Please wait a minute...
中国腐蚀与防护学报  2018, Vol. 38 Issue (5): 438-446    DOI: 10.11902/1005.4537.2017.131
  研究报告 本期目录 | 过刊浏览 |
316L不锈钢表面超疏水微纳镍镀层定向电沉积工艺优化研究
蒋斌1, 曾利兰1, 梁涛1, 潘浩波2, 乔岩欣2, 张竞2, 赵颖1()
1 中国科学院深圳先进技术研究院 深圳 518055
2 江苏科技大学材料科学与工程学院 镇江 212003
Directional Electrodeposition of Micro-nano Superhyd-rophobic Coating on 316L Stainless Steel
Bin JIANG1, Lilan ZENG1, Tao LIANG1, Haobo PAN2, Yanxin QIAO2, Jing ZHANG2, Ying ZHAO1()
1 Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
2 School of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, China
全文: PDF(4900 KB)   HTML
摘要: 

利用定向电沉积技术在316L不锈钢表面设计制备了一种超疏水微纳镍镀层,通过对电沉积参数的优化,获得最佳电沉积工艺参数:初次电沉积电流密度5 Adm-2,电沉积时间为480 s,结晶调节剂浓度为1.5 mol/L;二次电沉积条件为10 Adm-2,60 s。借助SEM、XRD、电化学测试技术、接触角测试对涂层进行表征,结果表明制备的316L不锈钢表面镍镀层阵列微纳结构具有典型的花瓣状分级结构和较好的超疏水性能,镍镀层阵列微纳结构由具有 (110) 择优取向晶面的针锥阵列结构组成,随着二次电沉积电流密度的增大,镍镀层阵列微纳结构的生长经历从针锥向花瓣结构转变。

关键词 定向电沉积超疏水镍镀层微纳分级结构    
Abstract

A micro-nano superhydrophobic nickel coating was prepared on 316L stainless steel in electrolyte of NiCl26H2O 1 mol/L, H3BO3 0.5 mol/L and ethylenediamine dihydrochloride 0.5~2.5 mol/L via a two-step electrodeposition process, namely, the first electrodeposition was performed by current density of 5 Adm-2 for 480 s in the electrolyte with 1.5 mol/L crystallization regulator, while the second electrodeposition was conducted by current density of 10 Adm-2 for 60 s. The prepared micro-nano superhydrophobic coating was characterized by means of surface analysis, electrochemical tests, and contact angle measurements. Results show that the micro-nano superhydrophobic coating presents typical needle-cone array structure with preferential orientation (110) plane and well superhydrophobic performance. With the increasing current density in the second electrodeposion step, the needle-cone array structure transforms gradually in petal-shaped hierarchical structure.

Key wordsdirectional electrodeposition    superhydrophobic    nickel coating    micro-nano hierarchical structure
收稿日期: 2017-08-02     
ZTFLH:  TG174.2  
基金资助:国家自然科学基金 (81572113,51501218和51401092),广东省自然科学基金博士启动基金 (2014A030310129),深圳基础研究项目 (JCYJ20160608153641020),深圳市孔雀团队项目 (110811003586331),深港创新圈项目 (SGLH20150213143207910) 及江苏省产学研前瞻项目 (BY2016073-12)
作者简介:

作者简介 蒋斌,男,1982年生,博士

引用本文:

蒋斌, 曾利兰, 梁涛, 潘浩波, 乔岩欣, 张竞, 赵颖. 316L不锈钢表面超疏水微纳镍镀层定向电沉积工艺优化研究[J]. 中国腐蚀与防护学报, 2018, 38(5): 438-446.
Bin JIANG, Lilan ZENG, Tao LIANG, Haobo PAN, Yanxin QIAO, Jing ZHANG, Ying ZHAO. Directional Electrodeposition of Micro-nano Superhyd-rophobic Coating on 316L Stainless Steel. Journal of Chinese Society for Corrosion and protection, 2018, 38(5): 438-446.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2017.131      或      https://www.jcscp.org/CN/Y2018/V38/I5/438

