Please wait a minute...
中国腐蚀与防护学报  2020, Vol. 40 Issue (6): 577-584    DOI: 10.11902/1005.4537.2019.195
  研究报告 本期目录 | 过刊浏览 |
2-氨基苯并噻唑与苯并三氮唑复配体系对Cu的缓蚀性能
卢爽, 任正博, 谢锦印, 刘琳()
渤海大学 化学与材料工程学院 功能化合物的合成及应用辽宁省重点实验室 锦州 121013
Investigation of Corrosion Inhitibion Behavior of 2-aminobenzothiazole and Benzotriazole on Copper Surface
LU Shuang, REN Zhengbo, XIE Jinyin, LIU Lin()
Liaoning Province Key Laboratory for Synthesis and Application of Functional Compounds, College of Chemistry and Chemical Engineering, Bohai University, Jinzhou 121013, China
全文: PDF(7005 KB)   HTML
摘要: 

采用分子自组装技术在Cu表面制备缓蚀膜。通过电化学方法分别测试2-氨基苯并噻唑 (ABT),苯并三氮唑 (BTA) 单独存在和复配后的性能,考察了复配缓蚀剂的配比和浓度两个因素的影响。通过动力学,并结合场发射扫描电子显微镜 (SEM)、原子力显微镜 (AFM)、拉曼光谱 (RAM) 和光学接触角 (CA) 分析,探讨了缓蚀机理;通过计算协同参数S来衡量ABT和BTA协同效应的强弱。结果表明,当总浓度为20 mmol/L,各自比例占50%时,缓蚀率可达96.34%。两种缓蚀剂同时存在物理吸附 (分子间作用力) 和化学吸附 (孤对电子和金属空轨道结合形成配位化合物),且在铜片表面形成致密且有序的保护膜。同时,经ABT-BTA组装的Cu表面的接触角较大,表面粗糙度较小;ABT比例为50%时,S=25.32,在此条件下协同作用较强。

关键词 Cu2-氨基苯并噻唑苯并三氮唑自组装膜协同效应缓蚀    
Abstract

Corrosion inhibition films of 2-aminobenzothiazole (ABT), benzotriazole (BTA) and mixtures of ABT to BTA on Cu surface were fabricated through molecular self-assembled process and then characterized by means of field emission scanning electron microscopy (SEM), atomic force microscopy (AFM), Raman spectroscopy (RAM) and optical Contact Angle (CA) measurement, while their corrosion inhibition behavior at 25 ℃ in 3.5% (mass fraction) NaCl solution was assessed. Two factors, namely the molar ratio of ABT to BTA of their mixtures and the dose of the mixture on the corrosion inhibition behavior were studied, respectively. When the dose of the inhibitors mixture was 20 mmol/L with the molar ratio was 1:1, its corrosion inhibition efficiency could reach up to 96.34%. The inhibition mechanism of ABT and BTA were acquired through kinetic analysis. Results confirmed that there exist physical absorption and chemisorption for all of them. The corrosion inhibition performance of complex films of the two inhibitors was better than that of every single inhibitor. The relevant collaborative parameters were calculated for predicting the performance of synergistic effect.

Key wordsCu    2-aminobenzothiazole    benzotriazole    self-assembly membrane    synergistic effect    corrosion inhibition
收稿日期: 2019-11-01     
ZTFLH:  TG174.42  
基金资助:辽宁省创新团队项目(2018-479-14);辽宁省创新团队项目(LT2015001)
通讯作者: 刘琳     E-mail: liulin@bhu.edu.cn
Corresponding author: LIU Lin     E-mail: liulin@bhu.edu.cn
作者简介: 卢爽,女,1996年生,硕士生

引用本文:

卢爽, 任正博, 谢锦印, 刘琳. 2-氨基苯并噻唑与苯并三氮唑复配体系对Cu的缓蚀性能[J]. 中国腐蚀与防护学报, 2020, 40(6): 577-584.
