Please wait a minute...
中国腐蚀与防护学报  2022, Vol. 42 Issue (4): 655-661    DOI: 10.11902/1005.4537.2021.145
  研究报告 本期目录 | 过刊浏览 |
镍基合金Inconel617B在700 ℃超临界水环境中的氧化行为研究
朱忠亮1(), 马辰昊1, 李宇旸1, 肖博1, 袁小虎2,3, 王硕4, 徐鸿1, 张乃强1
1.华北电力大学电站能量传递转化与系统教育部重点实验室 北京 102206
2.重庆大学材料科学与工程学院 重庆 400044
3.东方电气集团东方汽轮机有限公司 长寿命高温材料国家重点实验室 德阳 618000
4.哈尔滨锅炉厂有限责任公司 高效清洁燃煤电站锅炉国家重点实验室 哈尔滨 150046
Oxidation Behavior of Nickel-based Alloy Inconel617B in Supercritical Water at 700 ℃
ZHU Zhongliang1(), MA Chenhao1, LI Yuyang1, XIAO Bo1, YUAN Xiaohu2,3, WANG Shuo4, XU Hong1, ZHANG Naiqiang1
1.Key Laboratory of Power Station Energy Transfer, Conversion and System, Ministry of Education, North China Electric Power University, Beijing 102206, China
2.School of Materials Science and Engineering, Chongqing University, Chongqing 400044, China
3.State Key Laboratory of Long-Life High Temperature Materials, Dongfang Electric Corporation Dongfang Turbing Co. Ltd., Deyang 618000, China
4.State Key Laboratory of Efficient and Clean Coal-fired Utility Boilers, Harbin Boiler Company Limited, Harbin 150046, China
全文: PDF(11436 KB)   HTML
摘要: 

开展了镍基合金Inconel617B在700 ℃/25 MPa超临界水环境氧化实验研究。利用电子天平、SEM、XRD、XPS以及AFM对金属氧化动力学、氧化膜微观形貌、物相成分进行了分析。结果表明:700 ℃时镍基合金Inconel617B的氧化动力学介于抛物线和直线规律之间。氧化物主要为NiO、NiCr2O4以及Cr2O3,同时存在少量的Ni(OH)2、CoO以及TiO2。随着氧化时间的增加,氧化膜物相发生变化。三维形貌观察表明,氧化膜的生长源于金属离子的向外扩散。

关键词 镍基合金氧化超临界水生长机理氧化膜    
Abstract

Oxidation behavior of nickel-based alloy Inconel617B in 700 ℃/25 MPa supercritical water was studied by means of electron balance, SEM, XRD, XPS and AFM. The results show that the oxidation kinetics of Inconel617B at 700 ℃ obeys regulation in between parabolic and straight-line law, the formed oxide scales are composed mainly of NiO, NiCr2O4 and Cr2O3, and a small amount of Ni(OH)2, CoO and TiO2 are also detected. The phase constituents of the formed oxide scales varied with oxidation time. The three-dimensional morphology shows that the growth of the oxide scale can be attributed to the outward diffusion of metal ions. The growth mechanism of the oxide scale of Inconel617B in supercritical water was further discussed.

Key wordsnickel-based alloy    oxidation    supercritical water    oxidation mechanism    oxide film
收稿日期: 2021-06-25     
ZTFLH:  TK245  
基金资助:国家重点研发计划(2020YFF0218101);国家自然科学基金(52071140);中央高校基本科研业务费(2020MS007)
通讯作者: 朱忠亮     E-mail: zhzl@ncepu.edu.cn
Corresponding author: ZHU Zhongliang     E-mail: zhzl@ncepu.edu.cn
作者简介: 朱忠亮,男,1987年生,博士,讲师

引用本文:

朱忠亮, 马辰昊, 李宇旸, 肖博, 袁小虎, 王硕, 徐鸿, 张乃强. 镍基合金Inconel617B在700 ℃超临界水环境中的氧化行为研究[J]. 中国腐蚀与防护学报, 2022, 42(4): 655-661.
Zhongliang ZHU, Chenhao MA, Yuyang LI, Bo XIAO, Xiaohu YUAN, Shuo WANG, Hong XU, Naiqiang ZHANG. Oxidation Behavior of Nickel-based Alloy Inconel617B in Supercritical Water at 700 ℃. Journal of Chinese Society for Corrosion and protection, 2022, 42(4): 655-661.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2021.145      或      https://www.jcscp.org/CN/Y2022/V42/I4/655

