Please wait a minute...
中国腐蚀与防护学报  2018, Vol. 38 Issue (4): 381-390    DOI: 10.11902/1005.4537.2017.053
  研究报告 本期目录 | 过刊浏览 |
分子动力学模拟水溶液中席夫碱基表面活性剂在Zn表面的吸附行为
刘峥(), 李海莹, 王浩, 赵永, 谢思维, 张淑芬
桂林理工大学化学与生物工程学院 广西电磁化学功能物质重点实验室 桂林 541004
Molecular Dynamics Simulation of Adsorption Behavior of Schiff Base Surfactants on Zn Surface in Aqueous Solution
Zheng LIU(), Haiying LI, Hao WANG, Yong ZHAO, Siwei XIE, Shufen ZHANG
Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, College of Chemical and Biological Engineering, Guilin University of Technology, Guilin 541004, China
全文: PDF(5322 KB)   HTML
摘要: 

合成了3种聚乙二醇 (400) 月桂酸单酯席夫碱基表面活性剂 (M1,M2和M3),并进行了结构表征。采用分子动力学模拟研究了M1,M2和M3在Zn表面的吸附行为和席夫碱基表面活性剂分子中基团对吸附性能的影响,探讨了其吸附机理。利用失重法、电化学阻抗谱和SEM研究了3种表面活性剂对碱性Zn电极的缓蚀性能。结果表明,M3的缓蚀性能最好,当其浓度达到1.0 mmol/L时,缓蚀率达92%。席夫碱基表面活性剂分子基本平行吸附在Zn表面,形成致密吸附分子膜。3种表面活性剂分子吸附能大小依次为:M3>M2>M1,吸附速率顺序为:M3>M2>M1;相比于M2和M1,M3对碱性Zn电极具有更好的缓蚀性能。

关键词 表面活性剂吸附行为分子动力学模拟Zn表面缓蚀性能    
Abstract

Three polyethylene glycol (400) lauric acid monoester Schiff base surfactants (M1, M2 and M3) were synthesized and characterized. The adsorption behavior and the effect of the group of surfactant molecules on the adsorption properties about M1, M2, M3 on the metal Zn surface were investigated by means of molecular dynamics simulation method. While the corrosion inhibition performance of the three surfactants on alkaline Zn-electrode was assessed by means of mass loss method, electrochemical impedance spectroscopy and scanning electron microscopy. It showed that M3 exhibited the best corrosion inhibition, and the corrosion inhibition efficiency was 92% when the concentration reached 1.0 mmol/L. The Schiff base surfactant molecules adsorbed on Zn surface parallelly to form a dense molecular adsorption film. What's more, the ranking of the adsorption energy of the three surfactants was M3>M2>M1, and that of the adsorption rate was M3>M2>M1. M3 had better corrosion inhibition performance for alkaline zinc electrode, and had better inhibition effect on zinc dendrite.

Key wordssurfactant    adsorption behavior    molecular dynamics simulation    zinc surface    corrosion inhibition performance
收稿日期: 2017-04-13     
ZTFLH:  O643.12  
基金资助:国家自然科学基金 (21266006),广西省自然科学基金 (2016GXNSFAA380109) 和广西特聘专家专项经费(NO2401007012)
作者简介:

作者简介 刘峥,女,1962年生,教授

引用本文:

刘峥, 李海莹, 王浩, 赵永, 谢思维, 张淑芬. 分子动力学模拟水溶液中席夫碱基表面活性剂在Zn表面的吸附行为[J]. 中国腐蚀与防护学报, 2018, 38(4): 381-390.
Zheng LIU, Haiying LI, Hao WANG, Yong ZHAO, Siwei XIE, Shufen ZHANG. Molecular Dynamics Simulation of Adsorption Behavior of Schiff Base Surfactants on Zn Surface in Aqueous Solution. Journal of Chinese Society for Corrosion and protection, 2018, 38(4): 381-390.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2017.053      或      https://www.jcscp.org/CN/Y2018/V38/I4/381

