Please wait a minute...
中国腐蚀与防护学报  2023, Vol. 43 Issue (2): 345-351     CSTR: 32134.14.1005.4537.2022.089      DOI: 10.11902/1005.4537.2022.089
  中国腐蚀与防护学报编委、青年编委专栏 本期目录 | 过刊浏览 |
超疏水聚苯胺胶囊的一步可控合成及其对有机涂层防腐性能的影响
陈异凡1, 孟凡帝1,2(), 曲优异1,2, 方芷晴1,2, 刘莉1, 王福会1
1.东北大学 沈阳材料科学国家研究中心东北大学联合研究分部 沈阳 110819
2.东北大学材料科学与工程学院 沈阳 110819
One-step Synthesis of Superhydrophobic Polyaniline Capsules and Its Effect on Corrosion Resistance of Organic Coatings
CHEN Yifan1, MENG Fandi1,2(), QU Youyi1,2, FANG Zhiqing1,2, LIU Li1, WANG Fuhui1
1.Shenyang National Laboratory for Materials Science, Northeastern University, Shenyang 110819, China
2.College of Material Science and Engineering, Northeastern University, Shenyang 110819, China
全文: PDF(8184 KB)   HTML
摘要: 

通过乳液聚合法,控制表面活性剂十二烷基苯磺酸钠 (SDBS) 的添加量,一步合成了具有超疏水性质、空心球形貌的聚苯胺胶囊,该微纳米空腔结构可实现缓蚀剂等物质的包覆功能。结果表明,不同表面活性剂添加量下的产物形貌均为空心球状,并且可实现水接触角由67°提升到152°的超疏水。将超疏水胶囊掺入涂层,在3.5%NaCl溶液中浸泡14 d后,低频阻抗模值为2.69×1010,与添加亲水性聚苯胺的环氧树脂涂层及不添加填料的环氧树脂涂层相比,涂层电阻超过一个数量级以上。其原因为粉末的超疏水性,增大了腐蚀介质在涂层中扩散阻力,同时由于长链烷基的掺杂,改善了聚苯胺粉末在环氧树脂中的相容性,提高了涂层致密性及耐蚀性。

关键词 聚苯胺超疏水空心球有机涂层    
Abstract

Polyaniline capsules with superhydrophobic and hollow spherical morphology were synthesized via emulsion polymerization method with different amount of surfactant sodium dodecylbenzenesulfonate (SDBS) as modification agent, in order to solve the problems of poor compatibility of polyaniline (PANI) with resin, and the lack of tight bonding interface in organic coatings. The results show that the morphologies of the prepared products with different surfactant additions are all hollow spherical, and their water contact angle can be increased from 67° to 152°, while it may be speculated that capsules with the inherent micro/nano cavity structure may be used to encapsulate corrosion inhibitors and other substances. Next, epoxy resin coatings without and with superhydrophobic capsules as coating fillers were prepared, and then comparatively tested in 3.5%NaCl solution for 14 d. It follows that the low-frequency impedance modulus value of the coatings with superhydrophobic capsules reaches c.a. 2.69×1010, in other word, the epoxy resin coatings with hydrophilic polyaniline as filler exhibit excellent corrosion resistance more than one order of magnitude superior to the blank ones. Which may be ascribed to that the super-hydrophobicity of the powder increases the diffusion resistance of the corrosive medium in the coating. At the same time, due to the doping of long-chain alkyl groups, the compatibility of polyaniline powder in epoxy resin is improved, therefore, the coating corrosion resistance is enhanced.

Key wordspolyaniline    superhydrophobic    hollow sphere    organic coating
收稿日期: 2022-03-31      32134.14.1005.4537.2022.089
ZTFLH:  TG174  
基金资助:国家自然科学基金(52271052);国家自然科学基金(51901040)
作者简介: 陈异凡,男,1997年生,硕士生

引用本文:

