Please wait a minute...
中国腐蚀与防护学报  2021, Vol. 41 Issue (2): 161-168    DOI: 10.11902/1005.4537.2020.272
  研究报告 本期目录 | 过刊浏览 |
间苯二胺-氧化石墨烯/有机涂层的制备及防腐性能研究
栾浩1, 孟凡帝1(), 刘莉1(), 崔宇2, 刘叡3, 郑宏鹏1, 王福会1
1.沈阳材料科学国家研究中心 东北大学联合研究分部 沈阳 110819
2.中国科学院金属研究所 师昌绪先进材料创新中心 沈阳 110016
3.中国科学院金属研究所 沈阳材料科学国家研究中心 沈阳 110016
Preparation and Anticorrosion Performance of M-phenylenediamine-graphene Oxide/Organic Coating
LUAN Hao1, MENG Fandi1(), LIU Li1(), CUI Yu2, LIU Rui3, ZHENG Hongpeng1, WANG Fuhui1
1.Shenyang National Laboratory for Materials Science, Northeastern University, Shenyang 110819, China
2.Shi -changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
3.Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
全文: PDF(12806 KB)   HTML
摘要: 

针对有机涂层中氧化石墨烯 (GO) 分散性差、与树脂相容性不好的问题,本工作选择间苯二胺作为“桥接物质”,利用其分子上的两个胺基与GO和环氧树脂的环氧基团分别键合,从而改善GO与环氧树脂间的相容性。同时,利用间苯二胺的空间位阻效应有效改善了GO的团聚问题,提高在环氧树脂中的分散性。采用化学接枝法得到间苯二胺表面改性的GO(M-GO),并制备了M-GO与环氧树脂E-44复合涂料 (EP/M-GO)。结果表明,间苯二胺的胺基能够成功与GO表面的环氧基团键合,且在透射电镜下可以观察到M-GO呈现出少量片层的状态,团聚现象明显改善。另一方面,涂层截面形貌表明M-GO与基料树脂之间结合良好。复合涂料在12 d的盐雾实验后仍然能够为金属基底提供保护,且浸泡1000 h后的阻抗模值 (|Z|0.01 Hz) 仍可达109数量级,防腐性能明显提高。

关键词 氧化石墨烯有机涂层防腐性能    
Abstract

In order to solve the problems of poor dispersion of graphene oxide (GO) in organic coatings and poor compatibility with resins, m-phenylenediamine, taking as the so called "bridge" material, was grafted on the surface of graphene oxide (GO) via a chemical means to obtain M-GO composite materials. Then the M-GO/epoxy resin E-44 composite anticorrosion coatings were also prepared. The results of FTIR, Raman and TGA showed that amine groups of m-phenylenediamine were successfully bonded with the epoxy group. A few layers of the M-GO composite particulates of lamellar morphology can be observed by transmission electron microscope (TEM), indicating that the dispersibility of GO was improved through m-phenylenediamine-grafting. On the other hand, the cross-sectional morphology of the coating showed that the M-GO composite material also has good compatibility with epoxy resin. In comparison with the epoxy resin coating GO/EP with the inherent graphene oxide GO, the M-GO/EP coating shows far more better anti-corrosion performance, namely, after 1000 h of immersion in 3.5% (mass fraction) NaCl solution, the impedance modulus (|Z|0.01 Hz) value of EP/M-GO stayed at 1.0×109 Ω·cm2, and after salt spray test for 12 d, the M-GO/EP coating could still provide effective protection for the metal substrate. The results show that the m-phenylenediamine modified graphene oxide/organic coatings present significantly enhanced anti-corrosion performance.

Key wordsgraphene oxide    organic coating    anti-corrosion performance
收稿日期: 2020-12-24     
ZTFLH:  TQ323.5  
基金资助:国家自然科学基金(51901040);博士后科学基金(2020M680962);辽宁省兴辽英才计划(XLYC1807076)
通讯作者: 孟凡帝,刘莉     E-mail: fandimeng@mail.neu.edu.cn;liuli@mail.neu.edu.cn
Corresponding author: MENG Fandi,LIU Li     E-mail: fandimeng@mail.neu.edu.cn;liuli@mail.neu.edu.cn
作者简介: 栾浩,男,1995年生,硕士生

引用本文:

栾浩, 孟凡帝, 刘莉, 崔宇, 刘叡, 郑宏鹏, 王福会. 间苯二胺-氧化石墨烯/有机涂层的制备及防腐性能研究[J]. 中国腐蚀与防护学报, 2021, 41(2): 161-168.
Hao LUAN, Fandi MENG, Li LIU, Yu CUI, Rui LIU, Hongpeng ZHENG, Fuhui WANG. Preparation and Anticorrosion Performance of M-phenylenediamine-graphene Oxide/Organic Coating. Journal of Chinese Society for Corrosion and protection, 2021, 41(2): 161-168.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2020.272      或      https://www.jcscp.org/CN/Y2021/V41/I2/161

