|
|
2-氨基苯并噻唑与苯并三氮唑复配体系对Cu的缓蚀性能 |
卢爽, 任正博, 谢锦印, 刘琳( ) |
渤海大学 化学与材料工程学院 功能化合物的合成及应用辽宁省重点实验室 锦州 121013 |
|
Investigation of Corrosion Inhitibion Behavior of 2-aminobenzothiazole and Benzotriazole on Copper Surface |
LU Shuang, REN Zhengbo, XIE Jinyin, LIU Lin( ) |
Liaoning Province Key Laboratory for Synthesis and Application of Functional Compounds, College of Chemistry and Chemical Engineering, Bohai University, Jinzhou 121013, China |
引用本文:
卢爽, 任正博, 谢锦印, 刘琳. 2-氨基苯并噻唑与苯并三氮唑复配体系对Cu的缓蚀性能[J]. 中国腐蚀与防护学报, 2020, 40(6): 577-584.
Shuang LU,
Zhengbo REN,
Jinyin XIE,
Lin LIU.
Investigation of Corrosion Inhitibion Behavior of 2-aminobenzothiazole and Benzotriazole on Copper Surface. Journal of Chinese Society for Corrosion and protection, 2020, 40(6): 577-584.
链接本文:
https://www.jcscp.org/CN/10.11902/1005.4537.2019.195
或
https://www.jcscp.org/CN/Y2020/V40/I6/577
|
[1] |
Kovačević N, Milošev I, Kokalj A. The roles of mercapto, benzene, and methyl groups in the corrosion inhibition of imidazoles on copper: II. Inhibitor-copper bonding [J]. Corros. Sci., 2015, 98: 457
|
[2] |
Huang H J, Wang Z Q, Gong Y L, et al. Water soluble corrosion inhibitors for copper in 3.5 wt% sodium chloride solution [J]. Corros. Sci., 2017, 123: 339
|
[3] |
Bokati K S, Dehghanian C, Yari S. Corrosion inhibition of copper, mild steel and galvanically coupled copper-mild steel in artificial sea water in presence of 1H-benzotriazole, sodium molybdate and sodium phosphate [J]. Corros. Sci., 2017, 126: 272
|
[4] |
Pan Y C, Wen Y, Guo X Y, et al. 2-amino-5-(4-pyridinyl)-1, 3, 4-thiadiazole monolayers on copper surface: observation of the relationship between its corrosion inhibition and adsorption structure [J]. Corros. Sci., 2013, 73: 274
|
[5] |
Liu L, Pan X N, Zhang Q, et al. Corrosion inhibition and olecular structure of thiadiazole derivatives in sulfur-ethanol system [J]. CIESC J., 2014, 65: 4039
|
[5] |
(刘琳, 潘晓娜, 张强,等. 噻二唑衍生物分子结构与其缓蚀性能的关系 [J]. 化工学报, 2014, 65: 4039)
doi: 10.3969/j.issn.0438-1157.2014.10.038
|
[6] |
Qian J H, Pan X N, Zhang Q, et al. Synthesis of 2, 5-diaryl-1, 3, 4-thiadiazole corrosion inhibitors and their performance [J]. CIESC J., 2015, 66: 2737
|
[6] |
(钱建华, 潘晓娜, 张强等. 2, 5-二芳基-1, 3, 4-噻二唑衍生物的合成及缓蚀性能 [J]. 化工学报, 2015, 66: 2737)
|
[7] |
Liu L, Ren Z B, Su H Y, et al. Inhibition behavior of self-assembled films of Schiff bases for copper [J]. CIESC J., 2018, 69: 4324
|
[7] |
(刘琳, 任正博, 苏红玉等. 自组装席夫碱膜对铜的缓蚀行为 [J]. 化工学报, 2018, 69: 4324)
|
[8] |
Parker G K, Holt S A. Characterization of the deposition of n-octanohydroxamate on copper surfaces [J]. J. Electrochem. Soc., 2014, 161: D277
|
[9] |
Blickensderfer J, Altemare P, Thiel K O, et al. Direct electroless plating of iron-boron on copper [J]. J. Electrochem. Soc., 2014, 161: D495
|
[10] |
Li L, Zhang X H, Gong S D, et al. The discussion of descriptors for the QSAR model and molecular dynamics simulation of benzimidazole derivatives as corrosion inhibitors [J]. Corros. Sci., 2015, 99: 76
|
[11] |
Sarkar J, Chowdhury J, Ghosh M, et al. Experimental and theoretical surface enhanced raman scattering study of 2-amino-4-methylbenzothiazole adsorbed on colloidal silver particles [J]. J. Phys. Chem., 2005, 109B: 22536
|
[12] |
Chugh B, Singh A K, Thakur S, et al. An exploration about the interaction of mild steel with hydrochloric acid in the presence of N-(Benzo[d]thiazole-2-yl)-1-phenylethan-1-imines [J]. J. Phys. Chem., 2019, 123C: 22897
|
[13] |
Danaee I, Gholami M, RashvandAvei M, et al. Quantum chemical and experimental investigations on inhibitory behavior of amino-imino tautomeric equilibrium of 2-aminobenzothiazole on steel corrosion in H2SO4 solution [J]. J. Ind. Eng. Chem., 2015, 26: 81
|
