Please wait a minute...
中国腐蚀与防护学报  2023, Vol. 43 Issue (1): 179-185     CSTR: 32134.14.1005.4537.2022.016      DOI: 10.11902/1005.4537.2022.016
  研究报告 本期目录 | 过刊浏览 |
交流干扰与阴极保护共同作用对X65管线钢的腐蚀行为研究
李长春1(), 何仁碧1, 陈以龙1, 何仁洋1, 王政骁2
1.中国特种设备检测研究院 北京 100029
2.青岛鼎信通讯股份有限公司 青岛 266109
Corrosion Behavior of X65 Steel by AC Interference and Cathodic Protection
LI Changchun1(), HE Renbi1, CHEN Yilong1, HE Renyang1, WANG Zhengxiao2
1.China Special Equipment Inspection and Research Institute, Beijing 100029, China
2.Qingdao Topscomm Communication Co. Ltd., Qingdao 266109, China
全文: PDF(5857 KB)   HTML
摘要: 

基于自行设计搭建杂散电流腐蚀实验装置,结合电化学测试和失重实验对交流杂散电流和阴极保护作用下的管线钢腐蚀行为开展研究。结果表明:随着交流电流密度的增大,管线钢腐蚀电位负向偏移,增加了金属腐蚀的倾向性。交流干扰促进了交流电正半周期内的阳极氧化反应,管线钢腐蚀速率增大。交流频率的增加缩短了交流电正半周期管线钢发生腐蚀的时间,减小了促进金属氧化反应的法拉第电流,管线钢腐蚀速率减小。而在强酸和强碱环境下,管线钢的腐蚀速率均增强。

关键词 交流干扰阴极保护X65钢NS4溶液pH    
Abstract

The corrosion behavior of pipeline steel under the combined action of the applied alternating stray current and cathodic protection was assessed via a home-made stray current corrosion testing device, mass loss measurement and electrochemical methods. The results show that with the increase of AC current density, the corrosion potential of pipeline steel is negatively shifted and the metal corrosion tendency is enhanced. AC interference promotes the anodic oxidation reaction in the positive half cycle of AC and then increases the corrosion rate of pipeline steel. With the increase of AC frequency, the corrosion process of the pipeline steel is shortened for each cycle of AC, the Faraday current, as promoter for metal oxidation reaction is suppressed, therewith the corrosion rate of pipeline steel is reduced. The corrosion rate of pipeline steel increases in strong acid or alkali environment.

Key wordsAC interference    cathodic protection    X65 steel    NS4 solution    pH
收稿日期: 2022-01-11      32134.14.1005.4537.2022.016
ZTFLH:  TG174  
基金资助:国家重点研发计划(2019YFF0302205)
作者简介: 李长春,男,1986年生,工程师

引用本文:

李长春, 何仁碧, 陈以龙, 何仁洋, 王政骁. 交流干扰与阴极保护共同作用对X65管线钢的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2023, 43(1): 179-185.
Changchun LI, Renbi HE, Yilong CHEN, Renyang HE, Zhengxiao WANG. Corrosion Behavior of X65 Steel by AC Interference and Cathodic Protection. Journal of Chinese Society for Corrosion and protection, 2023, 43(1): 179-185.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2022.016      或      https://www.jcscp.org/CN/Y2023/V43/I1/179

