Please wait a minute...
中国腐蚀与防护学报  2021, Vol. 41 Issue (6): 849-856    DOI: 10.11902/1005.4537.2021.202
  研究报告 本期目录 | 过刊浏览 |
Ce(NO3)2浓度及硅酸盐封孔处理对高铁枕梁用Mg-Zn-Y-Ca合金表面钙系磷化膜的影响
周殿买1, 姜磊2(), 王美婷2, 梁洪嘉2, 肖云龙2, 郑黎2, 于宝义2
1.中车长春轨道客车股份有限公司 长春 130062
2.沈阳工业大学材料科学与工程学院 沈阳 110023
Effects of Ce(NO3)2 Concentration and Silicate Sealing Treatment on Calcium Phosphating Film on Surface of Mg-Zn-Y-Ca Alloy for High Speed Railway Corbel
ZHOU Dianmai1, JIANG Lei2(), WANG Meiting2, LIANG Hongjia2, XIAO Yunlong2, ZHENG Li2, YU Baoyi2
1.CRRC Changchun Railway Vehicles Co. Ltd. , Changchun 130062, China
2.School of Materials Science and Engineering, Shenyang University of Technology, Shenyang 110023, China
全文: PDF(6456 KB)   HTML
摘要: 

通过点滴实验、全浸泡实验、电化学测试、扫描电镜及XRD分析,研究了稀土添加剂Ce(NO3)2浓度及硅酸盐封孔处理对枕梁用Mg-Zn-Y-Ca合金表面钙系磷化膜的影响。结果表明:Ce(NO3)2的加入和封孔处理都会改善膜层结构,提高膜层耐蚀性,且Ce(NO3)2的最优添加量为0.8 g/L。经封孔处理后膜层耐蚀性最优,其平均点滴时长为1002 s,浸泡腐蚀速率为0.0372 mg/(cm2·h),腐蚀电流密度为4.971×10-6 A/cm2,致密层电阻Rf为4854 Ω·cm2。通过磷化及封孔处理可大幅度提高镁合金防腐蚀性能,满足高铁枕梁服役要求。

关键词 钙系磷化膜Ce(NO3)2封孔处理耐蚀性镁合金    
Abstract

With the demand for continuous increment in the running speed of high-speed trains, the standards for lightweight and ride comfort requirements have also been raised. Mg-alloy has become an inevitable trend as a critical material for high-speed trains made of alloy. The effect of Ce(NO3)2 concentration as rare earth additive in silicate containing solution for sealing treatment on the performance of calcium phosphating coating of Mg-Zn-Y-Ca alloy for swing bolster were studied by means of drop test, full immersion test, electrochemical test, scanning electron microscope and XRD analysis. The results show that the sealing treatments with and without the addition of Ce(NO3)2 all can improve the structure and corrosion resistance of the coating, and the optimal addition of Ce(NO3)2 is 0.8 g/L. Correspondingly, the acquired coating has the best corrosion resistance after sealing treatment, with an average drop time of 1002 s before break down of the coating, the corrosion rate of 0.0372 mg/(cm2·h), and the corrosion current density of 4.971×10-6 A/cm2, and the coating resistance Rf is 4854 Ω·cm2. The corrosion resistance of magnesium alloy can be greatly improved through phosphating and sealing treatment, which can meet the service requirements of high-speed iron pillow beam.

Key wordscalcium phosphating film    Ce(NO3)2    hole sealing process    corrosion resistance    Mg-alloy
收稿日期: 2021-08-18     
ZTFLH:  TG174  
基金资助:中国国家铁路集团有限公司科技研究开发计划(P2020J024)
通讯作者: 姜磊     E-mail: 1138027122@qq.com
Corresponding author: JIANG Lei     E-mail: 1138027122@qq.com
作者简介: 周殿买,男,1967年生,硕士,教授级高级工程师

引用本文:

周殿买, 姜磊, 王美婷, 梁洪嘉, 肖云龙, 郑黎, 于宝义. Ce(NO3)2浓度及硅酸盐封孔处理对高铁枕梁用Mg-Zn-Y-Ca合金表面钙系磷化膜的影响[J]. 中国腐蚀与防护学报, 2021, 41(6): 849-856.
Dianmai ZHOU, Lei JIANG, Meiting WANG, Hongjia LIANG, Yunlong XIAO, Li ZHENG, Baoyi YU. Effects of Ce(NO3)2 Concentration and Silicate Sealing Treatment on Calcium Phosphating Film on Surface of Mg-Zn-Y-Ca Alloy for High Speed Railway Corbel. Journal of Chinese Society for Corrosion and protection, 2021, 41(6): 849-856.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2021.202      或      https://www.jcscp.org/CN/Y2021/V41/I6/849

