|
|
直接烧结SiC循环氧化行为的试验研究 |
江荣1( ), 张悦1, 张磊成1, 高希光1, 宋迎东1,2 |
1.南京航空航天大学能源与动力学院 航空发动机热环境与热结构工业和信息化部重点实验室 江苏省航空动力系统重点实验室 南京 210016 2.南京航空航天大学 机械结构力学及控制国家重点实验室 南京 210016 |
|
Experimental Study of Cyclic Oxidation Behavior of Direct-sintered SiC |
JIANG Rong1( ), ZHANG Yue1, ZHANG Leicheng1, GAO Xiguang1, SONG Yingdong1,2 |
1.Jiangsu Province Key Laboratory of Aerospace Power System, Key Laboratory of Aero-engine Thermal Environment and Structure, Ministry of Industry and Infor-mation Technology, College of Energy and Power Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China 2.State Key Laboratory of Mechanics and Control Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China |
引用本文:
江荣, 张悦, 张磊成, 高希光, 宋迎东. 直接烧结SiC循环氧化行为的试验研究[J]. 中国腐蚀与防护学报, 2022, 42(2): 249-257.
Rong JIANG,
Yue ZHANG,
Leicheng ZHANG,
Xiguang GAO,
Yingdong SONG.
Experimental Study of Cyclic Oxidation Behavior of Direct-sintered SiC. Journal of Chinese Society for Corrosion and protection, 2022, 42(2): 249-257.
链接本文:
https://www.jcscp.org/CN/10.11902/1005.4537.2021.025
或
https://www.jcscp.org/CN/Y2022/V42/I2/249
|
1 |
Huang X X, Guo S Q, Yao G C, et al. Research progress of environmental barrier coatings of SiC/SiC composite for aero-engine [J]. Aviat. Maint. Eng., 2017, (2): 28
|
1 |
黄璇璇, 郭双全, 姚改成等. 航空发动机SiC/SiC复合材料环境障碍涂层研究进展 [J]. 航空维修与工程, 2017, (2): 28
|
2 |
Nasiri N A, Patra N, Ni N, et al. Oxidation behaviour of SiC/SiC ceramic matrix composites in air [J]. J. Eur. Ceram. Soc., 2016, 36: 3293
|
3 |
Wang M, Dong Z G, Zhang X Y, et al. Application of continuous fiber reinforced ceramic matrix composites in aeroengine [J]. Aeronaut. Manuf. Technol., 2014, (6): 10
|
3 |
王鸣, 董志国, 张晓越等. 连续纤维增强碳化硅陶瓷基复合材料在航空发动机上的应用 [J]. 航空制造技术, 2014, (6): 10
|
4 |
Zhang L T, Cheng L F. Discussion on strategies of sustainable development of continuous fiber reinforced ceramic matrix composites [J]. Acta Mater. Compos. Sin., 2007, 24(2): 1
|
4 |
张立同, 成来飞. 连续纤维增韧陶瓷基复合材料可持续发展战略探讨 [J]. 复合材料学报, 2007, 24(2): 1
|
5 |
Chen X H, Sun Z G, Niu X M, et al. Research progress of oxidation degradation of SiC/SiC composites [J]. J. Propuls. Technol., 2020, 41: 2143
|
5 |
陈西辉, 孙志刚, 牛序铭等. SiC/SiC复合材料氧化退化研究进展 [J]. 推进技术, 2020, 41: 2143
|
6 |
Fox D S. Oxidation behavior of chemically‐vapor‐deposited silicon carbide and silicon nitride from 1200o to 1600 ℃ [J]. J. Am. Ceram. Soc., 1998, 81: 945
|
7 |
Chen Y H, Jiang L, Sun W Z, et al. Oxidation behavior of pressureless liquid phase sintered SiC [J]. Test. Eval. Inorg. Mater., 2013, 591: 164
|
8 |
Song F B, Zhang Q, Wu X. Computer simulation of cyclic oxidation of the Al-Si coating [J]. Corros. Prot., 2002, 23: 523
|
8 |
宋复斌, 张琦, 武昕. 铝硅涂层循环氧化的计算机模拟 [J]. 腐蚀与防护, 2002, 23: 523
|
9 |
Lei M K, Yang F J, Luo P, et al. Modeling of cyclic oxidation kinetic for high-temperature alloys based on buckling spallation of oxide scale [J]. J. Chin. Soc. Corros. Prot., 2002, 22: 65
|
9 |
雷明凯, 杨辅军, 罗鹏等. 基于氧化膜屈曲破坏的高温合金循环氧化动力学模型 [J]. 中国腐蚀与防护学报, 2002, 22: 65
|
10 |
Qian Y H, Li M S, Zhang Y M. Cracking and spalling behavior of thin oxide scale [J]. Corros. Sci. Prot. Technol., 2003, 15: 90
|
10 |
钱余海, 李美栓, 张亚明. 氧化膜开裂和剥落行为 [J]. 腐蚀科学与防护技术, 2003, 15: 90
|
11 |
