Please wait a minute...
中国腐蚀与防护学报  2023, Vol. 43 Issue (1): 197-201     CSTR: 32134.14.1005.4537.2022.022      DOI: 10.11902/1005.4537.2022.022
  研究报告 本期目录 | 过刊浏览 |
锆合金包壳在模拟压水堆一回路冷却剂中的表面污垢沉积行为研究
廖家鹏(), 毛玉龙, 金德升, 厉井钢
中广核研究院有限公司 深圳 518000
Laboratory Simulation of Crud Deposition on Zr-alloy Fuel Cladding in Simulated Pressurized Water Reactor Primary Coolant
LIAO Jiapeng(), MAO Yulong, JIN Desheng, LI Jinggang
China Nuclear Power Technology Research Institute, Shenzhen 518000, China
全文: PDF(5438 KB)   HTML
摘要: 

阐述了影响燃料包壳表面污垢沉积行为的主要因素,通过设计并开展针对国产锆合金燃料包壳的污垢沉积试验,成功制备出含多孔基体和烟囱结构主要元素组成的燃料包壳氧化物污垢,污垢的主要成分为NiFe2O4、Fe2O3和NiO,并在污垢内部检测到LiBO2的析出,实现了对PWR堆芯燃料包壳污垢沉积的实验室模拟。

关键词 压水堆锆合金包壳污垢沉积一回路冷却剂    
Abstract

For pressurized water reactor (PWR) nuclear power plant, crud on fuel cladding is derived from primary corrosion products, which deposit on the surface of fuel assembly. Crud deposition is affected by the coupling effects between the primary coolant environment and the thermal-hydraulic condition. The crud on cladding surface can affect the operation safety and economic benefits of the reactor. In this paper, the main factors affecting the crud deposition behavior on the surface of fuel cladding were described. The crud deposition process on the domestic Zr-alloy cladding was assessed via a home-made experimental set. As a result, the porous and chimney-like crud was successfully reproduced, while which composed mainly of NiFe2O4, Fe2O3 and NiO, besides the precipitation of LiBO2 was detected. The experiment results indicated that the crud deposition on PWR fuel cladding could be reliably reproduced through laboratory simulation.

Key wordspressurized water reactor    zirconium alloy cladding    crud deposition    primary coolant
收稿日期: 2022-01-18      32134.14.1005.4537.2022.022
ZTFLH:  TG172  
基金资助:中国博士后科学基金(2021M703023)
作者简介: 廖家鹏,男,1990年生,博士生

引用本文:

廖家鹏, 毛玉龙, 金德升, 厉井钢. 锆合金包壳在模拟压水堆一回路冷却剂中的表面污垢沉积行为研究[J]. 中国腐蚀与防护学报, 2023, 43(1): 197-201.
Jiapeng LIAO, Yulong MAO, Desheng JIN, Jinggang LI. Laboratory Simulation of Crud Deposition on Zr-alloy Fuel Cladding in Simulated Pressurized Water Reactor Primary Coolant. Journal of Chinese Society for Corrosion and protection, 2023, 43(1): 197-201.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2022.022      或      https://www.jcscp.org/CN/Y2023/V43/I1/197