图1  交流杂散电流干扰条件下腐蚀的电化学测试示意图
图2  X65管线钢在有/无阴极保护条件下受交流电流干扰时的腐蚀速率
图3  阴极保护 (-0.85 V) 下X65管线钢在不同电流密度的交流电干扰时的腐蚀形貌及SEM形貌
图4  不同电流密度的交流电干扰下X65管线钢的开路电位及极化曲线
图5  X65管线钢腐蚀电位和腐蚀速率随交流电流密度变化曲线
图6  不同频率的交流电干扰下X65管线钢的极化曲线
图7  不同频率的交流电干扰下X65管线钢的腐蚀电位
图8  不同pH溶液中交流电流干扰下X65管线钢的开路电位及极化曲线
图9  不同pH溶液中交流电流干扰下X65管线钢的腐蚀速率
1 Yang C, Huang S, Han Q, et al. Discussion on application and related problems of cathodic protection technology [J]. Corros. Prot. Petrochem. Ind., 2021, 38(3): 30
1 杨超, 黄珊, 韩庆 等. 阴极保护技术的应用现状及相关问题探讨 [J]. 石油化工腐蚀与防护, 2021, 38(3): 30
2 Li C Y, Chen X, He C, et al. Alternating current induced corrosion of buried metal pipeline: a review [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 139
2 李承媛, 陈旭, 何川 等. 埋地金属管道交流电腐蚀研究进展 [J]. 中国腐蚀与防护学报, 2021, 41: 139
3 Tang D Z, Du Y X, Lu M X, et al. Effect of AC current on corrosion behavior of cathodically protected Q235 steel [J]. Mater. Corros., 2015, 66: 278
4 Wang S H. High-voltage transmission lines on buried pipelines coupling disturbance study [D]. Qingdao: China University of Petroleum (East China), 2009
4 王帅华. 高压输电线对埋地管道耦合干扰规律研究 [D]. 青岛: 中国石油大学 (华东), 2009
5 Büchler M, Schöneich H G. Investigation of alternating current corrosion of cathodically protected pipelines: development of a detection method, mitigation measures, and a model for the mechanism [J]. Corrosion, 2009, 65: 578
doi: 10.5006/1.3319160
6 Hardie D, Charles E A, Lopez A H. Hydrogen embrittlement of high strength pipeline steels [J]. Corros. Sci., 2006, 48: 4378
doi: 10.1016/j.corsci.2006.02.011
7 Capelle J, Dmytrakh I, Pluvinage G. Comparative assessment of electrochemical hydrogen absorption by pipeline steels with different strength [J]. Corros. Sci., 2010, 52: 1554
doi: 10.1016/j.corsci.2010.02.011
8 He X. Study of the effect of high voltage transmission lines on buried metal pipeline corrosion [D]. Wuhan: Huazhong University of Science and Technology, 2011
8 何晓. 高压输电线路对埋地金属管道的腐蚀影响研究 [D]. 武汉: 华中科技大学, 2011
9 Xu L Y, Su X, Yin Z X, et al. Development of a real-time AC/DC data acquisition technique for studies of AC corrosion of pipelines [J]. Corros. Sci., 2012, 61: 215
doi: 10.1016/j.corsci.2012.04.038
10 Hoseinieh S M, Homborg A M, Shahrabi T, et al. A novel approach for the evaluation of under deposit corrosion in marine environments using combined analysis by electrochemical impedance spectroscopy and electrochemical noise [J]. Electrochim. Acta, 2016, 217: 226
doi: 10.1016/j.electacta.2016.08.146
11 Deng J L, Yan M C, Gao B W, et al. Corrosion behavior of pipeline steel under high-speed railway dynamic AC interference [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 127
