Please wait a minute...
中国腐蚀与防护学报  2023, Vol. 43 Issue (1): 191-196     CSTR: 32134.14.1005.4537.2022.061      DOI: 10.11902/1005.4537.2022.061
  研究报告 本期目录 | 过刊浏览 |
典型接地材料在碱性土壤模拟液中的腐蚀行为研究
高智悦(), 姜波, 樊志彬, 王晓明, 李辛庚, 张振岳
国网山东省电力公司电力科学研究院 济南 250001
Corrosion Behavior of Typical Grounding Materials in Artificial Alkaline Soil Solution
GAO Zhiyue(), JIANG Bo, FAN Zhibin, WANG Xiaoming, LI Xingeng, ZHANG Zhenyue
State Grid Shandong Electric Power Research Institute, Ji'nan 250001, China
全文: PDF(4174 KB)   HTML
摘要: 

通过电化学阻抗谱和极化曲线电化学测试技术研究了Q235钢、镀锌钢和纯铜在山东典型碱性土壤模拟液中的腐蚀电化学行为,利用金相显微镜和激光共聚焦显微镜 (CLSM) 对其极化后的表面腐蚀形貌进行了分析。结果表明,3种金属材料在该种碱性模拟环境下发生不同程度的腐蚀,其阳极过程都为金属的阳极溶解,而阴极过程为吸氧反应。Q235钢的耐腐蚀性最差,Q235钢和镀锌钢发生全面腐蚀,纯铜表面发生点蚀,3种金属的耐腐蚀程度为:纯铜>镀锌钢>Q235钢。

关键词 接地材料碱性土壤模拟液电化学腐蚀点蚀    
Abstract

The corrosion behavior of three metal materials (Q235 steel, galvanized steel and pure copper) in an artificial solution, aiming to simulate the typical alkaline soil solution of Shandong province, was studied by means of electrochemical testing technique, optical metallographic microscope and laser confocal microscope (CLSM). The results show that the corrosion degree of the three metal materials is varied in the simulated alkaline soil solution. The anodic processes of them are all metal dissolution, while the cathodic processes are all oxygen absorption reaction. The corrosion resistance of Q235 steel is the worst. Q235 steel and galvanized steel show the characteristics of uniform corrosion. Pitting occurs on the surface of pure copper. Generally, the corrosion resistance of the three metals may be ranked as follows: pure copper>galvanized steel>Q235 steel.

Key wordsgrounding materials    alkaline soil simulation solution    electrochemical corrosion    pitting
收稿日期: 2022-03-07      32134.14.1005.4537.2022.061
ZTFLH:  TG172  
基金资助:国网山东省电力公司科技项目(52062620004K)
作者简介: 高智悦,女,1991年生,博士,工程师

引用本文:

高智悦, 姜波, 樊志彬, 王晓明, 李辛庚, 张振岳. 典型接地材料在碱性土壤模拟液中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2023, 43(1): 191-196.
Zhiyue GAO, Bo JIANG, Zhibin FAN, Xiaoming WANG, Xingeng LI, Zhenyue ZHANG. Corrosion Behavior of Typical Grounding Materials in Artificial Alkaline Soil Solution. Journal of Chinese Society for Corrosion and protection, 2023, 43(1): 191-196.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2022.061      或      https://www.jcscp.org/CN/Y2023/V43/I1/191