图1  污垢沉积试验装置示意图
图2  污垢沉积实验后试样表面宏观形貌
图3  污垢沉积实验后试样表面微观形貌
图4  污垢沉积实验后试样截面污垢宏观形貌
图5  污垢沉积试验后试样截面微观形貌
图6  污垢沉积实验后试样表面污垢中的B1s, O1s, Fe2p3/2和Ni2p3/2的XPS光谱
1 Deshon J, Hussey D, Kendrick B, et al. Pressurized water reactor fuel crud and corrosion modeling [J]. JOM, 2011, 63: 64
2 Bennett P, Beverskog B, Suther R. Halden in-reactor test to exhibit PWR axial offset anomaly [R]. Palo Alto: EPRI, 2004
3 Armstrong B, Bosma J, Cheng B, et al. PWR axial offset anomaly (AOA) guidelines [R]. Palo Alto: EPRI, 1999
4 Tigeras A, Debec G, Jeannin B, et al. EDF zinc injection: Analysis of power reduction impact on the chemistry and radiochemistry parameters [A]. Proceedings of the International Conference on Water Chemistry in Nuclear Power Plants [C]. Jeju Island, Korea, 2006
5 Thom J R S, Walker W M, Fallon T A, et al. Boiling in subcooled water during flow up heated tubes or annuli [A]. Symposium on Boiling Heat Transfer in Steam Generating Units and Heat Exchangers [C]. Manchester, 1965
6 Steiner D, Taborek J. Flow boiling heat transfer in vertical tubes correlated by an asymptotic model [J]. Heat Transfer. Eng., 1992, 13: 43
doi: 10.1080/01457639208939774
7 Park M S, Shim H S, Baek S H, et al. Effects of oxidation states of fuel cladding surface on crud deposition in simulated primary water of PWRs [J]. Ann. Nucl. Energy, 2017, 103: 275
doi: 10.1016/j.anucene.2017.01.014
8 Li Z D, Cui Z D, Hou X Y, et al. Corrosion property of nuclear grade 316LN stainless steel weld joint in high temperature and high pressure water [J]. J. Chin. Soc. Corros. Prot., 2019, 39: 106
8 李兆登, 崔振东, 侯相钰 等. 核级316LN不锈钢焊接接头在高温高压水中的腐蚀性能研究 [J]. 中国腐蚀与防护学报, 2019, 39: 106
9 Kim K, Fruzzetti K, Garcia S, et al. Assessment of EPRI water chemistry guidelines for new nuclear power plants [A]. NPC 2010 Conference Proceedings [C]. Quebec City, Canada, 2010
10 Baek S H, Shim H S, Kim J G, et al. Effects of dissolved hydrogen on fuel crud deposition and subcooled nucleate boiling in PWR primary water at 328 °C [J]. Nucl. Eng. Des., 2019, 345: 85
doi: 10.1016/j.nucengdes.2019.02.010
11 Daniel M W, Richard B, Ryuji U. Impact of PWR primary water dissolved hydrogen concentration on fuel crud and boron accμmulation [A]. NPC 2016 [C]. Brighton, UK, 2016
12 Deshon J. Zinc acetate impact on AOA [R]. Palo Alto: EPRI, 2001
13 Henshaw J, Gibson C, McGurk J, et al. Zinc Chemistry in PWR Fuel Crud [A]. NPC 2016 [C]. Brighton, United Kingdom, 2016
14 Yang M X, Gao Y, Wang H. Effect of Zn(CH3COO)2 addition on corrosion of ZIRLO alloy in simulated PWR primary loop medium with LiOH and H3BO3 [J]. J. Chin. Soc. Corros. Prot., 2020, 40: 199
14 杨明馨, 高阳, 王辉. 添加Zn2+对ZIRLO合金在模拟压水堆一回路含LiOH和H3BO3水溶液工况下耐腐蚀性能的影响 [J]. 中国腐蚀与防护学报, 2020, 40: 199
15 Kima K S, Shima H S, Baeka S H. Characterization of fuel crud deposited in simulated PWR primary coolant with different zinc addition [A]. Transactions of the Korean Nuclear Society Autumn Meeting [C]. Goyang, 2019
16 Riess R. Chemistry experience in the primary heat transport circuits of Kraftwerk Union pressurized water reactors [J]. Nucl. Technol., 1976, 29: 153
doi: 10.13182/NT76-A31574
17 Zhou D W, Jones B G. Boron concentration model and effects of boron holdup on axial offset anomaly (AOA) in PWRs [A]. 10th International Conference on Nuclear Engineering [C]. Arlington, 2002
18 Henshaw J, McGurk J C, Sims H E, et al. A model of chemistry and thermal hydraulics in PWR fuel crud deposits [J]. J. Nucl. Mater., 2006, 353: 1
doi: 10.1016/j.jnucmat.2005.01.028
19 Seo S, Park B, Kim S J, et al. BOTANI: High-fidelity Multiphysics model for boron chemistry in CRUD deposits [J]. Nucl. Eng. Technol., 2021, 53: 1676
doi: 10.1016/j.net.2020.11.008
20 Jung Y H, Baik S E, Jin Y G. A study on the crystalline boron analysis in CRUD in spent fuel cladding using EPMA X-ray images [J]. Corro. Sci. Technol., 2020, 19: 1
[1] 汪家梅,陆辉,段振刚,张乐福,孟凡江,徐雪莲. 模拟压水堆二回路水环境中温度对690合金电化学腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2016, 36(2): 113-120.
[2] 海正银, 王辉, 辛长胜, 蔡敏, 秦博, 陈童. 加锌对690合金在高温水中形成的氧化膜的影响[J]. 中国腐蚀与防护学报, 2014, 34(6): 532-536.
[3] 段振刚, 张乐福, 王力, 徐雪莲, 石秀强. 注锌对316L奥氏体不锈钢氧化膜成分的影响[J]. 中国腐蚀与防护学报, 2014, 34(3): 249-252.
[4] 海正银, 王辉, 曹林园, 胡勇. 模拟压水堆一回路条件添加Pt技术研究[J]. 中国腐蚀与防护学报, 2014, 34(3): 253-256.
[5] 段振刚, 张乐福, 姜苏青, 石秀强, 徐雪莲. PWR水环境中Zn对Co在氧化膜中沉积行为的影响[J]. 中国腐蚀与防护学报, 2014, 34(2): 192-194.