图1  间苯二胺表面改性氧化石墨烯的实验原理图
图2  GO与M-GO的红外光谱图
图3  GO与M-GO的热重曲线图
图4  GO与M-GO的Raman谱图
图5  水滴在GO与M-GO表面的接触角图
图6  GO与M-GO在树脂溶液中沉降不同时间的照片
图7  GO与M-GO的TEM像
图8  EP/GO与EP/M-GO涂层的截面SEM像
图9  EP/GO与EP/M-GO涂层的吸水率曲线
图10  EP/GO与EP/M-GO涂层在3.5%NaCl溶液中浸泡不同时间后的电化学阻抗谱
图11  EP/GO与EP/M-GO涂层的等效电路图
图12  两种有机涂层的涂层电阻Rc随浸泡时间的变化
图13  EP/GO与EP/M-GO涂层的拉伸曲线
图14  EP/GO与EP/M-GO涂层经不同时间盐雾实验后的宏观照片
1 Ye Y W, Zhang D W, Zou Y J, et al. A feasible method to improve the protection ability of metal by functionalized carbon dots as environment-friendly corrosion inhibitor [J]. J. Clean. Prod., 2020, 264: 121682
2 Ye Y W, Yang D P, Chen H, et al. A high-efficiency corrosion inhibitor of N-doped citric acid-based carbon dots for mild steel in hydrochloric acid environment [J]. J. Hazard. Mater., 2020, 381: 121019
3 Rahman O U, Ahmad S. Physico-mechanical and electrochemical corrosion behavior of soy alkyd/Fe3O4 nanocomposite coatings [J]. RSC Adv., 2014, 4: 14936
4 Ramezanzadeh B, Ghasemi E, Mahdavian M, et al. Covalently-grafted graphene oxide nanosheets to improve barrier and corrosion protection properties of polyurethane coatings [J]. Carbon, 2015, 93: 555
5 Su Y, Kravets V G, Wong S L, et al. Impermeable barrier films and protective coatings based on reduced graphene oxide [J]. Nat. Commun., 2014, 5: 4843
6 Berry V. Impermeability of graphene and its applications [J]. Carbon, 2013, 62: 1
7 Mohammadi S, Roohi H. Influence of functionalized multi-layer graphene on adhesion improvement and corrosion resistance performance of zinc-rich epoxy primer [J]. Corros. Eng. Sci. Technol., 2018, 53: 422
8 Chang C I, Chang K H, Shen H H, et al. A unique two-step Hummers method for fabricating low-defect graphene oxide nanoribbons through exfoliating multiwalled carbon nanotubes [J]. J. Taiwan Inst. Chem. Eng., 2014, 45: 2762
9 Tang L C, Wan Y J, Yan D, et al. The effect of graphene dispersion on the mechanical properties of graphene/epoxy composites [J]. Carbon, 2013, 60: 16
10 Huang G J, Chen Z G, Li M D, et al. Surface functional modification of graphene and graphene oxide [J]. Acta Chim. Sin., 2016, 74: 789
10 黄国家, 陈志刚, 李茂东等. 石墨烯和氧化石墨烯的表面功能化改性 [J]. 化学学报, 2016, 74: 789
11 Cui G, Bi Z X, Zhang R Y, et al. A comprehensive review on graphene-based anti-corrosive coatings [J]. Chem. Eng. J., 2019, 373: 104
12 Ding R, Chen S, Lv J, et al. Study on graphene modified organic anti-corrosion coatings: a comprehensive review [J]. J. Alloy. Compd., 2019, 806: 611
13 Lerf A, He H Y, Riedl T, et al. 13C and 1H MAS NMR studies of graphite oxide and its chemically modified derivatives [J]. Solid State Ion., 1997, 101-103: 857
14 Tararan A, Zobelli A, Benito A M, et al. Revisiting graphene oxide chemistry via spatially-resolved electron energy loss spectroscopy [J]. Chem. Mater., 2016, 28: 3741
15 Qiu S H, Liu G, Li W, et al. Noncovalent exfoliation of graphene and its multifunctional composite coating with enhanced anticorrosion and tribological performance [J]. J. Alloy. Compd., 2018, 747: 60
16 Liu C B, Qiu S H, Du P, et al. An ionic liquid-graphene oxide hybrid nanomaterial: Synthesis and anticorrosive applications [J]. Nanoscale, 2018, 10: 8115
17 Parhizkar N, Ramezanzadeh B, Shahrabi T. Corrosion protection and adhesion properties of the epoxy coating applied on the steel substrate pre-treated by a sol-gel based silane coating filled with amino and isocyanate silane functionalized graphene oxide nanosheets [J]. Appl. Surf. Sci., 2018, 439: 45