图1  不同Ce(NO3)2浓度下的钙系磷化膜表面微观形貌
图2  稀土处理前后钙系磷化膜截面形貌图
图3  稀土处理前后的钙系磷化膜的EDS图谱
图4  稀土处理前后钙系磷化膜的XRD图谱
Concentration / g·L-1Drip time / sAverage drip time / s
Base material20212522
0402365420396
0.4429420440430
0.8550512563542
1.2510570483521
1.6453517422464
2.0236220216224
表1  不同Ce(NO3)2浓度下钙系磷化工艺的点滴实验结果
图5  基材及不同Ce(NO3)2浓度下钙系磷化试样的极化曲线
Concentration / g·L-1Initial mass / mgQuality after immersion / mgArea of sample / cm2Corrosion rate / mg·(cm2·h)-1
Base material1297.611249.15840.7898
01271.91227.68.76050.2107
0.41231.91188.28.70800.2091
0.81165.51131.28.26920.1728
1.21231.61193.98.70750.1804
1.61213.61175.78.66250.1823
2.01179.71130.28.56520.2403
表2  不同Ce(NO3)2浓度下钙系磷化工艺的全浸泡实验结果
Concentration g·L-1Corrosion current density Icorr / A·cm-2Corrosion potential Ecorr / V
Base material4.416×10-3-1.507
04.007×10-5-1.476
0.43.910×10-5-1.306
0.89.625×10-6-1.498
1.21.589×10-5-1.389
1.62.630×10-5-1.354
2.04.443×10-5-1.445
表3  基材及不同Ce(NO3)2浓度下钙系磷化试样的极化拟合结果
图6  基材及不同Ce (NO3) 2浓度下钙系磷化试样的电化学阻抗谱
图7  电化学阻抗谱的等效电路图
Concentration / g·L-1Rs / Ω·cm2Ydl / μΩ-1·cm-2·s-1ndlRct / Ω·cm2Yf / μΩ-1·cm-2·s-1nfRf / Ω·cm2
03018.50.86484.413.40.822359
0.431.217.10.8548812.90.862462
0.8200.411.60.36600.43.10.843620
1.2210.414.10.36560.88.90.872906
1.6180.415.50.3353210.60.772555
2.068.820.10.6644214.00.902316
表4  不同Ce(NO3)2浓度下钙系磷化试样的电化学阻抗拟合结果
图8  封孔处理后钙系磷化膜的表面微观形貌及EDS分析
图9  封孔处理后钙系磷化膜的XRD谱
图10  镁合金试样浸泡腐蚀后的表面宏观形貌
图11  不同钙系磷化工艺后试样的极化曲线及电化学阻抗谱
1 He J H. A brief analysis of the application of new lightweight materials for high-speed trains from the perspective of energy-saving [J]. Railway Energy Sav. Environ. Prot. Occup. Saf. Health, 2020, 10(5): 3
1 何九红. 浅析节能视角下高速列车轻量化新材料应用 [J]. 铁路节能环保与安全卫生, 2020, 10(5): 3
2 Liu J A. Development and application of aluminium alloy products in traffic transport industry [J]. Sichuan Nonferrous Met., 2001, (2): 21
2 刘静安. 铝材在交通运输工业中的开发与应用 [J]. 四川有色金属, 2001, (2): 21
3 Song Y L. Structure optimization of the high-speed railway’s swing boleter of aluminum alloy and the research of forming process [D]. Shenyang: Shenyang University of Technology, 2013
3 宋艳磊. 高铁铝合金枕梁结构优化及成形工艺研发 [D]. 沈阳: 沈阳工业大学, 2013
4 Jiang L, Zhang T C, Cui Y L. Modern Metal Materials and Applications [M]. Xuzhou: China University of Mining and Technology Press, 2009