陈异凡, 孟凡帝, 曲优异, 方芷晴, 刘莉, 王福会. 超疏水聚苯胺胶囊的一步可控合成及其对有机涂层防腐性能的影响[J]. 中国腐蚀与防护学报, 2023, 43(2): 345-351.
Yifan CHEN, Fandi MENG, Youyi QU, Zhiqing FANG, Li LIU, Fuhui WANG. One-step Synthesis of Superhydrophobic Polyaniline Capsules and Its Effect on Corrosion Resistance of Organic Coatings. Journal of Chinese Society for Corrosion and protection, 2023, 43(2): 345-351.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2022.089      或      https://www.jcscp.org/CN/Y2023/V43/I2/345

图1  4种样品SEM图像
图2  4种粉末样品的红外光谱及XPS能谱
图3  N 1s的高分辨能谱
Sample-N=-N-N+
PANI-12525.0%58.2%16.8%
PANI-17529.8%50.5%19.7%
PANI-22524.2%54.2%21.6%
PANI-27524.7%53.0%22.3%
表1  产物中各种状态N的比例
图4  N 1s的高分辨能谱
图5  不同样品在树脂溶液中沉降不同时间的照片
图6  不同浸泡时间下的电化学阻抗谱及拟合电路
图7  低频阻抗及涂层电阻拟合结果
[1] Schultze J W, Karabulut H. Application potential of conducting polymers [J]. Electrochim. Acta, 2005, 50: 1739
doi: 10.1016/j.electacta.2004.10.023
[2] Sathiyanarayanan S, Muthkrishnan S, Venkatachari G. Corrosion protection of steel by polyaniline blended coating [J]. Electrochim. Acta, 2006, 51: 6313
doi: 10.1016/j.electacta.2006.04.015
[3] Hao Y S, Liu F C, Han E H. Protection of epoxy coatings containing polyaniline modified ultra-short glass fibers [J]. Prog. Org. Coat., 2013, 76: 571
doi: 10.1016/j.porgcoat.2012.11.012
[4] Pineda E G, Alcaide F, Presa M J R, et al. Electrochemical preparation and characterization of polypyrrole/stainless steel electrodes decorated with gold nanoparticles [J]. ACS Appl. Mater. Interfaces, 2015, 7: 2677
doi: 10.1021/am507733b
[5] Gutiérrez-Díaz J L, Uruchurtu-Chavarín J, Güizado-Rodríguez M, et al. Steel protection of two composite coatings: polythiophene with ash or MCM-41 particles containing iron (III) nitrate as inhibitor in chloride media [J]. Prog. Org. Coat., 2016, 95: 127
[6] Luo Y Z, Wang X H, Guo W, et al. Growth behavior of initial product layer formed on Mg alloy surface induced by polyaniline [J]. J. Electrochem. Soc., 2015, 162: C294
doi: 10.1149/2.1101506jes
[7] Li Y P, Zhang H M, Wang X H, et al. Growth kinetics of oxide films at the polyaniline/mild steel interface [J]. Corros. Sci., 2011, 53: 4044
doi: 10.1016/j.corsci.2011.08.010
[8] Wessling B. Passivation of metals by coating with polyaniline: corrosion potential shift and morphological changes [J]. Adv. Mater., 1994, 6: 226
doi: 10.1002/adma.19940060309
[9] Liu R, Yao Q, Liu L, et al. Studies of different acid doped polyaniline incorporated into epoxy organic coatings on the Mg alloy [J]. Prog. Org. Coat., 2022, 166: 106774
[10] Liu S Y. Preparation of multifunctional anti-corrosion polyaniline composite coating on Al alloy under marine environment [D]. Hefei: University of Science and Technology of China, 2019
