Please wait a minute...
中国腐蚀与防护学报  2022, Vol. 42 Issue (3): 395-402    DOI: 10.11902/1005.4537.2021.254
  中国腐蚀与防护学会杰出青年学术成就奖论文专栏 本期目录 | 过刊浏览 |
新型F级船用低温钢表面氧化物对其耐磨性能影响研究
王超逸1, 夏呈祥2, 王东胜2, 强强2, 赵子铭2, 常雪婷2()
1.鞍钢集团北京研究院 北京 102200
2.上海海事大学海洋科学与工程学院 上海 201306
Effect of Surface Oxides on Wear Resistance of New F-Class Marine Low Temperature Steel
WANG Chaoyi1, XIA Chengxiang2, WANG Dongsheng2, QIANG Qiang2, ZHAO Ziming2, CHANG Xueting2()
1.Ansteel Beijing Research Institute Co. Ltd. , Beijing 102200, China
2.College of Ocean Science and Engineering, Shanghai Maritime University, Shanghai 201306, China
全文: PDF(3966 KB)   HTML
摘要: 

分别测试了新型F级船用低温钢板表面生成不同氧化物后的往复摩擦行为,并结合白光干涉仪以及扫描电子显微镜分别对钢样的显微组织形貌和磨痕形貌进行了表征。结果表明:γ-FeOOH氧化层钢样、原始钢样、Fe3O4氧化层钢样的耐磨蚀性能依次变高。其中,致密完整的Fe3O4氧化层钢样的磨损量最低,磨痕轮廓深度和尺寸都最小,表面以粘着磨蚀为主,耐蚀性也最好;γ-FeOOH氧化层微观结构较为疏松,摩擦系数最小,但是在摩擦腐蚀的协同作用下磨损量最大,磨损机理皆以磨粒磨损为主;未处理钢样的耐磨蚀性能处于两种预氧化钢样之间,以磨粒磨损为主,且表面有更多的犁沟和凹坑。

关键词 低碳合金钢氧化物极地船舶摩擦腐蚀耦合作用    
Abstract

A new F-class marine low-temperature steel plate was firstly pre-corroded to form different oxide scales. Then their reciprocating friction behavior was characterized by means of white light interferometer and scanning electron microscope in terms of the microstructure and wear morphology of the worn steel samples. The results show that the corrosion resistance of the steel samples with γ-FeOOH oxide scale, the original steel samples, and the steel samples with Fe3O4 oxide scale become higher in turn. Among them, the steel sample with the dense and complete Fe3O4 oxide scale has the lowest amount of wear, the wear scar profile is the shallowest and narrowest, and the surface is dominated by adhesive abrasion, and the corrosion resistance is also the best; the γ-FeOOH oxide scale on the steels is relatively loose with smallest friction coefficient, but the amount of wear is the largest by the coupling of friction and corrosion; the wear mechanism of the steels with the two oxide scales is mainly abrasive wear, and the surface of the untreated steel presents more furrows and pits.

Key wordslow-carbon alloy steel    oxide    polar ship    friction corrosion    coupling action
收稿日期: 2021-09-23     
ZTFLH:  TG174  
基金资助:上海市科委技术标准项目(21DZ2205700);上海市教委“曙光”计划(19SG46);科技部国际合作交流项目(CU03-29);上海深海材料工程技术中心(19DZ2253100)
通讯作者: 常雪婷     E-mail: xtchang@shmtu.edu.cn
Corresponding author: CHANG Xueting     E-mail: xtchang@shmtu.edu.cn
作者简介: 王超逸,男,1983年生,硕士,高级工程师

引用本文:

王超逸, 夏呈祥, 王东胜, 强强, 赵子铭, 常雪婷. 新型F级船用低温钢表面氧化物对其耐磨性能影响研究[J]. 中国腐蚀与防护学报, 2022, 42(3): 395-402.
Chaoyi WANG, Chengxiang XIA, Dongsheng WANG, Qiang QIANG, Ziming ZHAO, Xueting CHANG. Effect of Surface Oxides on Wear Resistance of New F-Class Marine Low Temperature Steel. Journal of Chinese Society for Corrosion and protection, 2022, 42(3): 395-402.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2021.254      或      https://www.jcscp.org/CN/Y2022/V42/I3/395