4 江利, 张太超, 崔永丽. 现代金属材料及应用 [M]. 徐州: 中国矿业大学出版社, 2009
5 Zhou Y. Phosphate treatment of magnesium alloy and corrosion resistance [D]. Beijing: Beijing University of Chemical Technology, 2012
5 周勇. 镁合金磷化处理及其耐蚀性研究 [D]. 北京: 北京化工大学, 2012
6 Yu H R, Zhang W L, Cui Z Y. Difference in corrosion behavior of four Mg-alloys in Cl--NH4+-NO3- containing solution [J]. J. Chin. Soc. Corros. Prot., 2020, 40: 553
6 于浩冉, 张文丽, 崔中雨. 4种镁合金在Cl--NH4+-NO3-溶液体系中的腐蚀行为差异研究 [J]. 中国腐蚀与防护学报, 2020, 40: 553
7 Jia Y Z, Wang B J, Zhao M J, et al. Effect of solid solution treatment on corrosion and hydrogen evolution behavior of an as-extruded Mg-Zn-Y-Nd alloy in an artificial body fluid [J]. J. Chin.Soc. Corros.Prot., 2020, 40: 351
7 郏义征, 王保杰, 赵明君等. 固溶处理制度对挤压态Mg-Zn-Y-Nd镁合金在模拟体液中腐蚀和析氢行为的影响规律研究 [J]. 中国腐蚀与防护学报, 2020, 40: 351
8 Chen H, Wang C C, Kang Y B, et al. Research status of micro-arc oxidation of magnesium alloy [J]. Surf. Technol., 2019, 48(7): 49
8 陈宏, 王成成, 康亚斌等. 镁合金微弧氧化的研究现状 [J]. 表面技术, 2019, 48(7): 49
9 Jiang B L, Zhang S F, Wu G J. The study of the corrosion resistance of the ceramic coatings formed by micro-arc oxidation on the Mg-base alloy [J]. J. Chin. Soc. Corros. Prot., 2002, 22: 300
9 蒋百灵, 张淑芬, 吴国建. 镁合金微弧氧化陶瓷层耐蚀性的研究 [J]. 中国腐蚀与防护学报, 2002, 22: 300
10 Liu M M. Study of preparation and properties of phosphate conversion coating on AZ91D magnesium alloy [D]. Taiyuan: Taiyuan University of Technology, 2018
10 刘苗苗. AZ91D镁合金磷酸盐转化膜的制备及其性能研究 [D]. 太原: 太原理工大学, 2018
11 Wang Z H, Zhang J M, Bai L J, et al. Microstructure and property of composite coatings on AZ91 Mg-alloy prepared by micro-arc oxidation and electroless Cu-layer [J]. J. Chin. Soc. Corros. Prot., 2018, 38: 391
11 王志虎, 张菊梅, 白力静等. AZ91镁合金表面微弧氧化与化学镀铜复合处理层的微观组织与性能 [J]. 中国腐蚀与防护学报, 2018, 38: 391
12 Ren C. Discussion on corrosion properties and protection of magnesium alloys [J]. Sci. Technol. Inform., 2016, 14(19): 63
12 任翀. 镁合金的腐蚀特性及防护探讨 [J]. 科技资讯, 2016, 14(19): 63
13 Lu S, Fu L, Chen J. Research review of thermal spraying on magnesium alloys [J]. J. Jiangsu Univ. Sci. Technol. (Nat. Sci. Ed.), 2010, 24: 249
13 芦笙, 付丽, 陈静. 镁合金热喷涂研究进展 [J]. 江苏科技大学学报 (自然科学版), 2010, 24: 249
14 Shi N, Zhang S D, Tian Y H. Study on phosphate process for AZ91D magnesium alloy [J]. Electroplat. Pollut. Control, 2017, 37(5): 33
