Please wait a minute...
中国腐蚀与防护学报  2022, Vol. 42 Issue (6): 973-978          DOI: 10.11902/1005.4537.2021.349
  研究报告 本期目录 | 过刊浏览 |
SMAT技术制备梯度纳米孪晶结构及其腐蚀行为研究
陈婷婷1,2, 武晓雷2,3, 韩培德1()
1.太原理工大学材料科学与工程学院 太原 030024
2.中国科学院力学研究所 非线性力学国家重点实验室 北京 100190
3.中国科学院大学工程科学学院 北京 100049
Gradient Nanotwin Structure Prepared by SMAT Technology on S31254 Super Austenitic Stainless Steel Surface and Its Corrosion Behavior in 10%NaCl Solution
CHEN Tingting1,2, WU Xiaolei2,3, HAN Peide1()
1. College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China
2. State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China
3. School of Engineering Science, University of Chinese Academy of Sciences, Beijing 100049, China
引用本文:

陈婷婷, 武晓雷, 韩培德. SMAT技术制备梯度纳米孪晶结构及其腐蚀行为研究[J]. 中国腐蚀与防护学报, 2022, 42(6): 973-978.
Tingting CHEN, Xiaolei WU, Peide HAN. Gradient Nanotwin Structure Prepared by SMAT Technology on S31254 Super Austenitic Stainless Steel Surface and Its Corrosion Behavior in 10%NaCl Solution[J]. Journal of Chinese Society for Corrosion and protection, 2022, 42(6): 973-978.

全文: PDF(2545 KB)   HTML
摘要: 

采用表面机械研磨 (SMAT) 技术在S31254超级奥氏体不锈钢表面制备得到了梯度结构,通过微结构分析及电化学实验方法,对梯度结构进行详细表征并研究其不同层深处的腐蚀行为。结果表明:S31254不锈钢经过SMAT处理后获得了由两侧梯度层和中心粗晶层组成的结构,在梯度层中,纳米尺度变形孪晶的密度在厚度方向上呈梯度分布。逐层进行的电化学实验表明,在距样品表面80 μm处耐蚀性最好,原因是较高的孪晶密度和较光滑的表面提高了耐蚀性能。

关键词 超级奥氏体不锈钢表面机械研磨梯度结构纳米孪晶电化学腐蚀    
Abstract

A kind of gradient structure on the surface of S31254 super austenitic stainless steel was prepared by surface mechanical attrition treatment (SMAT) technology. The gradient structure was characterized by microstructural analysis and electrochemical test, while the variation of corrosion characteristics along the depth of the gradient structure was also studied in 10%NaCl solution. The results show that after SMAT treatment, the surface of S31254 steel emerged a structure composed of two gradient layers, while a coarse-grained layer inserted in between the two layers. In the gradient layer, the density of the nanoscale deformation twins shows a gradient distribution along the depth direction. Through mechanically thinning the gradient structure layer by layer and followed by electrochemical detection in the NaCl solution, it is revealed that nearby the location at depth of 80 μm exhibits the best corrosion resistance, which may be ascribed to that the prepared surface was smoother with higher twin density.