图1  表面氧化处理前后钢样的宏观形貌
图2  预氧化生成不同氧化产物的XRD谱
图3  预氧化生成不同氧化产物的SEM像
图4  裸钢样和两种预氧化钢样的极化曲线
SampleIcorr / μA·cm-2Ecorr / VSCEβc / mV·dec-1βa / mV·dec-1C-rate / 10-3 mm·a-1
Original sample1.32-0.74-69475.27
Fe3O40.62-0.68-2121262.84
γ-FeOOH1.29-0.73-109895.13
表1  裸钢和预氧化钢样的极化曲线拟合数据
图5  裸钢样和两种预氧化钢样的Nyquist曲线
图6  裸钢和预氧化钢样电化学阻抗谱拟合的等效电路图
StellRs / Ω·cm2QfRf / Ω·cm2QdRt / Ω·cm2
Y0 / 10-4 Ω-1·cm-2·snnY0 / 10-4 Ω-1·cm-2·snn
Original sample14.25---------16.760.7031452
Fe3O423.2652.360.791160.62460.653590
γ-FeOOH6.223.80.6575100.71292
表2  裸钢和预氧化钢样电化学阻抗谱拟合参数
图7  裸钢样和两种预氧化钢样的摩擦系数及平均摩擦系数
图8  裸钢样和两种预氧化钢样的磨痕轮廓截面
图9  裸钢样和两种预氧化钢样的磨损量
图10  裸钢样和两种预氧化钢样的摩擦磨损形貌
1 Yang Y, Cheng X Q, Zhao J B, et al. A study of rust layer of low alloy structural steel containing 0.1%Sb in atmospheric environment of the Yellow Sea in China [J]. Corros. Sci., 2021, 188: 109549
2 Wang Y F, Li J G, Wang Q F, et al. Some new discoveries on the structure of the rust layer of weathering steel in a simulated industrial atmosphere by STEM-EDS and HRTEM [J]. Corros. Sci., 2021, 183: 109322
3 Zhou L J, Yang S W. Investigation on crack propagation in band-like rust layers on weathering steel [J]. Constr. Build. Mater., 2021, 281: 122564
4 Gong K, Wu M, Xie F, et al. Effect of Cl- and rust layer on stress corrosion cracking behavior of X100 steel base metal and heat-affected zone in marine alternating wet/dry environment [J]. Mater. Chem. Phys., 2021, 270: 124826
5 Li Z R, Zhang D C, Wu H Y, et al. Fatigue properties of welded Q420 high strength steel at room and low temperatures [J]. Constr. Build. Mater., 2018, 189: 955
6 Chen W J, Fang L, Pan G. Corrosion evolution characteristics of Q235B Steel in O3/SO2 composite atmosphere [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 450
6 陈文娟, 方莲, 潘刚. O3/SO2复合大气环境中Q235B钢的腐蚀演化特性 [J]. 中国腐蚀与防护学报, 2021, 41: 450
7 Li L, Chen Y Q, Gao P. Corrosion resistance of various bridge steels in deicing salt environments [J]. J. Chin. Soc. Corros. Prot., 2020, 40: 448
7 李琳, 陈义庆, 高鹏. 除冰盐环境下桥梁钢的耐腐蚀性能研究 [J]. 中国腐蚀与防护学报, 2020, 40: 448
8 Shi J, Hu X W, Zhang D L, et al. Influence of microstructure on corrosion resistance of high strength weathering steel [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 721
8 石践, 胡学文, 张道刘等. 显微组织对高强耐候钢腐蚀性能的影响研究 [J]. 中国腐蚀与防护学报, 2021, 41: 721
9 Hua Y, Xu S H, Wang Y, et al. The formation of FeCO3 and Fe3O4 on carbon steel and their protective capabilities against CO2 corrosion at elevated temperature and pressure [J]. Corros. Sci., 2019, 157: 392
10 Hu J, He S J, Wang Z, et al. Stearic acid-coated superhydrophobic Fe2O3/Fe3O4 composite film on N80 steel for corrosion protection [J]. Surf. Coat. Technol., 2019, 359: 47
11 Robineau M, Romaine A, Sabot R, et al. Galvanic corrosion of carbon steel in anoxic conditions at 80 °C associated with a heterogeneous magnetite (Fe3O4) /mackinawite (FeS) layer [J]. Electrochim. Acta, 2017, 255: 274
12 Sun J R, Wang Z G, Zhang H P, et al. Structural, mechanical and magnetic properties studies on high-energy Kr-ion irradiated Fe3O4 material (main corrosion layer of Fe-based alloys) [J]. J. Nucl. Mater., 2014, 455: 685