图1  700 ℃超临界水环境下Inconel617B合金氧化增重与时间关系
图2  超临界水环境下不同氧化时间后Inconel617B合金表面形貌
图3  Inconel617B合金在超临界水环境下氧化200和600 h后的表面元素分布
PointNiCrTiCoFeMo
A28.4018.340.377.1500.18
B18.9319.880.615.0602.08
C7.8522.691.012.240.800.97
D21.4118.150.495.430.962.32
E4.0524.180.961.131.320.63
表1  图2中A~E位置点处的原子分数
图4  700 ℃超临界水环境中Inconel617B合金氧化不同时间后表面氧化物的XPS谱
图5  Inconel617B合金在700 ℃超临界水环境中氧化不同时间后的XRD谱
图6  Inconel617B合金在超临界水中氧化1000 h后的横截面形貌及元素分布图
图7  Inconel617B合金在超临界水中氧化200和1000 h后的二维和三维表面形貌特征
1 Wang Q, Wang W L, Liu M, et al. Development and prospect of (ultra) supercritical coal-fired power generation technology [J]. Therm. Power Generat., 2021, 50(2): 1
1 王倩, 王卫良, 刘敏 等. 超 (超) 临界燃煤发电技术发展与展望 [J]. 热力发电, 2021, 50(2): 1
2 Fang X D, Liu X, Xu F H, et al. Oxidation behavior in supercritical water of domestic austenitic steel C-HRA-5 for uultra-supercritical power stations [J]. J. Chin. Soc. Corros. Prot., 2020, 40: 266
2 方旭东, 刘晓, 徐芳泓 等. 超超临界电站国产奥氏体钢C-HRA-5在超临界水中的氧化特性 [J]. 中国腐蚀与防护学报, 2020, 40: 266
3 Liu X, Wang H, Zhu Z L, et al. Oxidation characteristics of austenitic heat-resistant steel HR3C and sanicro25 in supercritical water for power station [J]. J. Chin. Soc. Corros. Prot., 2020, 40: 529
3 刘晓, 王海, 朱忠亮 等. 电站用奥氏体耐热钢HR3C与Sanicro25在超临界水中的氧化特性 [J]. 中国腐蚀与防护学报, 2020, 40: 529
4 Liu R W, Xiao P, Zhong L, et al. Research progress of advanced 700 ℃ ultra-supercritical coal-fired power generation technology [J]. Therm. Power Generat., 2017, 46(9): 1
4 刘入维, 肖平, 钟犁 等. 700 ℃超超临界燃煤发电技术研究现状 [J]. 热力发电, 2017, 46(9): 1
5 Zhang Y P, Cai X Y, Huang S H. Materials in 700 ℃ advanced ultra-supercritical coal-fired units [J]. Electr. Power, 2012, 45(2): 16
5 张燕平, 蔡小燕, 黄树红. 700 ℃超超临界燃煤发电机组材料研发现状 [J]. 中国电力, 2012, 45(2): 16
6 Xu H, Deng B, Zhu Z L, et al. Oxidation characteristics of Haynes 282 nickel-based alloy in supercritical water at 600-700 ℃ [J]. Mater. Mech. Eng., 2018, 42(3): 1
6 徐鸿, 邓博, 朱忠亮 等. Haynes 282镍基合金在600~700 ℃超临界水中的氧化特性 [J]. 机械工程材料, 2018, 42(3): 1
7 Zhang Q, Tang R, Yin K J, et al. Corrosion behavior of Hastelloy C-276 in supercritical water [J]. Corros. Sci., 2009, 51: 2092
doi: 10.1016/j.corsci.2009.05.041
8 Tan L, Ren X, Sridharan K, et al. Corrosion behavior of Ni-base alloys for advanced high temperature water-cooled nuclear plants [J]. Corros. Sci., 2008, 50: 3056
doi: 10.1016/j.corsci.2008.08.024
9 Chang K H, Chen S M, Yeh T K, et al. Effect of dissolved oxygen content on the oxide structure of Alloy 625 in supercritical water environments at 700 ℃ [J]. Corros. Sci., 2014, 81: 21
doi: 10.1016/j.corsci.2013.11.034
