Please wait a minute...
中国腐蚀与防护学报  2022, Vol. 42 Issue (4): 662-668    DOI: 10.11902/1005.4537.2021.144
  研究报告 本期目录 | 过刊浏览 |
基于随机腐蚀的船舶结构极限承载力研究
梅佳雪1, 杜尊峰1(), 朱海涛1,2
1.天津大学建筑工程学院 天津 300072
2.天津大学 滨海土木工程结构与安全教育部重点实验室 天津 300372
Ultimate Bearing Capacity of Ship Structure Based on Random Corrosion
MEI Jiaxue1, DU Zunfeng1(), ZHU Haitao1,2
1.School of Civil Engineering and Architecture, Tianjin University, Tianjin 300072, China
2.Tianjin Binhai Civil Engineering Structure and Safety Key Laboratory of Ministry of Education Tianjin University, Tianjing 300372, China
全文: PDF(3168 KB)   HTML
摘要: 

提出了综合考虑海洋环境温度、海水氧气含量和相对湿度影响的钢质海船腐蚀数学模型,采用有限元方法分析了随机腐蚀对船舶加筋板结构局部承载力以及船体梁总纵极限承载力的影响,揭示了随机腐蚀后的船舶结构极限承载力分布规律。相较于标称海洋环境,海洋环境温度、相对湿度和海水含氧量对船舶结构腐蚀极限承载力有显著影响,且同一年限加筋板和船体梁的极限承载力服从正态分布。

关键词 随机腐蚀腐蚀速率模型船舶结构极限承载力海洋环境    
Abstract

This paper puts forward a mathematical model for corrosion of steel made sea-going ships that takes the effect of marine environment temperature, seawater oxygen content and relative humidity into account. The effect of random corrosion on the local bearing capacity of stiffened plate structure of the ship and the longitudinal ultimate bearing capacity of ship hull girder is analyzed by finite element analysis. The distribution of ultimate bearing capacity of ship structure after being subjected from random corrosion is summarized. Compared with the nominal marine environment, the temperature, relative humidity and seawater oxygen content in marine environment have a significant impact on the ultimate bearing capacity of the ship structure. However, the ultimate bearing capacity of the stiffened plates and hull girder obeys a normal distribution after service for the same period of years.

Key wordsrandom corrosion    corrosion rate model    ship structure    ultimate bearing capacity    marine environment
收稿日期: 2021-06-25     
ZTFLH:  TG174  
基金资助:国家自然科学基金(51478311);国家自然科学基金(51109158)
通讯作者: 杜尊峰     E-mail: dzf@tju.edu.cn
Corresponding author: DU Zunfeng     E-mail: dzf@tju.edu.cn
作者简介: 梅佳雪,女,1998年生,硕士生

引用本文:

梅佳雪, 杜尊峰, 朱海涛. 基于随机腐蚀的船舶结构极限承载力研究[J]. 中国腐蚀与防护学报, 2022, 42(4): 662-668.
Jiaxue MEI, Zunfeng DU, Haitao ZHU. Ultimate Bearing Capacity of Ship Structure Based on Random Corrosion. Journal of Chinese Society for Corrosion and protection, 2022, 42(4): 662-668.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2021.144      或      https://www.jcscp.org/CN/Y2022/V42/I4/662

