|
|
超疏水聚苯胺胶囊的一步可控合成及其对有机涂层防腐性能的影响 |
陈异凡1, 孟凡帝1,2( ), 曲优异1,2, 方芷晴1,2, 刘莉1, 王福会1 |
1.东北大学 沈阳材料科学国家研究中心东北大学联合研究分部 沈阳 110819 2.东北大学材料科学与工程学院 沈阳 110819 |
|
One-step Synthesis of Superhydrophobic Polyaniline Capsules and Its Effect on Corrosion Resistance of Organic Coatings |
CHEN Yifan1, MENG Fandi1,2( ), QU Youyi1,2, FANG Zhiqing1,2, LIU Li1, WANG Fuhui1 |
1.Shenyang National Laboratory for Materials Science, Northeastern University, Shenyang 110819, China 2.College of Material Science and Engineering, Northeastern University, Shenyang 110819, China |
引用本文:
陈异凡, 孟凡帝, 曲优异, 方芷晴, 刘莉, 王福会. 超疏水聚苯胺胶囊的一步可控合成及其对有机涂层防腐性能的影响[J]. 中国腐蚀与防护学报, 2023, 43(2): 345-351.
Yifan CHEN,
Fandi MENG,
Youyi QU,
Zhiqing FANG,
Li LIU,
Fuhui WANG.
One-step Synthesis of Superhydrophobic Polyaniline Capsules and Its Effect on Corrosion Resistance of Organic Coatings. Journal of Chinese Society for Corrosion and protection, 2023, 43(2): 345-351.
链接本文:
https://www.jcscp.org/CN/10.11902/1005.4537.2022.089
或
https://www.jcscp.org/CN/Y2023/V43/I2/345
|
[1] |
Schultze J W, Karabulut H. Application potential of conducting polymers [J]. Electrochim. Acta, 2005, 50: 1739
doi: 10.1016/j.electacta.2004.10.023
|
[2] |
Sathiyanarayanan S, Muthkrishnan S, Venkatachari G. Corrosion protection of steel by polyaniline blended coating [J]. Electrochim. Acta, 2006, 51: 6313
doi: 10.1016/j.electacta.2006.04.015
|
[3] |
Hao Y S, Liu F C, Han E H. Protection of epoxy coatings containing polyaniline modified ultra-short glass fibers [J]. Prog. Org. Coat., 2013, 76: 571
doi: 10.1016/j.porgcoat.2012.11.012
|
[4] |
Pineda E G, Alcaide F, Presa M J R, et al. Electrochemical preparation and characterization of polypyrrole/stainless steel electrodes decorated with gold nanoparticles [J]. ACS Appl. Mater. Interfaces, 2015, 7: 2677
doi: 10.1021/am507733b
|
[5] |
Gutiérrez-Díaz J L, Uruchurtu-Chavarín J, Güizado-Rodríguez M, et al. Steel protection of two composite coatings: polythiophene with ash or MCM-41 particles containing iron (III) nitrate as inhibitor in chloride media [J]. Prog. Org. Coat., 2016, 95: 127
|
[6] |
Luo Y Z, Wang X H, Guo W, et al. Growth behavior of initial product layer formed on Mg alloy surface induced by polyaniline [J]. J. Electrochem. Soc., 2015, 162: C294
doi: 10.1149/2.1101506jes
|
[7] |
Li Y P, Zhang H M, Wang X H, et al. Growth kinetics of oxide films at the polyaniline/mild steel interface [J]. Corros. Sci., 2011, 53: 4044
doi: 10.1016/j.corsci.2011.08.010
|
[8] |
Wessling B. Passivation of metals by coating with polyaniline: corrosion potential shift and morphological changes [J]. Adv. Mater., 1994, 6: 226
doi: 10.1002/adma.19940060309
|
[9] |
Liu R, Yao Q, Liu L, et al. Studies of different acid doped polyaniline incorporated into epoxy organic coatings on the Mg alloy [J]. Prog. Org. Coat., 2022, 166: 106774
|
[10] |
Liu S Y. Preparation of multifunctional anti-corrosion polyaniline composite coating on Al alloy under marine environment [D]. Hefei: University of Science and Technology of China, 2019
|
[10] |
(刘素云. 海洋环境用Al合金表面多功能耐蚀聚苯胺复合涂层的研制 [D]. 合肥: 中国科学技术大学, 2019)
|
[11] |
Jia W, Tchoudakov R, Segal E, et al. Electrically conductive composites based on epoxy resin with polyaniline-DBSA fillers [J]. Synth. Met., 2003, 132: 269
doi: 10.1016/S0379-6779(02)00460-5
|
[12] |
Liu S Y, Liu L, Li Y, et al. Effects of N-alkylation on anticorrosion performance of doped polyaniline/epoxy coating [J]. J. Mater. Sci. Technol., 2020, 39: 48
doi: 10.1016/j.jmst.2019.06.012
|
[13] |
Hwang G W, Wu K Y, Hua M Y, et al. Structures and properties of the soluble polyanilines, N-alkylated emeraldine bases [J]. Synth. Met., 1998, 92: 39