[10] (刘素云. 海洋环境用Al合金表面多功能耐蚀聚苯胺复合涂层的研制 [D]. 合肥: 中国科学技术大学, 2019)
[11] Jia W, Tchoudakov R, Segal E, et al. Electrically conductive composites based on epoxy resin with polyaniline-DBSA fillers [J]. Synth. Met., 2003, 132: 269
doi: 10.1016/S0379-6779(02)00460-5
[12] Liu S Y, Liu L, Li Y, et al. Effects of N-alkylation on anticorrosion performance of doped polyaniline/epoxy coating [J]. J. Mater. Sci. Technol., 2020, 39: 48
doi: 10.1016/j.jmst.2019.06.012
[13] Hwang G W, Wu K Y, Hua M Y, et al. Structures and properties of the soluble polyanilines, N-alkylated emeraldine bases [J]. Synth. Met., 1998, 92: 39
doi: 10.1016/S0379-6779(98)80020-9
[14] Zhao Y, Xu T, Zhou J H, et al. Superhydrophobic nanocontainers for passive and active corrosion protection [J]. Chem. Eng. J., 2022, 433: 134039
doi: 10.1016/j.cej.2021.134039
[15] Sun Y, Li C, Fu D Y, et al. A novel high anti-corrosion performance polymer based composite coating with new functional fillers [J]. Prog. Org. Coat., 2022, 162: 106603
[16] Xu Y S H, Gao D M, Dong Q, et al. Anticorrosive behavior of epoxy coating modified with hydrophobic Nano-silica on phosphatized carbon steel [J]. Prog. Org. Coat., 2021, 151: 106051
[17] Freitas T V, Sousa E A, Fuzari Jr G C, et al. Different morphologies of polyaniline nanostructures synthesized by interfacial polymerization [J]. Mater. Lett., 2018, 224: 42
doi: 10.1016/j.matlet.2018.04.062
[18] Zhu X Y, Zhao J L, Wang C Q. Acid and base dual-controlled cargo molecule release from polyaniline gated-hollow mesoporous silica nanoparticles [J]. Polym. Chem., 2016, 7: 6467
doi: 10.1039/C6PY01507G
[19] Abidian M R, Kim D H, Martin D C. Conducting-polymer nanotubes for controlled drug release [J]. Adv. Mater., 2006, 18: 405
doi: 10.1002/adma.200501726
[20] Tavandashti N P, Ghorbani M, Shojaei A, et al. Inhibitor-loaded conducting polymer capsules for active corrosion protection of coating defects [J]. Corros. Sci., 2016, 112: 138
doi: 10.1016/j.corsci.2016.07.003
[21] Lv L P, Zhao Y, Vilbrandt N, et al. Redox responsive release of hydrophobic self-healing agents from polyaniline capsules [J] J. Am. Chem. Soc., 2013, 135: 14198
doi: 10.1021/ja405279t
[22] Rui M, Jiang Y L, Zhu A P. Sub-micron calcium carbonate as a template for the preparation of dendrite-like PANI/CNT nanocomposites and its corrosion protection properties [J]. Chem. Eng. J., 2020, 385: 123396
doi: 10.1016/j.cej.2019.123396
[23] Chen H Y, Fan H Z, Su N, et al. Highly hydrophobic polyaniline nanoparticles for anti-corrosion epoxy coatings [J]. Chem. Eng. J., 2021, 420: 130540
doi: 10.1016/j.cej.2021.130540