图1  316L不锈钢在含有结晶调节剂的电解液中的循环伏安曲线
图2  316L不锈钢表面不同初次电沉积电流密度条件下E-t曲线
图3  316L不锈钢表面不同初次电沉积电流密度条件下所制备镀层的SEM像
图4  316L不锈钢表面在不同初次电沉积电流条件下所制备镀层的接触角
图5  316L不锈钢表面不同初次电沉积时间条件下E-t曲线
图6  316L不锈钢表面不同初次电沉积时间条件下所制备镀层的接触角
图7  316L不锈钢表面不同浓度结晶调节剂条件下E-t曲线
图8  316L不锈钢表面不同结晶调节剂浓度条件下所制备镀层的接触角变化
图9  316L不锈钢表面不同二次沉积时间条件下E-t曲线
图10  316L不锈钢表面不同二次沉积时间条件下所制备镀层的接触角
图11  316L不锈钢表面不同工艺参数条件下所制备镀层的择优生长方向变化
图12  二次电沉积优化工艺条件下316L不锈钢表面所制备镀层的表面形貌
图13  二次电沉积优化工艺条件下316L不锈钢表面所制备镀层的元素成分分析
图14  316L不锈钢表面所制备镍镀层微纳结构表面电沉积生长机理
图15  316L不锈钢表面所制备镍镀层微纳结构表面超疏水形成模型图
[1] Quéré D.Non-sticking drops[J]. Rep. Prog. Phys., 2005, 68: 2495
[2] Ou J F, Hu W H, Xue M S, et al.Superhydrophobic surfaces on light alloy substrates fabricated by a versatile process and their corrosion protection[J]. ACS Appl. Mater. Interfaces, 2013, 5: 3101
[3] Liu Q, Chen D X, Kang Z X.One-step electrodeposition process to fabricate corrosion-resistant superhydrophobic surface on magnesium alloy[J]. ACS Appl. Mater. Interfaces, 2015, 7: 1859
[4] Izquierdo J, Martín-Ruíz L,Fernández-Pérez B /surname> M, et al.Imaging local surface reactivity on stainless steels 304 and 316 in acid chloride solution using scanning electrochemical microscopy and the scanning vibrating electrode technique[J]. Electrochim. Acta, 2014, 134: 167
[5] Hoipkemeier-Wilson L, Schumacher J F, Carman M L, et al.Antifouling potential of lubricious, micro-engineered, PDMS elastomers against zoospores of the green fouling alga Ulva (Enteromorpha)[J]. Biofouling, 2004, 20: 53
[6] Bechert D W, Bruse M, Hage W.Experiments with three-dimensional riblets as an idealized model of shark skin[J]. Exp. Fluids, 2000, 28: 403
[7] Hu A M, Li M.Letter to editor: Super-hydrophilicity to super-hydrophobicity transition of a surface with Ni micro-nano cones array[J]. Appl. Surf. Sci., 2012, 263: 821
[8] Watanabe T.Translated by Chen Z P,Yang G.Nano-Plating [M]. Beijing: Chemical Industry Press, 2007(Watanabe T著.陈祝平,杨光译.纳米电镀 [M]. 北京: 化学工业出版社, 2007)
[9] Liang J S, Li D, Wang D Z, et al.Preparation of stable superhydrophobic film on stainless steel substrate by a combined approach using electrodeposition and fluorinated modification[J]. Appl. Surf. Sci., 2014, 293: 265
[10] Hang T, Li M, Fei Q, et al.Characterization of nickel nanocones routed by electrodeposition without any template[J]. Nanotechnology, 2008, 19: 035201
[11] Hang T, Hu A M, Ling H Q, et al.Super-hydrophobic nickel films with micro-nano hierarchical structure prepared by electrodeposition[J]. Appl. Surf. Sci., 2010, 256: 2400
[12] Wang S, Feng L, Jiang L.One-step solution-immersion process for the fabrication of stable bionic superhydrophobic surfaces[J]. Adv. Mater., 2006, 18: 767
[13] Cao C N.Principles of Electrochemistry of Corrosion [M]. 3rd Ed.,Beijing: Chemical Industry Press, 2008(曹楚南. 腐蚀电化学原理 [M]. 第3版. 北京: 化学工业出版社, 2008)
[14] Price P B, Vermilyea D A, Webb M B.On the growth and properties of electrolytic whiskers[J]. Acta Metall., 1958, 6: 524
[15] She Z X, Li Q, Wang Z W, et al.Highly anticorrosion, self-cleaning superhydrophobic Ni-Co surface fabricated on AZ91D magnesium alloy[J]. Surf. Coat. Technol., 2014, 251: 7
[1] 任继栋,高荣杰,张宇,刘勇,丁甜. 混酸刻蚀-氟化处理制备X80管线钢双疏表面及其耐蚀性研究[J]. 中国腐蚀与防护学报, 2017, 37(3): 233-240.
[2] 张方铭,曾志翔,王刚,陈军君,徐勇,王立平. Q235钢超疏水表面制备及耐蚀性能研究[J]. 中国腐蚀与防护学报, 2016, 36(6): 617-623.
[3] 尹成勇, 李澄, 彭晓燕, 王加余, 王艳慧, 郑顺丽, 李敏, 胡玮. 溶胶-凝胶法制备超疏水性纳米复合防腐涂层[J]. 中国腐蚀与防护学报, 2014, 34(3): 257-264.
[4] 侯文婷,康志新. Mg-Li合金表面浅绿色超疏水复合膜层的制备及耐蚀性能研究[J]. 中国腐蚀与防护学报, 2012, 32(4): 306-310.
[5] 王帅波 尹衍升 刘涛 滕少磊. 超疏水膜改性Fe3Al在海水中的腐蚀行为[J]. 中国腐蚀与防护学报, 2009, 29(2): 137-140.