图1  3种金属材料在碱性土壤模拟液中的EIS谱及阻抗等效电路
SampleRs / Ω·cm2Qf / Ω-1·cm-2·s-nnRf / Ω·cm2Qdl / Ω-1·cm-2·s-nnRct / Ω·cm2L / H·cm2
Q235 steel58.71.85×10-80.9625.349.21×10-40.77214.1---
Galvanized steel86.031.73×10-50.99355.71.19×10-50.99298.57.14×10-7
Pure copper95.242.20×10-40.878.278.23×10-40.61683.4---
表1  3种金属材料在碱性土壤模拟液中的EIS拟合结果
SampleEcorr vs. SCE / VIcorr / A·cm-2βa / Vβc / V
Q235 steel-0.7807.943×10-50.169-0.292
Galvanized steel-1.0092.301×10-50.070-0.329
Pure copper-0.1832.148×10-50.099-0.255
表2  3种金属材料在碱性土壤模拟液中极化曲线的拟合结果
图2  3种金属材料在碱性土壤模拟液中的极化曲线
图3  3种金属材料在碱性土壤模拟液中极化后的表面形貌
图4  3种金属材料在碱性土壤模拟液中极化后的激光共聚焦形貌
1 Tian P H, Tan B, Tong X F, et al. Accelerated corrosion performance comparison of several new grounding materials [J]. Corros. Prot., 2021, 42: 63
1 田鹏辉, 谭波, 童雪芳 等. 几种新型接地材料的加速腐蚀性能对比 [J]. 腐蚀与防护, 2021, 42: 63
2 Su Y G, Fang B L, Lv P H, et al. Initial corrosion behavior of grounding materials in three typical soils in shaanxi province [J]. Corros. Sci. Prot. Technol., 2018, 30: 279
2 苏耀国, 房本岭, 吕平海 等. 接地材料在陕西典型土壤中的初期腐蚀行为 [J]. 腐蚀科学与防护技术, 2018, 30: 279
3 Zhu Y C, Liu G M, Liu X, et al. Investigation on interrelation of field corrosion test and accelerated corrosion test of grounding materials in red soil environment [J]. J. Chin. Soc. Corros. Prot., 2019, 39: 550
3 朱亦晨, 刘光明, 刘欣 等. 红壤地区接地材料现场埋样与加速腐蚀实验的相关性研究 [J]. 中国腐蚀与防护学报, 2019, 39: 550
4 Ding C, Zhang J L, Yu Y C, et al. Corrosion kinetics of A572Gr.65 steel in different simulated soil solutions [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 149
4 丁聪, 张金玲, 于彦冲 等. A572Gr.65钢在不同土壤模拟液中的腐蚀动力学 [J]. 中国腐蚀与防护学报, 2022, 42: 149
5 Yu D Y, Liu Z Y, Du C W, et al. Research progress and prospect of stress corrosion cracking of pipeline steel in soil environments [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 737
5 余德远, 刘智勇, 杜翠薇 等. 管线钢土壤应力腐蚀开裂研究进展及展望 [J]. 中国腐蚀与防护学报, 2021, 41: 737
6 Wang X H, Yang Y, Chen Y C, et al. Effect of alternating current on corrosion behavior of X100 pipeline steel in a simulated solution for soil medium at korla district [J]. J. Chin. Soc. Corros. Prot., 2020, 40: 259
6 王新华, 杨永, 陈迎春 等. 交流电流对X100管线钢在库尔勒土壤模拟液中腐蚀行为的影响 [J]. 中国腐蚀与防护学报, 2020, 40: 259
7 Zhao B Z, Zhu M, Yuan Y F, et al. Comparison of corrosion resistance of CoCrFeMnNi high entropy alloys with pipeline steels in an artificial alkaline soil solution [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 425