doi: 10.1016/S0379-6779(98)80020-9
|
[14] |
Zhao Y, Xu T, Zhou J H, et al. Superhydrophobic nanocontainers for passive and active corrosion protection [J]. Chem. Eng. J., 2022, 433: 134039
doi: 10.1016/j.cej.2021.134039
|
[15] |
Sun Y, Li C, Fu D Y, et al. A novel high anti-corrosion performance polymer based composite coating with new functional fillers [J]. Prog. Org. Coat., 2022, 162: 106603
|
[16] |
Xu Y S H, Gao D M, Dong Q, et al. Anticorrosive behavior of epoxy coating modified with hydrophobic Nano-silica on phosphatized carbon steel [J]. Prog. Org. Coat., 2021, 151: 106051
|
[17] |
Freitas T V, Sousa E A, Fuzari Jr G C, et al. Different morphologies of polyaniline nanostructures synthesized by interfacial polymerization [J]. Mater. Lett., 2018, 224: 42
doi: 10.1016/j.matlet.2018.04.062
|
[18] |
Zhu X Y, Zhao J L, Wang C Q. Acid and base dual-controlled cargo molecule release from polyaniline gated-hollow mesoporous silica nanoparticles [J]. Polym. Chem., 2016, 7: 6467
doi: 10.1039/C6PY01507G
|
[19] |
Abidian M R, Kim D H, Martin D C. Conducting-polymer nanotubes for controlled drug release [J]. Adv. Mater., 2006, 18: 405
doi: 10.1002/adma.200501726
|
[20] |
Tavandashti N P, Ghorbani M, Shojaei A, et al. Inhibitor-loaded conducting polymer capsules for active corrosion protection of coating defects [J]. Corros. Sci., 2016, 112: 138
doi: 10.1016/j.corsci.2016.07.003
|
[21] |
Lv L P, Zhao Y, Vilbrandt N, et al. Redox responsive release of hydrophobic self-healing agents from polyaniline capsules [J] J. Am. Chem. Soc., 2013, 135: 14198
doi: 10.1021/ja405279t
|
[22] |
Rui M, Jiang Y L, Zhu A P. Sub-micron calcium carbonate as a template for the preparation of dendrite-like PANI/CNT nanocomposites and its corrosion protection properties [J]. Chem. Eng. J., 2020, 385: 123396
doi: 10.1016/j.cej.2019.123396
|
[23] |
Chen H Y, Fan H Z, Su N, et al. Highly hydrophobic polyaniline nanoparticles for anti-corrosion epoxy coatings [J]. Chem. Eng. J., 2021, 420: 130540
doi: 10.1016/j.cej.2021.130540
|
[24] |
Chen R, Deng X Y, Wang C, et al. A newly designed graphite-polyaniline composite current collector to enhance the performance of flow electrode capacitive deionization [J]. Chem. Eng. J., 2022, 435: 134845
doi: 10.1016/j.cej.2022.134845
|
[25] |
Zheng H P, Shao Y W, Wang Y Q, et al. Reinforcing the corrosion protection property of epoxy coating by using graphene oxide-poly (urea-formaldehyde) composites [J]. Corros. Sci., 2017, 123: 267
doi: 10.1016/j.corsci.2017.04.019
|
[26] |
Zhang J Q, Cao C N. Study and evaluation on organic coatings by electrochemical impedance spectroscopy [J]. Corros. Prot., 1998, 19(3): 99
|
[26] |
(张鉴清, 曹楚南. 电化学阻抗谱方法研究评价有机涂层 [J]. 腐蚀与防护, 1998, 19(3): 99)
|
[27] |
Cao C N, Zhang J Q. An Introduction to Electrochemical Impedance Spectroscopy [M]. Beijing: Science Press, 2002
|
[27] |
(曹楚南, 张鉴清. 电化学阻抗谱导论 [M]. 北京: 科学出版社. 2002)
|
[28] |
Luan H, Meng F D, Liu L, et al. Preparation and anticorrosion performance of M-phenylenediamine-graphene oxide/organic coating [J]. J. Chin. Soc. Corros. Prot., 2021, 41(2): 161
|
[28] |
(栾浩, 孟凡帝, 刘莉 等. 间苯二胺-氧化石墨烯/有机涂层的制备及防腐性能研究 [J]. 中国腐蚀与防护学报, 2021, 41(2): 161)
|
[29] |
Gao H D, Cui Y, Liu L, et al. Influence of simulated deep sea pressured-flowing seawater on failure behavior of epoxy glass flake coating [J]. J. Chin. Soc. Corros. Prot., 2022, 42(1): 39
|
[29] |
(高浩东, 崔宇, 刘莉 等. 深海压力-流速耦合环境对环氧玻璃鳞片涂层失效行为的影响 [J]. 中国腐蚀与防护学报, 2022, 42(1): 39)
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|