11 邓佳丽, 闫茂成, 高博文 等. 高铁动态交流干扰下管道钢的腐蚀行为试验研究 [J]. 中国腐蚀与防护学报, 2022, 42: 127
12 Cáceres L, Vargas T, Herrera L. Influence of pitting and iron oxide formation during corrosion of carbon steel in unbuffered NaCl solutions [J]. Corros. Sci., 2009, 51: 971
doi: 10.1016/j.corsci.2009.02.021
13 Cáceres L, Vargas T, Parra M. Study of the variational patterns for corrosion kinetics of carbon steel as a function of dissolved oxygen and NaCl concentration [J]. Electrochim. Acta, 2009, 54: 7435
doi: 10.1016/j.electacta.2009.07.078
14 Xu L Y, Su X, Cheng Y F. Effect of alternating current on cathodic protection on pipelines [J]. Corros. Sci., 2013, 66: 263
doi: 10.1016/j.corsci.2012.09.028
15 Ormellese M, Goidanich S, Lazzari L. Effect of AC interference on cathodic protection monitoring [J]. Corros. Eng., Sci. Technol., 2011, 46: 618
16 Fu A Q, Cheng Y F. Effect of alternating current on corrosion and effectiveness of cathodic protection of pipelines [J]. Can. Metall. Quart., 2012, 51: 81
doi: 10.1179/1879139511Y.0000000021
17 Büchler M. Alternating current corrosion of cathodically protected pipelines: discussion of the involved processes and their consequences on the critical interference values [J]. Mater. Corros., 2012, 63: 1181
[1] 张勤号, 朱泽洁, 蔡浩冉, 李鑫冉, 孟宪泽, 李昊, 伍廉奎, 罗荘竹, 曹发和. Pt/IrO x -pH超微电化学传感器性能探究及其在铜/不锈钢电偶腐蚀研究中的应用[J]. 中国腐蚀与防护学报, 2023, 43(6): 1264-1272.
[2] 顾玉慧, 董亮, 宋沁峰. 微型金属氧化物pH电极的制备及腐蚀防护应用进展[J]. 中国腐蚀与防护学报, 2023, 43(5): 971-982.
[3] 寇杰, 任哲. 基于数值计算的罐底板阴极保护电位分布研究进展与展望[J]. 中国腐蚀与防护学报, 2023, 43(4): 871-881.
[4] 陈翰林, 马力, 黄国胜, 杜敏. pH值、温度和盐度对B30铜镍合金在海水中成膜的影响[J]. 中国腐蚀与防护学报, 2023, 43(3): 481-493.
[5] 鲍晨宇, 李建民, 叶梦颖, 高荣杰. 复合电解液中TiO2纳米管阵列的制备及光生阴极保护性能[J]. 中国腐蚀与防护学报, 2022, 42(5): 759-764.
[6] 李柯萱, 宋龙飞, 李晓荣. pH值对X100管线钢在CO32-/HCO3-溶液中的电化学与应力腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2022, 42(5): 779-784.
[7] 张海兵, 张一晗, 马力, 邢少华, 段体岗, 闫永贵. 深浅交变环境牺牲阳极电化学性能研究[J]. 中国腐蚀与防护学报, 2022, 42(5): 867-872.
[8] 王歧山, 李鸿瑾, 何川, 郑平, 陈旭. 加载波形对X65钢腐蚀疲劳裂纹萌生及扩展的影响[J]. 中国腐蚀与防护学报, 2022, 42(2): 227-234.
[9] 文家新, 张欣, 刘云霞, 周永福, 刘克建. 掺杂pH敏感性智能纳米容器BTA@MSNs-SO3H-PDDA碳钢智能防腐涂层的制备及性能研究[J]. 中国腐蚀与防护学报, 2022, 42(2): 309-316.
[10] 苏娜, 叶梦颖, 李建民, 高荣杰. ZIF-8/TiO2纳米复合材料的制备及光生阴极保护性能[J]. 中国腐蚀与防护学报, 2022, 42(2): 267-273.
[11] 邓佳丽, 闫茂成, 高博文, 张辉. 高铁动态交流干扰下管道钢的腐蚀行为试验研究[J]. 中国腐蚀与防护学报, 2022, 42(1): 127-134.
[12] 丁聪, 张金玲, 于彦冲, 李烨磊, 王社斌. A572Gr.65钢在不同土壤模拟液中的腐蚀动力学[J]. 中国腐蚀与防护学报, 2022, 42(1): 149-155.
[13] 庄大伟, 杜艳霞, 陈涛涛, 鲁丹平. 区域阴极保护数值模拟边界条件反演计算方法研究及应用[J]. 中国腐蚀与防护学报, 2021, 41(3): 346-352.
[14] 李承媛, 陈旭, 何川, 李鸿瑾, 潘鑫. 埋地金属管道交流电腐蚀研究进展[J]. 中国腐蚀与防护学报, 2021, 41(2): 139-150.
[15] 冉斗, 孟惠民, 刘星, 李全德, 巩秀芳, 倪荣, 姜英, 龚显龙, 戴君, 隆彬. pH对14Cr12Ni3WMoV不锈钢在含氯溶液中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2021, 41(1): 51-59.