7 赵宝珠, 朱敏, 袁永锋 等. CoCrFeMnNi高熵合金和管线钢在碱性土壤环境中的耐蚀性对比研究 [J]. 中国腐蚀与防护学报, 2022, 42: 425
8 Yan F J, Li X G, Jiang B, et al. Corrosion behavior of pure copper in alkaline soil [J]. Corros. Sci. Prot. Technol., 2019, 31: 155
8 闫风洁, 李辛庚, 姜波 等. 纯铜在碱性土壤中的腐蚀行为 [J]. 腐蚀科学与防护技术, 2019, 31: 155
9 Chen K F, Zhang Z D, Hu J Y, et al. Research on corrosion behavior of four kinds of metal grounding materials in soil leaching solution [J]. Mater. Prot., 2018, 51(12): 12
9 陈科锋, 张兆德, 胡家元 等. 4种接地金属材料在土壤浸出液中的腐蚀行为研究 [J]. 材料保护, 2018, 51(12): 12
10 Zhu Y C, Liu G M, Wang J J, et al. Electrochemical corrosion behaviors of typical grounding materials in water-saturated acid red soil [J]. Mater. Mech. Eng., 2020, 44(9): 36
10 朱亦晨, 刘光明, 王金金 等. 典型接地材料在水饱和酸性红壤中的电化学腐蚀行为 [J]. 机械工程材料, 2020, 44(9): 36
11 Yu J F, Zhan Y Z. Electrochemical impedance spectroscopy (EIS) of Q235 steel in acidic soil [J]. Hubei Electr. Power, 2010, 34(6): 25
11 余建飞, 詹约章. Q235钢在酸性土壤中的电化学阻抗谱特征 [J]. 湖北电力, 2010, 34(6): 25
12 Yu J F, Zhou X J, Zhang Y, et al. Corrosion behavior of sherardizing steel in different soils at four typical test sites [J]. Corros. Sci. Prot. Technol., 2019, 31: 128
12 余建飞, 周学杰, 张予 等. 渗锌钢在4种典型土壤环境中的腐蚀行为 [J]. 腐蚀科学与防护技术, 2019, 31: 128
13 Zhu M, Du C W, Li X G, et al. Corrosion behavior of Q235 steel in beijing soil environment [J]. J. Chin. Soc. Corros. Prot., 2013, 33: 199
13 朱敏, 杜翠薇, 李晓刚 等. Q235钢在北京土壤环境中的腐蚀行为 [J]. 中国腐蚀与防护学报, 2013, 33: 199
14 Tang R M, Zhu Y C, Liu G M, et al. Gray correlative degree analysis of Q235 steel/conductive concrete corrosion in three typical soil environments [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 110
14 唐荣茂, 朱亦晨, 刘光明 等. Q235钢/导电混凝土在3种典型土壤环境中腐蚀的灰色关联度分析 [J]. 中国腐蚀与防护学报, 2021, 41: 110
15 Chen W, Jiao X Y, Zhao Z Q, et al. Corrosion behavior of hot-dip zinc-coated steel in soil environment of Northern China [J]. Electroplat. Finish., 2021, 40: 1646
15 陈威, 焦小雨, 赵自强 等. 热镀锌钢在中国北方土壤环境中的腐蚀行为 [J]. 电镀与涂饰, 2021, 40: 1646
16 Li H L, Wan H X, Du C W. Corrosion behavior of galvanized steel in typical soil environments [J]. Corros. Prot., 2018, 39: 387
16 李海玲, 万红霞, 杜翠薇. 镀锌钢在多种典型土壤环境中的腐蚀行为 [J]. 腐蚀与防护, 2018, 39: 387
17 Hamlaoui Y, Tifouti L, Pedraza F. Corrosion behaviour of molybdate-phosphate-silicate coatings on galvanized steel [J]. Corros. Sci., 2009, 51: 2455
doi: 10.1016/j.corsci.2009.06.037