13 Kumar R, Gautam S, Hwang I C, et al. Preparation and characterization of α-Fe2O3 polyhedral nanocrystals via annealing technique [J]. Mater. Lett., 2009, 63: 1047
14 Tjong S C, Chen H. Nanocrystalline materials and coatings [J]. Mater. Sci. Eng., 2004, 45B: 1
15 Kamat P V. Photophysical, photochemical and photocatalytic aspects of metal nanoparticles [J]. J. Phys. Chem., 2002, 106B: 7729
16 El-Mahdy G A, Atta A M, Al-Lohedan H A. Synthesis and characterizations of Fe3O4 nanogel composite for enhancement of the corrosion resistance of steel in HCl solutions [J]. J. Taiwan Inst. Chem. Eng., 2014, 45: 1947
17 Zhan Y Q, Zhang J M, Wan X Y, et al. Epoxy composites coating with Fe3O4 decorated graphene oxide: Modified bio-inspired surface chemistry, synergistic effect and improved anti-corrosion performance [J]. Appl. Surf. Sci., 2018, 436: 756
18 China Classification Society. Code for materials and welding [R]. Beijing: China Classification Society, 2018
18 中国船级社. 材料与焊接规范 [R]. 北京: 中国船级社, 2018
19 Yu X L, Jiang Z Y, Wei D B, et al. Tribological properties of magnetite precipitate from oxide scale in hot-rolled microalloyed steel [J]. Wear, 2013, 302: 1286
20 Park J O, Rhee K Y, Park S J. Silane treatment of Fe3O4 and its effect on the magnetic and wear properties of Fe3O4/epoxy nanocomposites [J]. Appl. Surf. Sci., 2010, 256: 6945
21 Ma F L, Li J L, Zeng Z X, et al. Tribocorrosion behavior in artificial seawater and anti-microbiologically influenced corrosion properties of TiSiN-Cu coating on F690 steel [J]. J. Mater. Sci. Technol., 2019, 35: 448
22 Tan L W, Wang Z W, Ma Y L. Tribocorrosion behavior and degradation mechanism of 316L stainless steel in typical corrosive media [J]. Acta Metall. Sin. (Engl. Lett.), 2021, 34: 813
23 Lee L, Behera P, Sriraman K R, et al. Effects of humidity on the sliding wear properties of Zn-Ni alloy coatings [J]. RSC Adv., 2017, 7: 22662
24 Zheng Y X, Liu Y, Song Q S, et al. High-temperature oxidation behavior and wear resistance of copper-based composites with Reinforcers of C, ZrSiO4 and Fe [J]. J. Chin. Soc. Corros. Prot., 2020, 40: 191
[1] 刘术辉, 刘斌, 徐大伟, 刘蔚, 陈凡伟, 刘思琪. 层状双金属氢氧化物防腐蚀涂层材料的研究进展[J]. 中国腐蚀与防护学报, 2022, 42(1): 16-24.
[2] 谢冬柏, 洪昊, 王文, 彭晓, 多树旺. 模拟燃烧环境介质和温度对不锈钢表面氧化物形态的影响研究[J]. 中国腐蚀与防护学报, 2020, 40(4): 358-366.
[3] 王廷勇, 董如意, 许实, 王辉. 石墨烯改性Ti/IrTaSnSb-G金属氧化物阳极在低温和低盐NaCl溶液中的电化学性能[J]. 中国腐蚀与防护学报, 2020, 40(3): 289-294.
[4] 欧阳跃军,胡婷,王佳音,谢治辉. 镁合金表面层状双氢氧化物的电化学沉积和表征[J]. 中国腐蚀与防护学报, 2019, 39(5): 453-457.
[5] 韦鉴峰, 付洪田, 王廷勇, 许实, 王辉, 王海涛. 烧结温度对含石墨烯Ti/IrTaSnSb金属氧化物阳极性能的影响[J]. 中国腐蚀与防护学报, 2018, 38(3): 248-254.
[6] 王永利,马利,熊良银,刘实. 夹杂对自来水环境下304不锈钢腐蚀及金属离子溶出的影响[J]. 中国腐蚀与防护学报, 2016, 36(4): 328-334.
[7] 彭德全, 胡石林, 张平柱, 王辉. 304L在模拟压水堆一回路条件下长期均匀腐蚀性能的研究[J]. 中国腐蚀与防护学报, 2013, 33(4): 288-292.
[8] 张辉,王安祺,武俊伟. 固体氧化物燃料电池金属连接体保护膜层研究进展[J]. 中国腐蚀与防护学报, 2012, 32(5): 357-363.
[9] 金光熙, 潘凤红,郎成,乔利杰. SOFC连接体用STS444/Y合金的高温导电性能研究[J]. 中国腐蚀与防护学报, 2011, 31(5): 367-370.
[10] 李辉 . 钢筋混凝土阴极保护用RuMn/Ti阴极的电化学性能[J]. 中国腐蚀与防护学报, 2004, 24(5): 280-283 .
[11] 齐慧滨; 庞洪梅; 何业东; 王德仁 . 弥散氧化物微晶涂层的高温氧化性能[J]. 中国腐蚀与防护学报, 2002, 22(2): 72-78 .
[12] 田素贵; 孙太礼; 周龙江 . Cu-Al粉末烧结合金的内氧化行为[J]. 中国腐蚀与防护学报, 2001, 21(1): 59-64 .
[13] 王昆林;张庆波;魏兴国;朱允明. La_2O_3对镍基合金激光熔覆层耐蚀性的影响[J]. 中国腐蚀与防护学报, 1998, 18(3): 237-240.