Key wordssuper austenitic stainless steel    surface mechanical attrition treatment (SMAT)    gradient structure    nanotwin    electrochemical corrosion
收稿日期: 2021-12-04     
ZTFLH:  TG174  
基金资助:国家自然科学基金(51871159);国家自然科学基金(11972350);国家自然科学基金(11890680)
作者简介: 陈婷婷,女,1996年生,硕士生
图1  CG样品和GS样品横截面的微结构
图2  GS样品横截面的微结构
图3  GS样品的TEM图像
图4  GS样品横截面的显微维氏硬度分布
图5  GS样品的不同层在10%NaCl溶液中的动电位极化曲线
图6  GS样品的不同层在10%NaCl溶液中的电化学阻抗谱
[1] Wu C C, Wang S H, Chen C Y, et al. Inverse effect of strain rate on mechanical behavior and phase transformation of superaustenitic stainless steel [J]. Scr. Mater., 2007, 56: 717
doi: 10.1016/j.scriptamat.2006.08.064
[2] Abd El Meguid E A, Abd El Latif A A. Critical pitting temperature for type 254 SMO stainless steel in chloride solutions [J]. Corros. Sci., 2007, 49: 263
doi: 10.1016/j.corsci.2006.06.011
[3] Xu Y Q, Zhao C H, Ma H W, et al. Research on the welding technique of 254SMo super austeitic stainless steel [J]. Elec. Weld. Mach., 2013, 43(5): 142
[3] (徐玉强, 赵翠华, 马洪伟 等. 超级奥氏体不锈钢254SMo焊接工艺 [J]. 电焊机, 2013, 43(5): 142)
[4] Zheng S P, Yu Y. Corrosion resistant properties & welding of 6%Mo super austenitic stainless steel [J]. China Chem. Ind. Equip., 2013, 15(4): 26
[4] (郑世平, 于洋. 6%Mo超级奥氏体不锈钢耐蚀特性及其焊接 [J]. 中国化工装备, 2013, 15(4): 26)
[5] Bai Y J, Liu J, Lv X G, et al. Corrosion resistance of super austenitic stainless steel 254SMo welded joint [J]. Weld. Join., 2016, (9): 21
[5] (白永杰, 刘洁, 吕孝根 等. 超级奥氏体不锈钢254Smo焊接接头耐蚀性能 [J]. 焊接, 2016, (9): 21)
[6] Wang C G, Wei J, Wei X, et al. Crevice corrosion behavior of several super stainless steels in a simulated corrosive environment of flue gas desulfurization process [J]. J. Chin. Soc. Corros. Prot., 2019, 39: 43
[6] (王长罡, 魏洁, 魏欣 等. 几种超级不锈钢在模拟烟气脱硫环境中的缝隙腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2019, 39: 43)
[7] Sun C Q. Development, application and characteristic of super austenitic stainless steel [J]. Process Equip. Des., 1999, 36(6): 38
[7] (孙长庆. 超级奥氏体不锈钢的发展, 性能与应用 (上) [J]. 化工设备设计, 1999, 36(6): 38)
[8] Zhao K, Li X Q, Wang M T, et al. Corrosion behavior of four corrosion-resistant alloys in ultra-supercritical boiler flue gas condensate [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 493
[8] (赵康, 李晓琦, 王铭滔 等. 4种耐蚀合金在超超临界锅炉烟气冷凝液中的腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2021, 41: 493)
[9] Yi P, Hou L F, Du H Y, et al. NaCl induced corrosion of three austenitic stainless steels at high temperature [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 288
[9] (伊璞, 侯利锋, 杜华云 等. 新型奥氏体不锈钢高温NaCl腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2022, 42: 288)
[10] Lu K. Gradient nanostructured materials [J]. Acta Metall. Sin., 2015, 51: 1
[10] (卢柯. 梯度纳米结构材料 [J]. 金属学报, 2015, 51: 1)
doi: 10.11900/0412.1961.2014.00395
[11] Hao Y W, Deng B, Zhong C, et al. Effect of surface mechanical attrition treatment on corrosion behavior of 316 stainless steel [J]. J. Iron. Steel Res. Int., 2009, 16: 68
[12] Balusamy T, Kumar S, Sankara Narayanan T S N. Effect of surface nanocrystallization on the corrosion behaviour of AISI 409 stainless steel [J]. Corros. Sci., 2010, 52: 3826
doi: 10.1016/j.corsci.2010.07.004
[13] Zhu K Y, Vassel A, Brisset F, et al. Nanostructure formation mechanism of α-titanium using SMAT [J]. Acta Mater., 2004, 52: 4101
doi: 10.1016/j.actamat.2004.05.023
[14] Li J S, Gao W D, Cao Y, et al. Microstructures and mechanical properties of a gradient nanostructured 316L stainless steel processed by rotationally accelerated shot peening [J]. Adv. Eng. Mater., 2018, 20: 1800402
doi: 10.1002/adem.201800402
[15] Wang H T, Tao N R, Lu K. Architectured surface layer with a gradient nanotwinned structure in a Fe-Mn austenitic steel [J]. Scr. Mater., 2013, 68: 22