14 史宁, 张书弟, 田亚辉. AZ91D镁合金磷化工艺的研究 [J]. 电镀与环保, 2017, 37(5): 33
15 Zeng R C, Hu Y, Zhang F, et al. Corrosion resistance of cerium-doped zinc calcium phosphate chemical conversion coatings on AZ31 magnesium alloy [J]. Trans. Nonferrous Met. Soc. China, 2016, 26: 472
16 Ding F. Study on the calcium phosphating process and the corrosion resistance properties of AZ31 magnesium alloys [D]. Maanshan: Anhui University of Technology, 2013
16 丁飞. AZ31镁合金钙系磷化工艺及腐蚀性能研究 [D]. 马鞍山: 安徽工业大学, 2013
17 Lu Y B. Preparation and fluoride treatment of the calcium-phosphorus coating on the AZ60 magnesium alloy [D]. Changchun: Jilin University, 2014
17 卢艳波. AZ60镁合金表面钙系磷化膜的制备及其后续氟化处理 [D]. 长春: 吉林大学, 2014
18 Zhang Y. Study on micro-arc oxidation nano-ceramic coatings formed on cast aluminum alloys and its properties [D]. Hangzhou: Zhejiang University of Technology, 2017
18 张宇. 铸造铝合金微弧氧化纳米陶瓷涂层制备工艺优化及其性能研究 [D]. 杭州: 浙江工业大学, 2017
[1] 房豪杰, 曲华, 杨黎晖, 曾庆亚, 王丽丹, 袁宁, 侯保荣, 曹立新, 袁迅道. 9C系列粉末冶金高耐蚀铝合金腐蚀行为研究[J]. 中国腐蚀与防护学报, 2021, 41(6): 775-785.
[2] 刘星, 冉斗, 孟惠民, 李全德, 巩秀芳, 隆彬. 表面状态对TC4钛合金的耐蚀性影响[J]. 中国腐蚀与防护学报, 2021, 41(6): 828-836.
[3] 丁玉康, 陈国美, 倪自丰, 刘雅玄, 钱善华, 卞达, 赵永武. 六方氮化硼改性硅烷膜耐蚀性能研究[J]. 中国腐蚀与防护学报, 2021, 41(6): 864-870.
[4] 吴林涛, 周泽华, 张欣, 杨光恒, 张凯城, 王光宇. 等离子喷涂FeCrMoCBY铁基非晶涂层耐蚀性研究[J]. 中国腐蚀与防护学报, 2021, 41(5): 717-720.
[5] 刘宏宇, 张喜庆, 滕莹雪, 李胜利. 含铜低碳钢在海洋环境下的耐蚀和防污性能的研究[J]. 中国腐蚀与防护学报, 2021, 41(5): 679-685.
[6] 杨光恒, 周泽华, 张欣, 吴林涛, 梅婉. 磁场作用下不同Mg含量Al-Mg合金腐蚀行为研究[J]. 中国腐蚀与防护学报, 2021, 41(5): 633-638.
[7] 郎丰军, 黄峰, 徐进桥, 李利巍, 岳江波, 刘静. Mg处理X70级抗酸性海底管线钢 (X70MOS) 成分设计及耐蚀性能研究[J]. 中国腐蚀与防护学报, 2021, 41(5): 617-624.
[8] 张浩然, 吴鸿燕, 王善林, 左瑶, 陈玉华, 尹立孟. 含硫化物夹杂的铁基非晶合金点蚀规律[J]. 中国腐蚀与防护学报, 2021, 41(4): 477-486.
[9] 王晓鸽, 高克玮, 颜鲁春, 杨会生, 庞晓露. Ce对镁合金表面ZnAlCe-LDHs薄膜耐腐蚀性能的影响机理研究[J]. 中国腐蚀与防护学报, 2021, 41(3): 335-340.
[10] 王东亮, 丁华平, 马云飞, 龚攀, 王新云. 非晶合金耐蚀性研究进展[J]. 中国腐蚀与防护学报, 2021, 41(3): 277-288.
[11] 乔及森, 夏宗辉, 刘立博, 许佳敏, 刘旭东. 铝镁双金属反向等温包覆挤压棒材耐腐蚀性能[J]. 中国腐蚀与防护学报, 2021, 41(2): 255-262.
[12] 黄鹏, 高荣杰, 刘文斌, 尹续保. 盐溶液刻蚀-氟化处理制备X65管线钢镀镍超双疏表面及其耐蚀性研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 96-100.
[13] 魏征, 马保吉, 李龙, 刘潇枫, 李慧. 镁合金表面超声滚压预处理对微弧氧化膜耐蚀性能的影响[J]. 中国腐蚀与防护学报, 2021, 41(1): 117-124.
[14] 郑黎, 王美婷, 于宝义. 镁合金表面冷喷涂技术研究进展[J]. 中国腐蚀与防护学报, 2021, 41(1): 22-28.
[15] 岳亮亮, 马保吉. 超声表面滚压对AZ31B镁合金腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2020, 40(6): 560-568.