10 Rodriguez D, Merwin A, Karmiol Z, et al. Surface chemistry and corrosion behavior of Inconel 625 and 718 in subcritical, supercritical, and ultrasupercritical water [J]. Appl. Surf. Sci., 2017, 404: 443
doi: 10.1016/j.apsusc.2017.01.119
11 Zhong X Y, Han E-H, Wu X Q. Corrosion behavior of Alloy 690 in aerated supercritical water [J]. Corros. Sci., 2013, 66: 369
doi: 10.1016/j.corsci.2012.10.001
12 Behnamian Y, Mostafaei A, Kohandehghan A, et al. A comparative study of oxide scales grown on stainless steel and nickel-based superalloys in ultra-high temperature supercritical water at 800 ℃ [J]. Corros. Sci., 2016, 106: 188
doi: 10.1016/j.corsci.2016.02.004
13 Kim D, Sah I, Lee H J, et al. Hydrogen effects on oxidation behaviors of Haynes 230 in high temperature steam environments [J]. Solid State Ionics, 2013, 243: 1
doi: 10.1016/j.ssi.2013.04.010
14 Gorman D M, Higginson R L, Du H, et al. Microstructural analysis of IN617 and IN625 oxidised in the presence of steam for use in ultra-supercritical power plant [J]. Oxid. Met., 2013, 79: 553
doi: 10.1007/s11085-012-9342-2
15 Xie D B, Zhou Y Y, Lu J T, et al. Effect of Cr content on oxidation of Ni-based alloy in supercritical water [J]. J. Chin. Soc. Corros. Prot., 2018, 38: 358
15 谢冬柏, 周游宇, 鲁金涛 等. Cr对镍基合金在超临界水中氧化行为的影响研究 [J]. 中国腐蚀与防护学报, 2018, 38: 358
16 Liu Y Y, Zhu L H, Zhou R Y, et al. Effect of microstructure evolution on properties of Inconel617B alloy welded joint creep tested at 750 ℃ [J]. Heat Treat. Met., 2017, 42(5): 62
16 刘岩岩, 朱丽慧, 周任远 等. Inconel617B合金焊接接头750 ℃持久微观组织演变对性能的影响 [J]. 金属热处理, 2017, 42(5): 62
17 McIntyre N S, Rummery T E, Cook M G, et al. X‐ray photoelectron spectroscopic study of the aqueous oxidation of monel-400 [J]. J. Electrochem. Soc., 1976, 123: 1164
doi: 10.1149/1.2133027
18 Huang J B, Wu X Q, Han E-H. Electrochemical properties and growth mechanism of passive films on alloy 690 in high-temperature alkaline environments [J]. Corros. Sci., 2010, 52: 3444
doi: 10.1016/j.corsci.2010.06.016
19 Xue T, Wang X, Lee J M. Dual-template synthesis of Co(OH)2 with mesoporous nanowire structure and its application in supercapacitor [J]. J. Power Sources, 2012, 201: 382
doi: 10.1016/j.jpowsour.2011.10.138
20 Wang Y, Liu Y, Tang H P, et al. Oxidation behaviors of porous Haynes 214 alloy at high temperatures [J]. Mater. Charact., 2015, 107: 283
doi: 10.1016/j.matchar.2015.07.026
21 Reddy B M, Khan A, Yamada Y, et al. Structural characterization of CeO2-TiO2 and V2O5/CeO2-TiO2 catalysts by Raman and XPS techniques [J]. J. Phys. Chem. B, 2003, 107: 5162
doi: 10.1021/jp0344601
22 Machet A, Galtayries A, Zanna S, et al. XPS and STM study of the growth and structure of passive films in high temperature water on a nickel-base alloy [J]. Electrochim. Acta, 2004, 49: 3957