18 Ramezanzadeh B, Niroumandrad S, Ahmadi A, et al. Enhancement of barrier and corrosion protection performance of an epoxy coating through wet transfer of amino functionalized graphene oxide [J]. Corros. Sci., 2016, 103: 283
19 Layek R K, Nandi A K. A review on synthesis and properties of polymer functionalized graphene [J]. Polymer, 2013, 54: 5087
20 Wang S, Chia P J, Chua L L, et al. Band‐like transport in surface‐functionalized highly solution‐processable graphene nanosheets [J]. Adv. Mater., 2008, 20: 3440
21 Stankovich S, Piner R D, Nguyen S T, et al. Synthesis and exfoliation of isocyanate-treated graphene oxide nanoplatelets [J]. Carbon, 2006, 44: 3342
22 Jiang T W, Kuila T, Kim N H, et al. Enhanced mechanical properties of silanized silica nanoparticle attached graphene oxide/epoxy composites [J]. Compos. Sci. Technol., 2013, 79: 115
23 Parhizkar N, Shahrabi T, Ramezanzadeh B. A new approach for enhancement of the corrosion protection properties and interfacial adhesion bonds between the epoxy coating and steel substrate through surface treatment by covalently modified amino functionalized graphene oxide film [J]. Corros. Sci., 2017, 123: 55
24 Hu Z, Huang Y D, Zhang C H, et al. Graphene-polydopamine-C60 nanohybrid: An efficient protective agent for NO-induced cytotoxicity in rat pheochromocytoma cells [J]. J. Mater. Chem., 2014, 2B: 8587
25 Lu X N, Li L Y, Song B, et al. Mechanistic investigation of the graphene functionalization using p-phenylenediamine and its application for supercapacitors [J]. Nano Energy, 2015, 17: 160
26 Cai K W, Zuo S X, Luo S P, et al. Preparation of polyaniline/graphene composites with excellent anti-corrosion properties and their application in waterborne polyurethane anticorrosive coatings [J]. RSC Adv., 2016, 6: 95965
27 Zhou X N, Huang H W, Zhu R, et al. Facile modification of graphene oxide with Lysine for improving anti-corrosion performances of water-borne epoxy coatings [J]. Prog. Org. Coat., 2019, 136: 105200
28 Wang C Y, Lan Y F, Yu W T, et al. Preparation of amino-functionalized graphene oxide/polyimide composite films with improved mechanical, thermal and hydrophobic properties [J]. Appl. Surf. Sci., 2016, 362: 11
29 Zheng H P, Guo M Y, Shao Y W, et al. Graphene oxide-poly (urea-formaldehyde) composites for corrosion protection of mild steel [J]. Corros. Sci., 2018, 139: 1
30 Liu X L, Shao Y W, Zhang Y J, et al. Using high-temperature mechanochemistry treatment to modify iron oxide and improve the corrosion performance of epoxy coating-I. High-temperature ball milling treatment [J]. Corros. Sci., 2015, 90: 451
[1] 曹京宜, 王智峤, 李亮, 孟凡帝, 刘莉, 王福会. 深海压力交变加速条件下改性石墨烯有机涂层的失效机制[J]. 中国腐蚀与防护学报, 2020, 40(2): 139-145.
[2] 师超,邵亚薇,熊义,刘光明,俞跃龙,杨志广,许传钦. 硅烷偶联剂改性磷酸锌对环氧涂层防腐性能的影响[J]. 中国腐蚀与防护学报, 2020, 40(1): 38-44.
[3] 邓三喜, 闫小宇, 柴柯, 吴进怡, 史洪微. 假单胞菌对聚硅氧烷树脂清漆涂层分解及防腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2018, 38(4): 326-332.
[4] 桂琪, 郑大江, 宋光铃. 醇酸清漆保护性的电化学加速评价[J]. 中国腐蚀与防护学报, 2018, 38(3): 274-282.
[5] 钱备, 刘成宝, 宋祖伟, 任俊锋. 纳米容器改性环氧涂层对Q235碳钢的防腐蚀性能[J]. 中国腐蚀与防护学报, 2018, 38(2): 133-139.
[6] 蔡光义,王浩伟,赵苇杭,董泽华. 添加纳米CeO2对聚氨酯涂层防腐性能的影响[J]. 中国腐蚀与防护学报, 2017, 37(5): 411-420.
[7] 苏景新 白 云 关庆丰 邹 阳. 飞机蒙皮结构表面涂层失效的电化学阻抗分析[J]. 中国腐蚀与防护学报, 2013, 33(3): 251-256.
[8] 张伟,王佳,赵增元,刘学庆. 电化学阻抗谱对比研究连续浸泡和干湿循环条件下有机涂层的劣化过程[J]. 中国腐蚀与防护学报, 2011, 31(5): 329-335.
[9] 田惠文 李伟华 宗成中 侯保荣. 纳米SiO2改性环氧涂层的防腐性能[J]. 中国腐蚀与防护学报, 2009, 29(5): 365-370.
[10] 赵增元; 王佳 . 有机涂层阴极剥离作用研究进展[J]. 中国腐蚀与防护学报, 2008, 28(2): 116-120 .
[11] 胡吉明; 张鉴清; 谢德明 . 水在有机涂层中的传输Ⅱ 复杂的实际传输过程[J]. 中国腐蚀与防护学报, 2002, 22(6): 371-374 .
[12] 胡吉明; 张鉴清; 谢德明 . 水在有机涂层中的传输ⅠFick扩散过程[J]. 中国腐蚀与防护学报, 2002, 22(5): 311-315 .