24 |
Zhang X Y, Zhang H Y. Research on the marine corrosion model of ferrous metal based on PLS and grey relational analysis [J]. Appl. Mech. Mater., 2011, 128/129: 237
|
25 |
Cai J P, Ke W. Application of neural networks to atmospheric corrosion of carbon steel and low alloy steels [J]. J. Chin. Soc. Corros. Prot., 1997, 17: 303
|
25 |
蔡建平, 柯 伟. 应用人工神经网络预测碳钢、低合金钢的大气腐蚀 [J]. 中国腐蚀与防护学报, 1997, 17: 303
|
26 |
Wang H T, Han E-H, Ke W. Artificial neural network modeling for atmospheric corrosion of carbon steel and low alloy steel [J]. Corros. Sci. Prot. Technol., 2006, 18: 144
|
26 |
王海涛, 韩恩厚, 柯 伟. 用人工神经网络构建碳钢、低合金钢大气腐蚀模型 [J]. 腐蚀科学与防护技术, 2006, 18: 144
|
27 |
Wang H T, Han E-H, Ke W. Predictive model for atmospheric corrosion of aluminium alloy by artificial neural network [J]. J. Chin. Soc. Corros. Prot., 2006, 26: 272
|
27 |
王海涛, 韩恩厚, 柯 伟. 基于人工神经网络模型的铝合金大气腐蚀的预测 [J]. 中国腐蚀与防护学报, 2006, 26: 272
|
28 |
Guo Z H, Xing Z L, Jin M H, et al. Predicting corrosion rate of mild steel in soil based on artificial neural network [J]. J. Chin. Soc. Corros. Prot., 1996, 16: 307
|
28 |
郭稚弧, 邢政良, 金名惠 等. 基于人工神经网络的金属土壤腐蚀预测方法 [J]. 中国腐蚀与防护学报, 1996, 16: 307
|
29 |
Hua G R, Li W H, Guo Y Y. Corrosion rate prediction of Q235 steel in Hainan substation grounding grid based on neural network models [J]. Corros. Prot., 2017, 38: 573
|
29 |
花广如, 李文浩, 郭阳阳. 基于神经网络模型的海南变电站接地网Q235钢腐蚀率预测 [J]. 腐蚀与防护, 2017, 38: 573
|
30 |
Zhao X F, Fu D M, Pei Z B, et al. Optimization of sectional dose-response function and determination method of corrosion category for carbon steel [J]. Corros. Prot., 2018, 39: 805
|
30 |
赵兴锋, 付冬梅, 裴梓博 等. 分段式剂量响应函数优化及碳钢腐蚀等级判别方法 [J]. 腐蚀与防护, 2018, 39: 805
|
31 |
Panchenko Y M, Marshakov A I. Prediction of first-year corrosion losses of carbon steel and zinc in continental regions [J]. Materials (Basel), 2017, 10: 422
doi: 10.3390/ma10040422
|
32 |
Ye D, Zhao D W, Zhang D B. Dose-response functions for atmospheric corrosion on metals [J]. J. Chin. Soc. Corros. Prot., 2006, 26: 351
|
32 |
叶 堤, 赵大为, 张冬保. 金属材料大气腐蚀破坏的剂量响应函数研究 [J]. 中国腐蚀与防护学报, 2006, 26: 351
|
33 |
Leuenberger-Minger A U, Buchmann B, Faller M. Dose-response functions for weathering steel, copper and zinc obtained from a four-year exposure programme in Switzerland [J]. Corros. Sci., 2002, 44: 675
doi: 10.1016/S0010-938X(01)00097-X
|
34 |
Ríos-Rojas J F, Aperador-Rodríguez D, Hernández-García E A, et al. Annual atmospheric corrosion rate and dose-response function for carbon steel in Bogotá [J]. Atmósfera, 2017, 30: 53
doi: 10.20937/ATM
|
35 |
Qu Z H, Tang D Z, Hu L H, et al. Prediction of H2S corrosion products and corrosion rate based on optimized random forest [J]. Surf. Technol., 2020, 49(3): 42
|
35 |
曲志豪, 唐德志, 胡丽华 等. 基于优化随机森林的H2S腐蚀产物类型及腐蚀速率预测 [J]. 表面技术, 2020, 49(3): 42
|
36 |
Luo Z S, Song Y Y, Wang X W, et al. Corrosion prediction of gathering pipelines in condensate gas field [J]. China Saf. Sci. J., 2019, 29(11): 135
|
36 |
骆正山, 宋莹莹, 王小完 等. 凝析气田集输管线腐蚀预测研究 [J]. 中国安全科学学报, 2019, 29(11): 135
doi: 10.16265/j.cnki.issn1003-3033.2019.11.022
|
37 |
Chun P J, Ujike I, Mishima K, et al. Random forest-based evaluation technique for internal damage in reinforced concrete featuring multiple nondestructive testing results [J]. Constr. Build. Mater., 2020, 253: 119238
doi: 10.1016/j.conbuildmat.2020.119238
|
38 |
Fang S F, Wang M P, Qi W H, et al. Hybrid genetic algorithms and support vector regression in forecasting atmospheric corrosion of metallic materials[J]. Comput. Mater. Sci., 2009, 44: 647
doi: 10.1016/j.commatsci.2008.05.010
|
39 |
Fu Z D, Fu D M, Li X G. Atmospheric corrosion modelling with SVM based feature selection [A]. 2009 International Conference on Computational Intelligence and Software Engineering [C]. Wuhan, 2009
|
40 |
Tian Y W. Study on the corrosion mechanism of the high-strength corrosion-resistance steel reinforcement and inhibitor in marine structures [D]. Beijing: University of Science and Technology Beijing, 2021
|
40 |
田玉琬. 海工用高强耐蚀钢筋的腐蚀机理及阻锈剂研究 [D]. 北京: 北京科技大学, 2021
|
41 |
Qiu X T, Fu D M, Fu Z D. Feature selection of atmospheric corrosion data based on SVM-RFE Method [J]. Adv. Comp. Sci. Appl., 2013, 2: 443
|
42 |
Wen Y F, Cai C Z, Liu X H, et al. Corrosion rate prediction of 3C steel under different seawater environment by using support vector regression [J]. Corros. Sci., 2009, 51: 349
doi: 10.1016/j.corsci.2008.10.038
|
43 |
Bi A R, Luo Z S, Qiao W, et al. Prediction of pipeline inner-corrosion based on principal component analysis and particle swarm optimization-support vector machine [J]. Surf. Technol., 2018, 47(9): 133
|
43 |
毕傲睿, 骆正山, 乔 伟 等. 基于主成分和粒子群优化支持向量机的管道内腐蚀预测 [J]. 表面技术, 2018, 47(9): 133
|
44 |
Li K. Study on corrosion mechanism and prediction model of SPHC in Tianjin atmospheric environment [D]. Tianjin: Civil Aviation University of China, 2021
|
44 |
李 柯. SPHC在天津大气环境下的腐蚀机理与预测模型研究 [D]. 天津: 中国民航大学, 2021
|
45 |
Yan L C, Diao Y P, Lang Z Y, et al. Corrosion rate prediction and influencing factors evaluation of low-alloy steels in marine atmosphere using machine learning approach [J]. Sci. Technol. Adv. Mater., 2020, 21: 359
doi: 10.1080/14686996.2020.1746196
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|