doi: 10.1016/j.electacta.2004.04.032
23 Sennour M, Marchetti L, Martin F, et al. A detailed TEM and SEM study of Ni-base alloys oxide scales formed in primary conditions of pressurized water reactor [J]. J. Nucl. Mater., 2010, 402: 147
doi: 10.1016/j.jnucmat.2010.05.010
24 McIntyre N S, Zetaruk D G, Owen D. X-ray photoelectron studies of the aqueous oxidation of Inconel-600 alloy [J]. J. Electrochem. Soc., 1979, 126: 750
doi: 10.1149/1.2129132
25 Sun M C, Wu X Q, Zhang Z E, et al. Analyses of oxide films grown on Alloy 625 in oxidizing supercritical water [J]. J. Supercrit. Fluids, 2008, 47: 309
doi: 10.1016/j.supflu.2008.07.010
26 Chang K H, Huang J H, Yan C B, et al. Corrosion behavior of Alloy 625 in supercritical water environments [J]. Prog. Nucl. Energy, 2012, 57: 20
doi: 10.1016/j.pnucene.2011.12.015
27 Pérez-González F A, Garza-Montes-de Oca N F, Colás R. High temperature oxidation of the Haynes 282© nickel-based superalloy [J]. Oxid. Met., 2014, 82: 145
doi: 10.1007/s11085-014-9483-6
28 Haugsrud R. On the high-temperature oxidation of nickel [J]. Corros. Sci., 2003, 45: 211
doi: 10.1016/S0010-938X(02)00085-9
[1] 田卫平, 郭良帅, 王宇航, 周鹏, 张涛. Cu/Ag活化对微弧氧化涂层表面化学镀层生长及耐蚀性能的影响[J]. 中国腐蚀与防护学报, 2022, 42(4): 573-582.
[2] 王明好, 王欢, 刘叡, 孟凡帝, 刘莉, 王福会. 基于深度学习方法的N5/NiCrAlY涂层图像识别的研究[J]. 中国腐蚀与防护学报, 2022, 42(4): 583-589.
[3] 类延华, 刘宁轩, 张玉良, 常雪婷, 刘涛. 玄武岩/氧化铈改性PMMA涂层的防腐及耐磨性能的研究[J]. 中国腐蚀与防护学报, 2022, 42(4): 597-604.
[4] 王超逸, 夏呈祥, 王东胜, 强强, 赵子铭, 常雪婷. 新型F级船用低温钢表面氧化物对其耐磨性能影响研究[J]. 中国腐蚀与防护学报, 2022, 42(3): 395-402.
[5] 于帅先, 吴亚军, 武海生, 吴量, 麻彦龙, 邓盛卫, 孙立东. 钛酸酯改性硅烷涂层优化及其对5056铝箔耐蚀性能的影响[J]. 中国腐蚀与防护学报, 2022, 42(3): 378-386.
[6] 李玲, 杜汐然, 曲品权, 李建呈, 王金龙, 古岩, 张甲, 陈明辉, 王福会. 真空热处理对多弧离子镀NiCoCrAlY涂层高温氧化行为的影响[J]. 中国腐蚀与防护学报, 2022, 42(2): 243-248.
[7] 李振欣, 吕美英, 杜敏. 海水环境中组合电位极化对铁氧化菌腐蚀的影响[J]. 中国腐蚀与防护学报, 2022, 42(2): 211-217.
[8] 梁泰贺, 朱雪梅, 张振卫, 王新建, 张彦生. 铝硅复合对Fe32Mn7Cr3Al2Si钢氧化改性层耐蚀性的影响[J]. 中国腐蚀与防护学报, 2022, 42(2): 317-323.
[9] 邱盼盼, 舒小勇, 胡林丽, 杨韬, 房雨晴. Pt改性镍基高温合金铝化物涂层研究进展[J]. 中国腐蚀与防护学报, 2022, 42(2): 186-192.
[10] 江荣, 张悦, 张磊成, 高希光, 宋迎东. 直接烧结SiC循环氧化行为的试验研究[J]. 中国腐蚀与防护学报, 2022, 42(2): 249-257.
[11] 刘术辉, 刘斌, 徐大伟, 刘蔚, 陈凡伟, 刘思琪. 层状双金属氢氧化物防腐蚀涂层材料的研究进展[J]. 中国腐蚀与防护学报, 2022, 42(1): 16-24.
[12] 陈振宁, 雍兴跃, 陈晓春. 镁合金微弧氧化膜中微缺陷问题研究进展[J]. 中国腐蚀与防护学报, 2022, 42(1): 1-8.
[13] 尹续保, 李育桥, 高荣杰. 铜基超疏水表面的制备及其耐蚀性研究[J]. 中国腐蚀与防护学报, 2022, 42(1): 93-98.
[14] 邵银华, 王金龙, 张伟, 张甲, 李玲, 杜汐然, 陈明辉, 朱圣龙, 王福会. 耐热镁合金Mg-14Gd-2.3Zn-Zr的高温氧化行为研究[J]. 中国腐蚀与防护学报, 2022, 42(1): 73-78.
[15] 徐桂芳, 李园, 雷玉成, 朱强. 相对流速对高氮奥氏体不锈钢在液态铅铋共晶合金中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2021, 41(6): 899-904.