doi: 10.1016/j.scriptamat.2012.05.041
[16] Wang J J, Tao N R, Lu K. Revealing the deformation mechanisms of nanograins in gradient nanostructured Cu and CuAl alloys under tension [J]. Acta Mater., 2019, 180: 231
doi: 10.1016/j.actamat.2019.09.021
[17] Lu K, Lu J. Nanostructured surface layer on metallic materials induced by surface mechanical attrition treatment [J]. Mater. Sci. Eng., 2004, 375-377A: 38
[18] Liu X C, Zhang H W, Lu K. Strain-induced ultrahard and ultrastable nanolaminated structure in nickel [J]. Science, 2013, 342: 337
doi: 10.1126/science.1242578 pmid: 24136963
[19] Hughes D A, Hansen N. Graded nanostructures produced by sliding and exhibiting universal behavior [J]. Phys. Rev. Lett., 2001, 87: 135503
doi: 10.1103/PhysRevLett.87.135503
[20] Wang X, Li Y S, Zhang Q, et al. Gradient structured copper by rotationally accelerated shot peening [J]. J. Mater. Sci. Technol., 2017, 33: 758
doi: 10.1016/j.jmst.2016.11.006
[21] Zhang Y, Meng G Z, Shao Y W, et al. Electrochemical corrosion behavior of nickel coating with high density of nano-scale twins [J]. J. Chin. Soc. Corros. Prot., 2009, 29: 99
[21] (张义, 孟国哲, 邵亚薇 等. 高密度纳米孪晶镍镀层的电化学腐蚀行为 [J]. 中国腐蚀与防护学报, 2009, 29: 99)
[22] Cheng Z, Zhou H F, Lu Q H, et al. Extra strengthening and work hardening in gradient nanotwinned metals [J]. Science, 2018, 362: 559
[23] Chen X D, Li Y S, Zhu Y T, et al. Layer-by-layer corrosion behavior of 316LN stainless steel with a gradient-nanostructured surface [J]. Electrochem. Commun., 2020, 110: 106642
doi: 10.1016/j.elecom.2019.106642
[24] Hills G J, Peter L M, Scharifker B R, et al. The nucleation and growth of two-dimensional anodic films under galvanostatic conditions [J]. J. Electroanal. Chem. Interfacial Electrochem., 1981, 124: 247
doi: 10.1016/S0022-0728(81)80302-6
[25] Heuer A H, Kahn H, Ernst F, et al. Enhanced corrosion resistance of interstitially hardened stainless steel: implications of a critical passive layer thickness for breakdown [J]. Acta Mater., 2012, 60: 716
doi: 10.1016/j.actamat.2011.10.004
[1] 梁超雄, 梁小红, 韩培德. 新热处理工艺调控B元素分布对S31254超级奥氏体不锈钢第二相析出和耐蚀性能的影响[J]. 中国腐蚀与防护学报, 2023, 43(3): 639-646.
[2] 贺志豪, 贾建文, 李阳, 张威, 徐芳泓, 侯利锋, 卫英慧. 超级奥氏体不锈钢在模拟烟气脱硫冷凝液中的钝化行为研究[J]. 中国腐蚀与防护学报, 2023, 43(2): 408-414.
[3] 高智悦, 姜波, 樊志彬, 王晓明, 李辛庚, 张振岳. 典型接地材料在碱性土壤模拟液中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2023, 43(1): 191-196.
[4] 吕迎玺. 高Mo超级奥氏体不锈钢耐Cl-腐蚀性能分析[J]. 中国腐蚀与防护学报, 2022, 42(5): 765-770.
[5] 王通, 孟惠民, 葛鹏飞, 李全德, 巩秀芳, 倪荣, 姜英, 龚显龙, 戴君, 隆彬. 2Cr-1Ni-1.2Mo-0.2V钢在NH4H2PO4溶液中的电化学腐蚀行为研究[J]. 中国腐蚀与防护学报, 2022, 42(4): 551-562.
[6] 王嘉琪, 李莉, 刘婷婷. 工业建筑屋面用铝锰合金的腐蚀行为[J]. 中国腐蚀与防护学报, 2022, 42(4): 693-698.
[7] 冉斗, 孟惠民, 李全德, 巩秀芳, 倪荣, 姜英, 龚显龙, 戴君, 隆彬. 温度对14Cr12Ni3WMoV不锈钢在0.02 mol/L NaCl溶液中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2021, 41(3): 362-368.
[8] 冉斗, 孟惠民, 刘星, 李全德, 巩秀芳, 倪荣, 姜英, 龚显龙, 戴君, 隆彬. pH对14Cr12Ni3WMoV不锈钢在含氯溶液中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2021, 41(1): 51-59.
[9] 张瑞,李雨,关蕾,王冠,王福雨. 热处理对激光选区熔化Ti6Al4V合金电化学腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2019, 39(6): 588-594.
[10] 施远,金洙吉,姜冠楠,刘作涛,周忠正,王泽北. YG15硬质合金电化学腐蚀机理研究[J]. 中国腐蚀与防护学报, 2019, 39(3): 253-259.
[11] 王凯, 易耀勇, 卢清华, 易江龙, 江泽新, 马金军, 张宇. 基于窄间隙焊接的热模拟峰值温度对Q690高强钢腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2018, 38(5): 447-454.
[12] 宋博强,陈旭,马贵阳,刘睿. SRB对X70管线钢在近中性pH溶液中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2016, 36(3): 212-218.
[13] 汪家梅,陆辉,段振刚,张乐福,孟凡江,徐雪莲. 模拟压水堆二回路水环境中温度对690合金电化学腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2016, 36(2): 113-120.
[14] 张宁,孙虎元,孙立娟,刘栓. X80管线钢在滨海滩涂土壤模拟液中的电化学腐蚀行为[J]. 中国腐蚀与防护学报, 2015, 35(4): 339-344.
[15] 梁平, 王莹. 覆有短期腐蚀产物膜的X80钢的电化学行为[J]. 中国腐蚀与防护学报, 2013, 33(5): 371-376.