[24] Chen R, Deng X Y, Wang C, et al. A newly designed graphite-polyaniline composite current collector to enhance the performance of flow electrode capacitive deionization [J]. Chem. Eng. J., 2022, 435: 134845
doi: 10.1016/j.cej.2022.134845
[25] Zheng H P, Shao Y W, Wang Y Q, et al. Reinforcing the corrosion protection property of epoxy coating by using graphene oxide-poly (urea-formaldehyde) composites [J]. Corros. Sci., 2017, 123: 267
doi: 10.1016/j.corsci.2017.04.019
[26] Zhang J Q, Cao C N. Study and evaluation on organic coatings by electrochemical impedance spectroscopy [J]. Corros. Prot., 1998, 19(3): 99
[26] (张鉴清, 曹楚南. 电化学阻抗谱方法研究评价有机涂层 [J]. 腐蚀与防护, 1998, 19(3): 99)
[27] Cao C N, Zhang J Q. An Introduction to Electrochemical Impedance Spectroscopy [M]. Beijing: Science Press, 2002
[27] (曹楚南, 张鉴清. 电化学阻抗谱导论 [M]. 北京: 科学出版社. 2002)
[28] Luan H, Meng F D, Liu L, et al. Preparation and anticorrosion performance of M-phenylenediamine-graphene oxide/organic coating [J]. J. Chin. Soc. Corros. Prot., 2021, 41(2): 161
[28] (栾浩, 孟凡帝, 刘莉 等. 间苯二胺-氧化石墨烯/有机涂层的制备及防腐性能研究 [J]. 中国腐蚀与防护学报, 2021, 41(2): 161)
[29] Gao H D, Cui Y, Liu L, et al. Influence of simulated deep sea pressured-flowing seawater on failure behavior of epoxy glass flake coating [J]. J. Chin. Soc. Corros. Prot., 2022, 42(1): 39
[29] (高浩东, 崔宇, 刘莉 等. 深海压力-流速耦合环境对环氧玻璃鳞片涂层失效行为的影响 [J]. 中国腐蚀与防护学报, 2022, 42(1): 39)
[1] 田光元, 严程铭, 杨智皓, 王俊升. 耐腐蚀Mg-Li合金的腐蚀与防护及其性能研究进展[J]. 中国腐蚀与防护学报, 2023, 43(6): 1255-1263.
[2] 黄志凤, 雍奇文, 房蕊, 谢治辉. AZ31镁合金表面超疏水耐腐蚀镍基复合涂层[J]. 中国腐蚀与防护学报, 2023, 43(4): 755-764.
[3] 孟凡帝, 高浩东, 刘莉, 崔宇, 刘叡, 王福会. 适用于深海压力-流体耦合环境的玄武岩有机防腐涂层的制备及性能研究[J]. 中国腐蚀与防护学报, 2023, 43(4): 704-712.
[4] 连衍成, 梁富源, 贺建超, 李瑨, 武俊伟, 冷雪松. 超疏水聚四氟乙烯材料制备工艺的研究进展[J]. 中国腐蚀与防护学报, 2023, 43(2): 231-241.
[5] 王通, 王巍. 聚二甲基硅氧烷涂层自修复过程中的弛豫时间分布研究[J]. 中国腐蚀与防护学报, 2023, 43(2): 337-344.
[6] 蒋芳芳, 云虹, 彭莉, 张依豪, 李卫顺, 代文静, 王保峰, 徐群杰. 原位聚合聚苯胺改性NiFe-LDH复合涂层的防护性能研究[J]. 中国腐蚀与防护学报, 2023, 43(2): 312-320.
[7] 罗为平, 罗雪, 石悦婷, 王新潮, 张胜涛, 高放, 李红茹. Q235钢表面的超疏水吸附层形成与缓蚀研究[J]. 中国腐蚀与防护学报, 2022, 42(6): 903-912.
[8] 尹续保, 李育桥, 高荣杰. 铜基超疏水表面的制备及其耐蚀性研究[J]. 中国腐蚀与防护学报, 2022, 42(1): 93-98.
[9] 栾浩, 孟凡帝, 刘莉, 崔宇, 刘叡, 郑宏鹏, 王福会. 间苯二胺-氧化石墨烯/有机涂层的制备及防腐性能研究[J]. 中国腐蚀与防护学报, 2021, 41(2): 161-168.
[10] 曹京宜, 王智峤, 李亮, 孟凡帝, 刘莉, 王福会. 深海压力交变加速条件下改性石墨烯有机涂层的失效机制[J]. 中国腐蚀与防护学报, 2020, 40(2): 139-145.
[11] 蒋斌, 曾利兰, 梁涛, 潘浩波, 乔岩欣, 张竞, 赵颖. 316L不锈钢表面超疏水微纳镍镀层定向电沉积工艺优化研究[J]. 中国腐蚀与防护学报, 2018, 38(5): 438-446.
[12] 邓三喜, 闫小宇, 柴柯, 吴进怡, 史洪微. 假单胞菌对聚硅氧烷树脂清漆涂层分解及防腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2018, 38(4): 326-332.
[13] 桂琪, 郑大江, 宋光铃. 醇酸清漆保护性的电化学加速评价[J]. 中国腐蚀与防护学报, 2018, 38(3): 274-282.
[14] 万起展,陈宁宁,杨培培,钟莲,王燕华,王佳. 聚苯胺/改性石墨复合材料的电化学制备及其防腐蚀性能研究[J]. 中国腐蚀与防护学报, 2017, 37(5): 428-434.
[15] 任继栋,高荣杰,张宇,刘勇,丁甜. 混酸刻蚀-氟化处理制备X80管线钢双疏表面及其耐蚀性研究[J]. 中国腐蚀与防护学报, 2017, 37(3): 233-240.