Shuang LU, Zhengbo REN, Jinyin XIE, Lin LIU. Investigation of Corrosion Inhitibion Behavior of 2-aminobenzothiazole and Benzotriazole on Copper Surface. Journal of Chinese Society for Corrosion and protection, 2020, 40(6): 577-584.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2019.195      或      https://www.jcscp.org/CN/Y2020/V40/I6/577

图1  ABT和BTA有机物分子结构
图2  Cu电极分别经不同浓度ABT和BTA组装后在3.5%NaCl溶液中的动电位极化曲线
InhibitorCmmol·L-1IcorrμA·cm-2βcV·dec-1βamV·dec-1IE %θ
Blank05.7350.3750.035------
ABT51.7300.1400.05169.800.698
100.9580.1620.04083.280.832
151.1910.1660.04579.220.792
201.3500.2060.04276.460.764
BTA50.4400.1490.05892.320.923
100.3750.1520.08193.470.934
150.2370.0760.02595.870.958
200.3360.0810.02894.150.941
表1  Cu电极分别经不同浓度ABT和BTA组装后的极化曲线拟合参数
图3  在ABT和BTA总浓度为20 mmol/L而ABT浓度不同时,Cu电极在3.5%NaCl溶液中的动电位极化曲线
Concentration of ABT%IcorrμA·cm-2βcV·dec-1βamV·dec-1IE %θ
Blank5.7350.3750.035------
00.3360.0810.02894.150.941
100.2540.1290.16095.580.955
300.2180.1790.04196.200.962
500.2100.2040.03596.340.963
702.3360.1270.06659.200.592
902.8820.2420.07049.750.497
1001.3500.2060.04276.470.764
表2  对图3中极化曲线拟合所得电化学参数
图4  在ABT浓度为50%时而ABT-BTA总浓度不同的自组装条件下,Cu电极在3.5%NaCl溶液中的动电位极化曲线
Cmmol·L-1IcorrμA·cm-2βcV·dec-1βamV·dec-1IE %θ
Blank5.7350.3750.035------
100.5590.1950.07390.260.902
200.2100.2040.03596.340.963
300.2520.2090.04395.600.956
400.2710.1340.02595.280.952
表3  对图4中极化曲线拟合所得电化学参数
图5  经总浓度为20 mmol/L而ABT浓度不同条件下自组装后,Cu电极在3.5%NaCl溶液中的Nyquist图
α (ABT) %RsΩ·cm2RctkΩ·cm2QdlμF·cm-2NWμΩ·S-1/2
013.2723.198.120.707---
1010.7627.356.180.810---
3012.4628.706.030.705---
5013.8236.043.440.792---
7014.729.9920.350.826712.8
9014.038.8123.450.868330.3
10014.6412.2018.950.843---
表4  对图5中阻抗谱拟合所得等效电路各元件参数
图6  经ABT浓度为50%而ABT-BTA总浓度不同条件下自组装后,Cu电极在3.5%NaCl溶液中的Nyquist图
C / mmol·L-1Rs / Ω·cm2Rct / kΩ·cm2Qdl / μF·cm-2N2
1012.0315.399.220.773
2013.8236.043.440.792
3013.7324.794.860.772
4013.8719.275.910.766
表5  对图6中阻抗谱拟合所得等效电路各元件参数
图7  表面自组装不同缓蚀剂的Cu电极在3.5%NaCl溶液中的等效电路图
图8  不同浓度的ABT和BTA在Cu表面的Langmuir吸附等温曲线
图9  铜片分别经ABT,BTA和ABT-BTA组装后在3.5%NaCl溶液中腐蚀后的SEM像
图10  裸铜,分别经ABT,BTA和ABT-BTA 组装后于Cu表面测得的接触角
图11  铜片表面分别经BTA,ABT和ABT-BTA组装后的Raman光谱
图12  ABT,ABT-BTA和BTA组装铜表面的AFM像
[1] Kovačević N, Milošev I, Kokalj A. The roles of mercapto, benzene, and methyl groups in the corrosion inhibition of imidazoles on copper: II. Inhibitor-copper bonding [J]. Corros. Sci., 2015, 98: 457
[2] Huang H J, Wang Z Q, Gong Y L, et al. Water soluble corrosion inhibitors for copper in 3.5 wt% sodium chloride solution [J]. Corros. Sci., 2017, 123: 339
[3] Bokati K S, Dehghanian C, Yari S. Corrosion inhibition of copper, mild steel and galvanically coupled copper-mild steel in artificial sea water in presence of 1H-benzotriazole, sodium molybdate and sodium phosphate [J]. Corros. Sci., 2017, 126: 272