Evans H E, Hilton D A, Holm R A, et al. The development of localized pits during stainless steel oxidation [J]. Oxid. Met., 1980, 14: 235
|
12 |
Evans H E, Weinberg W H. A vibrational study of zirconium tetraborohydride supported on aluminum oxide. 1. Interactions with deuterium, deuterium oxide, and water vapor [J]. J. Am. Chem. Soc., 1980, 102: 2548
|
13 |
Evans H E, Hilton D A, Holm R A, et al. The influence of a titanium nitride dispersion on the oxidation behavior of 20%Cr-25%Ni stainless steel [J]. Oxid. Met., 1978, 12: 473
|
14 |
Evans H E, Hilton D A, Holm R A. Chromium-depleted zones and the oxidation process in stainless steels [J]. Oxid. Met., 1976, 10: 149
|
15 |
Opila E J, Fox D S. Cyclic oxidation of monolithic SiC and Si3N4 materials [A]. Proceedings of the 17th Annual Conference on Composites and Advanced Ceramics Materials [C]. Cocoa Beach, 1993, 367
|
16 |
Smialek J L. Universal characteristics of an interfacial spalling cyclic oxidation model [J]. Acta Mater., 2004, 52: 2111
|
17 |
Smialek J L. Cyclic oxidation modeling and life prediction [J]. Mater. Sci. Forum, 2004, 461-464: 663
|
18 |
Smialek J L. A deterministic interfacial cyclic oxidation spalling model [J]. Acta Mater., 2003, 51: 469
|
19 |
Evans H E. Cracking and spalling of protective oxide layers [J]. Mater. Sci. Eng., 1989, 120/121A: 139
|
20 |
Lins V F C, Castro M M R, Domingues R Z, et al. High temperature cyclic oxidation resistance of iron chromium base alloys [J]. Chem. Eng. Technol., 2010, 33: 334
|
21 |
Vialas N, Monceau D. Substrate effect on the high temperature oxidation behavior of a Pt-modified aluminide coating. part II: Long-term cyclic-oxidation tests at 1,050 ℃ [J]. Oxid. Met., 2007, 68: 223
|
22 |
Riffard F, Buscail H, Caudron E, et al. Yttrium addition effect on isothermal and cyclic high temperature oxidation behaviour of 304 stainless steel [J]. Surf. Eng., 2004, 20: 440
|
23 |
Riffard F, Buscail H, Caudron E, et al. Yttrium sol-gel coating effects on the cyclic oxidation behaviour of 304 stainless steel [J]. Corros. Sci., 2003, 45: 2867
|
24 |
Bull S J, Jones A M, McCabe A R. Residual stress in ion-assisted coatings [J]. Surf. Coat. Technol., 1992, 54/55: 173
|
25 |
Nicholls J R, Evans H E, Saunders S R J. Fracture and spallation of oxides [J]. Mater. High Temperat., 1997, 14: 5
|
26 |
Strawbridge A, Evans H E, Ponton C B. Spallation of oxide scales from NiCrAlY overlay coatings [J]. Mater. Sci. Forum, 1997, 251-254: 365
|
27 |
Hancock P, Nicholls J R. Failure of oxide scales [J]. Mater. High Temperat., 1994, 12: 209
|
28 |
Nicholls J R, Hancock P, Al Yasiri L H. Optimising oxidation resistance of MCrAl coating systems using vapour phase alloy design [J]. Mater. Sci. Technol., 1989, 5: 799
|
29 |
Evans H E. Spallation of oxide from stainless steel AGR nuclear fuel cladding: mechanisms and consequences [J]. Mater. Sci. Technol., 1988, 4: 414
|
30 |
Osgerby S, Berriche-Bouhanek K, Evans H E. Tensile cracking of a chromia layer on a stainless steel during thermal cycling with hold periods [J]. Mater. Sci. Eng., 2005, 412A: 182
|
31 |
Lowell C E, Barrett C A, Palmer R W, et al. COSP: A computer model of cyclic oxidation [J]. Oxid. Met., 1991, 36: 81
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|