[14] |
Liao D M, Yu P, Luo Y B, et al. Inhibition action of benzotriazole and tolytriazole on corrosion of copper in deionized water [J]. J. Chin. Soc. Corros. Prot., 2002, 22: 359
|
[14] |
(廖冬梅, 于萍, 罗运柏等. 苯并三氮唑及其甲基衍生物在去离子水中对铜的缓蚀作用 [J]. 中国腐蚀与防护学报, 2002, 22: 359)
|
[15] |
Zhang S G, Chen Y, Wang F Y. Molecular dynamics simulation of interaction between cuprous oxide crystal and benzotriazole derivatives [J]. J. Chin. Soc. Corros. Prot., 2007, 27: 348
|
[15] |
(张曙光, 陈瑜, 王风云. 苯并三氮唑及其衍生物与氧化亚铜晶体相互作用的MD模拟 [J]. 中国腐蚀与防护学报, 2007, 27: 348)
|
[16] |
Behead H, Forghani A. Correlation between electronic parameters and corrosion inhibition of benzothiazole derivatives-NMR parameters as important and neglected descriptors [J]. J. Mol. Struct., 2017, 1131: 163
|
[17] |
Chen Z Y, Huang L, Zhang G A, et al. Benzotriazole as a volatile corrosion inhibitor during the early stage of copper corrosion under adsorbed thin electrolyte layers [J]. Corros. Sci., 2012, 65: 214
|
[18] |
Chen S Q, Zhang D. Study of corrosion behavior of copper in 3.5wt.%NaCl solution containing extracellular polymeric substances of an aerotolerant sulphate-reducing bacteria [J]. Corros. Sci., 2018, 136: 275
|
[19] |
Sheng X X, Ting Y P, Pehkonen S O. Evaluation of an organic corrosion inhibitor on abiotic corrosion and microbiologically influenced corrosion of mild steel [J]. Ind. Eng. Chem. Res., 2007, 46: 7117
doi: 10.1021/ie070669f
|
[20] |
Machnikova E, Whitmire K H, Hackerman N. Corrosion inhibition of carbon steel in hydrochloric acid by furan derivatives [J]. Electrochim. Acta, 2008, 53: 6024
|
[21] |
Xu F L, Duan J Z, Zhang S F, et al. The inhibition of mild steel corrosion in 1 M hydrochloric acid solutions by triazole derivative [J]. Mater. Lett., 2008, 62: 4072
|
[22] |
Cui H, Tan C Y, Zheng Y, et al. Electrochemical behavior of copper passivated by BTA and MBT in NaCl solution [J]. J. Central South Univ. (Sci. Technol.), 2011, 42: 3336
|
[22] |
(崔航, 谭澄宇, 郑勇等. 铜经BTA和MBT钝化处理后在NaCl溶液中电化学行为分析 [J]. 中南大学学报(自然科学版), 2011, 42: 3336)
|
[23] |
Xu Q J, Zhou G D, Lu Z, et al. SERS studies of corrosion inhibition of BTA and its derivative on copper electrodes in NaCl solution [J]. Chin. J. Appl. Chem., 2002, 19: 390
|
[23] |
(徐群杰, 周国定, 陆柱等. 苯并三氮唑及其衍生物在NaCl溶液中对铜缓蚀作用的表面增强拉曼光谱 [J]. 应用化学, 2002, 19: 390)
|
[24] |
Xu Q J, Zhou G D, Lu Z, et al. Corrosion inhibition of BTA and its derivative 4CBTA on copper electrode in 3%NaCl solution [J]. Chin. J. Nonferrous Met., 2001, 11: 135
|
[24] |
(徐群杰, 周国定, 陆柱等. 苯并三氮唑与4-羧基苯并三氮唑在氯化钠溶液中对铜的缓蚀作用 [J]. 中国有色金属学报, 2001, 11: 135)
|
[25] |
Wei X, Deng Y L, Zheng X M, et al. Ground structure and excited state proton transfer reaction of 2-aminobenzothiazole [J]. Chem. J. Chin. Univ., 2019, 40: 1679
|
[25] |
(魏馨, 邓要亮, 郑旭明等. 2-氨基苯并噻唑的结构及激发态质子转移动力学 [J]. 高等学校化学学报, 2019, 40: 1679)
|
[26] |
Arjunan V, Balamourougane P S, Mythili C V, et al. Vibrational, nuclear magnetic resonance and electronic spectra, quantum chemical investigations of 2-amino-6-fluorobenzothiazole [J]. J. Mol. Struct., 2011, 1006: 247
|
[27] |
Arjunan V, Sakiladevi S, Rani T, et al. FTIR, FT-Raman, FT-NMR, UV-visible and quantum chemical investigations of 2-amino-4-methylbenzothiazole [J]. Spectrochim. Acta, 2012, 88A: 220
|
[28] |
Arjunan V, Raj A, Santhanam R, et al. Structural, vibrational, electronic investigations and quantum chemical studies of 2-amino-4-methoxybenzothiazole [J]. Spectrochim. Acta, 2013, 102A: 327
|
[29] |
Zhang M L, Zhao J M. Research progress of synergistic inhibition effect and mechanism [J]. J. Chin. Soc. Corros. Prot., 2016, 36: 1
|
[29] |
(张漫路, 赵景茂. 缓蚀剂协同效应与协同机理的研究进展 [J]. 中国腐蚀与防护学报, 2016, 36: 1)
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|