[4] Pan Y C, Wen Y, Guo X Y, et al. 2-amino-5-(4-pyridinyl)-1, 3, 4-thiadiazole monolayers on copper surface: observation of the relationship between its corrosion inhibition and adsorption structure [J]. Corros. Sci., 2013, 73: 274
[5] Liu L, Pan X N, Zhang Q, et al. Corrosion inhibition and olecular structure of thiadiazole derivatives in sulfur-ethanol system [J]. CIESC J., 2014, 65: 4039
[5] (刘琳, 潘晓娜, 张强,等. 噻二唑衍生物分子结构与其缓蚀性能的关系 [J]. 化工学报, 2014, 65: 4039)
doi: 10.3969/j.issn.0438-1157.2014.10.038
[6] Qian J H, Pan X N, Zhang Q, et al. Synthesis of 2, 5-diaryl-1, 3, 4-thiadiazole corrosion inhibitors and their performance [J]. CIESC J., 2015, 66: 2737
[6] (钱建华, 潘晓娜, 张强等. 2, 5-二芳基-1, 3, 4-噻二唑衍生物的合成及缓蚀性能 [J]. 化工学报, 2015, 66: 2737)
[7] Liu L, Ren Z B, Su H Y, et al. Inhibition behavior of self-assembled films of Schiff bases for copper [J]. CIESC J., 2018, 69: 4324
[7] (刘琳, 任正博, 苏红玉等. 自组装席夫碱膜对铜的缓蚀行为 [J]. 化工学报, 2018, 69: 4324)
[8] Parker G K, Holt S A. Characterization of the deposition of n-octanohydroxamate on copper surfaces [J]. J. Electrochem. Soc., 2014, 161: D277
[9] Blickensderfer J, Altemare P, Thiel K O, et al. Direct electroless plating of iron-boron on copper [J]. J. Electrochem. Soc., 2014, 161: D495
[10] Li L, Zhang X H, Gong S D, et al. The discussion of descriptors for the QSAR model and molecular dynamics simulation of benzimidazole derivatives as corrosion inhibitors [J]. Corros. Sci., 2015, 99: 76
[11] Sarkar J, Chowdhury J, Ghosh M, et al. Experimental and theoretical surface enhanced raman scattering study of 2-amino-4-methylbenzothiazole adsorbed on colloidal silver particles [J]. J. Phys. Chem., 2005, 109B: 22536
[12] Chugh B, Singh A K, Thakur S, et al. An exploration about the interaction of mild steel with hydrochloric acid in the presence of N-(Benzo[d]thiazole-2-yl)-1-phenylethan-1-imines [J]. J. Phys. Chem., 2019, 123C: 22897
[13] Danaee I, Gholami M, RashvandAvei M, et al. Quantum chemical and experimental investigations on inhibitory behavior of amino-imino tautomeric equilibrium of 2-aminobenzothiazole on steel corrosion in H2SO4 solution [J]. J. Ind. Eng. Chem., 2015, 26: 81
[14] Liao D M, Yu P, Luo Y B, et al. Inhibition action of benzotriazole and tolytriazole on corrosion of copper in deionized water [J]. J. Chin. Soc. Corros. Prot., 2002, 22: 359
[14] (廖冬梅, 于萍, 罗运柏等. 苯并三氮唑及其甲基衍生物在去离子水中对铜的缓蚀作用 [J]. 中国腐蚀与防护学报, 2002, 22: 359)
[15] Zhang S G, Chen Y, Wang F Y. Molecular dynamics simulation of interaction between cuprous oxide crystal and benzotriazole derivatives [J]. J. Chin. Soc. Corros. Prot., 2007, 27: 348
[15] (张曙光, 陈瑜, 王风云. 苯并三氮唑及其衍生物与氧化亚铜晶体相互作用的MD模拟 [J]. 中国腐蚀与防护学报, 2007, 27: 348)
[16] Behead H, Forghani A. Correlation between electronic parameters and corrosion inhibition of benzothiazole derivatives-NMR parameters as important and neglected descriptors [J]. J. Mol. Struct., 2017, 1131: 163