图1  船体加筋板腐蚀厚度路线对比
图2  加筋板计算模型
图3  随机生成的加筋板厚度示意
Ship age / aStandard environmental conditionsRoute 1Route 2Route 3Route 4Route 5Route 6
6.5234.597234.597234.597234.597234.597234.597234.597
10219.040219.785217.086216.453216.500218.934217.437
15207.948207.833202.985203.081202.100207.330204.044
20197.561198.293192.062190.213190.901196.410193.496
25188.823189.698181.911181.088179.824188.025183.444
30180.500181.612172.191171.717169.475179.519173.661
表1  加筋板极限承载力计算结果
图4  加筋板极限承载力路线对比
图5  加筋板极限承载力概率
图6  集装箱船体梁有限元计算模型
Ultimate bearing capacity / 1012 N·mmANSYS (PNU)ANSYS (ISR)ABAQUS (CR)CSR (CR)CSR (PNU)ALPS/HULL (PNU)This article
Hogging6.9697.4907.6647.8797.7586.9167.777
Sagging6.9517.1767.6317.5896.8516.6357.730
表2  集装箱船体梁极限承载力结果对比
图7  随机生成的船体梁厚度示意
Ship age / aStandard environmental conditionsRoute 1Route 2Route 3Route 4Route 5Route 6
6.57.7777.7777.7777.7777.7777.7777.777
107.4407.4467.3977.3957.3897.4387.414
157.2717.3287.2427.2067.1947.2677.253
207.2427.2487.1777.1707.1557.2277.199
257.1577.1627.0817.0787.0567.1487.096
307.0777.0917.0006.9876.9767.0727.022
表3  船体梁中拱极限承载力计算结果
图8  集装箱船体梁中拱状况和中垂状况极限承载力概率
Ship age / aStandard environmental conditionsRoute 1Route 2Route 3Route 4Route 5Route 6
6.57.7307.7307.7307.7307.7307.7307.730
107.7257.7247.7077.6977.6937.7327.715
157.6077.6277.5847.5717.5767.6037.592
207.5237.5307.4657.4597.4487.5207.486
257.4327.4457.3607.3577.3437.4227.381
307.3427.3547.2577.2537.2367.3347.284
表4  船体梁中垂极限承载力计算结果
1 Fan Y M, Liu W, Sun Z T, et al. Effect of chloride ion on corrosion resistance of Ni-advanced weathering steel in simulated tropical marine atmosphere [J]. Construct. Build. Mater., 2021, 266: 120937
doi: 10.1016/j.conbuildmat.2020.120937
2 Gong K, Wu M, Xie F, et al. Effect of dry/wet ratio and pH on the stress corrosion cracking behavior of rusted X100 steel in an alternating dry/wet environment [J]. Construct. Build. Mater., 2020, 260: 120478
doi: 10.1016/j.conbuildmat.2020.120478
3 Bhandari J, Khan F, Abbassi R, et al. Pitting degradation modeling of ocean steel structures using Bayesian network [J]. J. Offshore Mech. Arct. Eng., 2017, 139: 051402
4 Soares C G, Garbatov Y, Zayed A, et al. Influence of environmental factors on corrosion of ship structures in marine atmosphere [J]. Corros. Sci., 2009, 51: 2014
doi: 10.1016/j.corsci.2009.05.028
5 Soares C G, Garbatov Y, Zayed A, et al. Effect of environmental factors on steel plate corrosion under marine immersion conditions [J]. Corros. Eng., Sci. Technol., 2011, 46: 524
6 Xu S H, Song C M, Li H. Difference in surface characteristics of corroded steel under simulated marine and general atmosphere environment [J]. Mater. Guide, 2021, 35: 2125
6 徐善华, 宋翠梅, 李晗. 模拟海洋和一般大气环境下锈蚀钢材表面形貌差异研究 [J]. 材料导报, 2021, 35: 2125
7 Lin C H, Ming N X, He C, et al. Effect of hydrostatic pressure on corrosion behavior of X70 steel in simulated sea water [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 307
7 林朝晖, 明南希, 何川 等. 静水压力对X70钢在海洋环境中腐蚀行为影响研究 [J]. 中国腐蚀与防护学报, 2021, 41: 307
8 Yang H Y, Huang G Q. Influence of environment factors on corrosion rate of carbon steel at the early stage in seawater [J]. Corros. Prot., 2014, 35: 576
8 杨海洋, 黄桂桥. 环境因素对碳钢实海暴露初期腐蚀速率的影响 [J]. 腐蚀与防护, 2014, 35: 576
9 Yang H Y, Huang G Q, Wang J. Influence of oceanic biofouling on corrosion of carbon steel in seawater [J]. Corros. Prot., 2009, 30: 78
9 杨海洋, 黄桂桥, 王佳. 生物污损对碳钢海水腐蚀的影响 [J]. 腐蚀与防护, 2009, 30: 78
10 Zheng J Y. Influence of marine biofouling on corrosion behaviour [J]. J. Chin. Soc. Corros. Prot., 2010, 30: 171
10 郑纪勇. 海洋生物污损与材料腐蚀 [J]. 中国腐蚀与防护学报, 2010, 30: 171
11 Paik J K, Kim S K, Lee S K. Probabilistic corrosion rate estimation model for longitudinal strength members of bulk carriers [J]. Ocean Eng., 1998, 25: 837
doi: 10.1016/S0029-8018(97)10009-9
12 Hu B N. Ultimate strength assessment of ship structures subjected to random corrosion [D]. Harbin: Harbin Engineering University, 2015
12 胡冰楠. 随机腐蚀船体结构极限强度分析 [D]. 哈尔滨: 哈尔滨工程大学, 2015
13 Melchers R E. Pitting corrosion of mild steel in marine immersion environment—Part 1: maximum pit depth [J]. Corrosion, 2004, 60: 824
doi: 10.5006/1.3287863
14 Dillmann P, Mazaudier F, Hœrlé S. Advances in understanding atmospheric corrosion of iron. I. Rust characterisation of ancient ferrous artefacts exposed to indoor atmospheric corrosion [J]. Corros. Sci., 2004, 46: 1401
doi: 10.1016/j.corsci.2003.09.027
[1] 滕琳, 陈旭. 海洋环境中金属电偶腐蚀研究进展[J]. 中国腐蚀与防护学报, 2022, 42(4): 531-539.
[2] 崔中雨, 葛峰, 王昕. 几种苛刻海洋大气环境下的海工材料腐蚀机制[J]. 中国腐蚀与防护学报, 2022, 42(3): 403-409.
[3] 林朝晖, 明南希, 何川, 郑平, 陈旭. 静水压力对X70钢在海洋环境中腐蚀行为影响研究[J]. 中国腐蚀与防护学报, 2021, 41(3): 307-317.
[4] 刘洋, 吴进怡, 闫小宇, 柴柯. 海洋环境中芽孢杆菌对聚氨酯清漆涂层分解的影响[J]. 中国腐蚀与防护学报, 2021, 41(1): 36-42.
[5] 王玉昆, 刘静, 胡骞, 黄峰. S2-对A710钢在NaCl溶液中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2018, 38(3): 233-240.
[6] 王理,刘春阳,韩振宇,佟文伟. 燃气轮机涡轮零部件及材料热腐蚀行为与评价方法研究[J]. 中国腐蚀与防护学报, 2011, 31(5): 399-403.
[7] 刘薇,王佳. 海洋浪溅区环境对材料腐蚀行为影响的研究进展[J]. 中国腐蚀与防护学报, 2010, 30(6): 504-512.
[8] 王春丽,吴建华,李庆芬.  海洋环境电偶腐蚀研究现状与展望[J]. 中国腐蚀与防护学报, 2010, 30(5): 416-420.
[9] 张晓云 . 环境对高强度铝合金应力腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2007, 27(6): 354-362 .
[10] 刘大扬; 魏开金; 李文军 . 南海榆林海域环境因素对钢局部腐蚀的影响[J]. 中国腐蚀与防护学报, 2003, 23(4): 211-216 .