18 Zhai S X, Yang X Y, Yang J L, et al. Corrosion properties of quenching-partitioning-tempering steel in simulated seawater [J]. J. Chin. Soc. Corros. Prot., 2020, 40: 398
18 翟思昕, 杨幸运, 杨继兰 等. 淬火-配分-回火钢在模拟海水环境中的腐蚀性能研究 [J]. 中国腐蚀与防护学报, 2020, 40: 398
19 Wan H X, Song D D, Liu Z Y, et al. Effect of alternating current on corrosion behavior of X80 pipeline steel in near-neutral environment [J]. Acta Metall. Sin., 2017, 53: 575
19 万红霞, 宋东东, 刘智勇 等. 交流电对X80钢在近中性环境中腐蚀行为的影响 [J]. 金属学报, 2017, 53: 575
20 Mokaddem M, Volovitch P, Ogle K. The anodic dissolution of zinc and zinc alloys in alkaline solution. I. Oxide formation on electrogalvanized steel [J]. Electrochim. Acta, 2010, 55: 7867
doi: 10.1016/j.electacta.2010.02.020
21 Yan C Q, Liu Y L, Zhang J, et al. Synergistic effect of glycine and BTA on step height reduction efficiency after copper CMP in weakly alkaline slurry [J]. ECS J. Solid State Sci. Technol., 2017, 6: P1
doi: 10.1149/2.0291612jss
[1] 任万凯, 连洲洋, 周康, 罗正维, 魏无际, 张雪英. 氨法脱硫液成分对304不锈钢局部腐蚀发展阶段影响探究[J]. 中国腐蚀与防护学报, 2023, 43(6): 1392-1398.
[2] 刘微. 测量不锈钢电化学噪声的非对称表面方法[J]. 中国腐蚀与防护学报, 2023, 43(5): 1151-1158.
[3] 陈婷婷, 武晓雷, 韩培德. SMAT技术制备梯度纳米孪晶结构及其腐蚀行为研究[J]. 中国腐蚀与防护学报, 2022, 42(6): 973-978.
[4] 包晔峰, 武竹雨, 陈哲, 郭林坡, 王子睿, 曹冲, 宋亓宁. 敏化处理对00Cr21NiMn5Mo2N节镍型双相不锈钢堆焊层耐腐蚀性能的影响[J]. 中国腐蚀与防护学报, 2022, 42(6): 1027-1033.
[5] 马凯军, 王萌萌, 史振龙, 陈长风, 贾小兰. 温度对原油储罐罐底微生物腐蚀影响规律的研究[J]. 中国腐蚀与防护学报, 2022, 42(6): 1051-1057.
[6] 刘玉项, 徐安阳. AZ91镁合金和MAO涂层的点蚀行为研究[J]. 中国腐蚀与防护学报, 2022, 42(6): 1034-1042.
[7] 黄连鹏, 张欣, 熊伊铭, 陶嘉豪, 王泽华, 周泽华. 不同磁场强度下铝镁合金腐蚀行为研究[J]. 中国腐蚀与防护学报, 2022, 42(5): 833-838.
[8] 吕迎玺. 高Mo超级奥氏体不锈钢耐Cl-腐蚀性能分析[J]. 中国腐蚀与防护学报, 2022, 42(5): 765-770.
[9] 万晔, 宋芳龄, 李立军. 基于海洋大气环境因素影响下的碳钢腐蚀特征研究[J]. 中国腐蚀与防护学报, 2022, 42(5): 851-855.
[10] 郭娜, 毛晓敏, 惠芯蕊, 郭章伟, 刘涛. 海洋假交替单胞菌Pseudoalteromonas lipolytica分泌黑色素加速316L不锈钢腐蚀机理的研究[J]. 中国腐蚀与防护学报, 2022, 42(5): 743-751.
[11] 王通, 孟惠民, 葛鹏飞, 李全德, 巩秀芳, 倪荣, 姜英, 龚显龙, 戴君, 隆彬. 2Cr-1Ni-1.2Mo-0.2V钢在NH4H2PO4溶液中的电化学腐蚀行为研究[J]. 中国腐蚀与防护学报, 2022, 42(4): 551-562.
[12] 王嘉琪, 李莉, 刘婷婷. 工业建筑屋面用铝锰合金的腐蚀行为[J]. 中国腐蚀与防护学报, 2022, 42(4): 693-698.
[13] 陈昊, 樊志彬, 陈志坚, 周学杰, 郑鹏华, 吴军. Cl-与HSO3-对建筑用439不锈钢腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2022, 42(3): 493-500.
[14] 赵宝珠, 朱敏, 袁永锋, 郭绍义, 尹思敏. CoCrFeMnNi高熵合金和管线钢在碱性土壤环境中的耐蚀性对比研究[J]. 中国腐蚀与防护学报, 2022, 42(3): 425-434.
[15] 辛叶春, 徐伟, 赵东杨, 张波. 超细层片结构Al-4%Cu合金的点蚀行为[J]. 中国腐蚀与防护学报, 2022, 42(2): 274-280.