[17] Chen Z Y, Huang L, Zhang G A, et al. Benzotriazole as a volatile corrosion inhibitor during the early stage of copper corrosion under adsorbed thin electrolyte layers [J]. Corros. Sci., 2012, 65: 214
[18] Chen S Q, Zhang D. Study of corrosion behavior of copper in 3.5wt.%NaCl solution containing extracellular polymeric substances of an aerotolerant sulphate-reducing bacteria [J]. Corros. Sci., 2018, 136: 275
[19] Sheng X X, Ting Y P, Pehkonen S O. Evaluation of an organic corrosion inhibitor on abiotic corrosion and microbiologically influenced corrosion of mild steel [J]. Ind. Eng. Chem. Res., 2007, 46: 7117
doi: 10.1021/ie070669f
[20] Machnikova E, Whitmire K H, Hackerman N. Corrosion inhibition of carbon steel in hydrochloric acid by furan derivatives [J]. Electrochim. Acta, 2008, 53: 6024
[21] Xu F L, Duan J Z, Zhang S F, et al. The inhibition of mild steel corrosion in 1 M hydrochloric acid solutions by triazole derivative [J]. Mater. Lett., 2008, 62: 4072
[22] Cui H, Tan C Y, Zheng Y, et al. Electrochemical behavior of copper passivated by BTA and MBT in NaCl solution [J]. J. Central South Univ. (Sci. Technol.), 2011, 42: 3336
[22] (崔航, 谭澄宇, 郑勇等. 铜经BTA和MBT钝化处理后在NaCl溶液中电化学行为分析 [J]. 中南大学学报(自然科学版), 2011, 42: 3336)
[23] Xu Q J, Zhou G D, Lu Z, et al. SERS studies of corrosion inhibition of BTA and its derivative on copper electrodes in NaCl solution [J]. Chin. J. Appl. Chem., 2002, 19: 390
[23] (徐群杰, 周国定, 陆柱等. 苯并三氮唑及其衍生物在NaCl溶液中对铜缓蚀作用的表面增强拉曼光谱 [J]. 应用化学, 2002, 19: 390)
[24] Xu Q J, Zhou G D, Lu Z, et al. Corrosion inhibition of BTA and its derivative 4CBTA on copper electrode in 3%NaCl solution [J]. Chin. J. Nonferrous Met., 2001, 11: 135
[24] (徐群杰, 周国定, 陆柱等. 苯并三氮唑与4-羧基苯并三氮唑在氯化钠溶液中对铜的缓蚀作用 [J]. 中国有色金属学报, 2001, 11: 135)
[25] Wei X, Deng Y L, Zheng X M, et al. Ground structure and excited state proton transfer reaction of 2-aminobenzothiazole [J]. Chem. J. Chin. Univ., 2019, 40: 1679
[25] (魏馨, 邓要亮, 郑旭明等. 2-氨基苯并噻唑的结构及激发态质子转移动力学 [J]. 高等学校化学学报, 2019, 40: 1679)
[26] Arjunan V, Balamourougane P S, Mythili C V, et al. Vibrational, nuclear magnetic resonance and electronic spectra, quantum chemical investigations of 2-amino-6-fluorobenzothiazole [J]. J. Mol. Struct., 2011, 1006: 247
[27] Arjunan V, Sakiladevi S, Rani T, et al. FTIR, FT-Raman, FT-NMR, UV-visible and quantum chemical investigations of 2-amino-4-methylbenzothiazole [J]. Spectrochim. Acta, 2012, 88A: 220
[28] Arjunan V, Raj A, Santhanam R, et al. Structural, vibrational, electronic investigations and quantum chemical studies of 2-amino-4-methoxybenzothiazole [J]. Spectrochim. Acta, 2013, 102A: 327
[29] Zhang M L, Zhao J M. Research progress of synergistic inhibition effect and mechanism [J]. J. Chin. Soc. Corros. Prot., 2016, 36: 1
[29] (张漫路, 赵景茂. 缓蚀剂协同效应与协同机理的研究进展 [J]. 中国腐蚀与防护学报, 2016, 36: 1)
[1] 白云龙, 沈国良, 覃清钰, 韦博鑫, 于长坤, 许进, 孙成. 硫脲基咪唑啉季铵盐缓蚀剂对X80管线钢腐蚀的影响[J]. 中国腐蚀与防护学报, 2021, 41(1): 60-70.
[2] 王亚婷, 王棵旭, 高鹏翔, 刘冉, 赵地顺, 翟建华, 屈冠伟. 淀粉接枝共聚物对Zn的缓蚀性能[J]. 中国腐蚀与防护学报, 2021, 41(1): 131-138.
[3] 邵明鲁, 刘德新, 朱彤宇, 廖碧朝. 乌洛托品季铵盐缓蚀剂的合成与复配研究[J]. 中国腐蚀与防护学报, 2020, 40(3): 244-250.
[4] 贾巧燕, 王贝, 王赟, 张雷, 王清, 姚海元, 李清平, 路民旭. X65管线钢在油水两相界面处的CO2腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(3): 230-236.
[5] 张晨, 陆原, 赵景茂. CO2/H2S腐蚀体系中咪唑啉季铵盐与3种阳离子表面活性剂间的缓蚀协同效应[J]. 中国腐蚀与防护学报, 2020, 40(3): 237-243.
[6] 李向红, 邓书端, 徐昕. 木薯淀粉三元接枝共聚物对钢在H2SO4溶液中的缓蚀性能研究[J]. 中国腐蚀与防护学报, 2020, 40(2): 105-114.
[7] 郑艳欣, 刘颖, 宋青松, 郑峰, 贾玉川, 韩培德. 含铁铜基陶瓷复合材料高温氧化行为与耐磨性研究[J]. 中国腐蚀与防护学报, 2020, 40(2): 191-198.
[8] 吕祥鸿,张晔,闫亚丽,侯娟,李健,王晨. 两种新型曼尼希碱缓蚀剂的性能及吸附行为研究[J]. 中国腐蚀与防护学报, 2020, 40(1): 31-37.
[9] 王霞,任帅飞,张代雄,蒋欢,古月. 豆粕提取物在盐酸中对Q235钢的缓蚀性能[J]. 中国腐蚀与防护学报, 2019, 39(3): 267-273.
[10] 史显波,杨春光,严伟,徐大可,闫茂成,单以银,杨柯. 管线钢的微生物腐蚀[J]. 中国腐蚀与防护学报, 2019, 39(1): 9-17.
[11] 刘建国,高歌,徐亚洲,李自力,季菀然. 咪唑啉类衍生物缓蚀性能研究[J]. 中国腐蚀与防护学报, 2018, 38(6): 523-532.
[12] 李亚琼,马景灵,王广欣,朱宇杰,宋永发,张景丽. NaPO3与SDBS缓蚀剂对AZ31镁合金空气电池在NaCl电解液中放电性能的影响[J]. 中国腐蚀与防护学报, 2018, 38(6): 587-593.
[13] 孔佩佩, 陈娜丽, 白德忠, 王跃毅, 卢勇, 冯辉霞. 壳聚糖及其衍生物的制备与缓蚀性能的研究进展[J]. 中国腐蚀与防护学报, 2018, 38(5): 409-414.
[14] 马景灵, 通帅, 任凤章, 王广欣, 李亚琼, 文九巴. L-半胱氨酸/ZnO缓蚀剂对3102铝合金在碱性溶液中电化学性能的影响[J]. 中国腐蚀与防护学报, 2018, 38(4): 351-357.
[15] 刘峥, 李海莹, 王浩, 赵永, 谢思维, 张淑芬. 分子动力学模拟水溶液中席夫碱基表面活性剂在Zn表面的吸附行为[J]. 中国腐蚀与防护学报, 2018, 38(4): 381-390.