图1  3种席夫碱基表面活性剂的合成路线图
图2  3种表面活性剂的分子结构图
Surfactant ConcentrationmmolL-1 ΔWg ηw% Dwg / m2h
Blank --- 3.6×10-2 --- ---
M1 0.4 1.4×10-2 62.0 1.89
0.7 7.7 ×10-3 79.0 1.06
1.0 6.3×10-3 82.0 0.87
1.3 6.1×10-3 82.8 0.85
1.6 6.0×10-3 83.3 0.82
M2 0.4 9.7×10-3 73.0 1.34
0.7 6.0×10-3 83.0 0.83
1.0 4.0×10-3 88.8 0.55
1.3 3.9×10-3 89.1 0.54
1.6 3.7×10-3 89.6 0.51
M3 0.4 8.3×10-3 77.0 1.15
0.7 5.0×10-3 86.0 0.69
1.0 2.8×10-3 92.2 0.38
1.3 2.5×10-3 93.0 0.34
1.6 2.3×10-3 93.6 0.31
表1  Zn片在添加不同浓度表面活性剂碱液中的失重实验数据
图3  Zn在含不同表面活性剂的溶液中的Nyquist曲线图及其等效电路图
Surfactant Concentration / mmolL-1 R1 / Ωcm2 R2 / Ωcm2 Cd / Fcm-2 η / %
Blank --- 0.31 52.82 1.2×10-2 ---
M1 0.4 0.57 108.71 4.1×10-4 51.41
0.7 0.58 147.44 1.1×10-3 64.18
1.0 0.62 224.60 1.0×10-2 76.47
M2 0.4 0.51 271.48 8.4×10-3 80.54
0.7 0.53 316.92 7.8×10-3 83.33
1.0 0.59 412.02 6.6×10-3 87.18
M3 0.4 0.62 480.30 5.9×10-3 89.00
0.7 0.65 519.53 7.7×10-3 89.83
1.0 0.64 672.02 4.686×10-3 92.14
表2  Zn电极在添加不同浓度表面活性剂饱和ZnO的6 mol/L KOH溶液中的电化学参数以及缓蚀率
图4  Zn电极在未加入与加入3种表面活性剂的饱和ZnO的 6 mol/L KOH溶液中浸泡50 h后的SEM像
图5  3种表面活性剂吸附在Zn表面的温度和能量平衡曲线图
图6  表面活性剂在Zn (1 1 0)表面吸附前后的构型图
Molecular Emolecule+surface / (kcalmol-1) Emolecule / (kcalmol-1) Esurface / (kcalmol-1) Eadsorption / (kcalmol-1)
M1 -34470 -38.19 -34023 -408.81
M2 -34484 -16.48 -34023 -444.52
M3 -34496 -16.93 -34023 -456.07
表3  3种表面活性剂分子在Zn (1 1 0)表面的吸附能
图7  3种表面活性剂分子吸附到Zn (1 1 0)表面的均方位移图
图8  吸附前后3种表面活性剂的两种基团之间的距离变化
图9  3种表面活性剂的特征基团原子和H2O与Zn表面之间的距离变化
[1] Khaled K F, Amin M A.Corrosion monitoring of mild steel in sulphuric acid solutions in presence of some thiazole derivatives- Molecular dynamics, chemical and electrochemical studies[J]. Corros. Sci., 2009, 51: 1964
[2] Tang Y M, Yang X Y, Yang W Z, et al.Experimental and molecular dynamics studies on corrosion inhibition of mild steel by 2-amino-5-phenyl-1,3,4-thiadiazole[J]. Corros. Sci., 2010, 52: 242
[3] Obot I B, Obi-Egbedi N O. Theoretical study of benzimidazole and its derivatives and their potential activity as corrosion inhibitors[J]. Corros. Sci., 2010, 52: 657
[4] Zhang J, Liu J X, Yu W Z, et al.Molecular modeling of the inhibition mechanism of 1-(2-aminoethyl)-2-alkyl-imidazoline[J]. Corros. Sci., 2010, 52: 2059
[5] Bereket G, Hür E, Öğretir C.Quantum chemical studies on some imidazole derivatives as corrosion inhibitors for iron in acidic medium[J]. J. Mol. Struct.-THEOCHEM, 2002, 578: 79
[6] Cruz J, Pandiyan T, García-Ochoa E.A new inhibitor for mild carbon steel: electrochemical and DFT studies[J]. J. Electroanal. Chem., 2005, 583: 8
[7] Rodríguez-Valdez L M, Martínez-Villafañe A, Glossman-Mitnik D. Computational simulation of the molecular structure and properties of heterocyclic organic compounds with possible corrosion inhibition properties[J]. J. Mol. Struct.-THEOCHEM, 2005, 713: 65
[8] Lashkari M, Arshadi M R.DFT studies of pyridine corrosion inhibitors in electrical double layer: solvent, substrate, and electric field effects[J]. Chem. Phys., 2004, 299: 131
[9] Gómez B, Likhanova N V, Domínguez Aguilar M A, et al. Theoretical study of a new group of corrosion inhibitors[J]. J. Phys. Chem., 2005, 109A: 8950
[10] Zhang C G, Yang Y, Hao T, et al.Molecular dynamics simulations on the growth of thin amorphous hydrogenated carbon films on diamond surface[J]. Acta Phys. Sin., 2015, 64: 018102(张传国, 杨勇, 郝汀等. 金刚石表面无定形碳氢薄膜生长的分子动力学模拟[J]. 物理学报, 2015, 64: 018102)
[11] Wang Y, Yi H B, Li H J, et al.Effects of interactions between ions and alanine polar groups on alanine associations in saline solution: Density functional theory and molecular dynamics simulation[J]. Acta Phys.- Chim. Sin., 2009, 31: 1035(王莹, 易海波, 李会吉等. 盐水溶液中离子与丙氨酸极性基团间的作用对丙氨酸缔合的影响:密度泛函理论与分子动力[J]. 物理化学学报, 2009, 31: 1035)
[12] Zhao H X, Zhang X H, Ji L, et al.Quantitative structure-activity relationship model for amino acids as corrosion inhibitors based on the support vector machine and molecular design[J]. Corros. Sci., 2014, 83: 261
[13] Yan H, Yuan S L, Zeng S Y, et al.The mechanism of selective deposition of luminescent molecules onto self-assembled monolayers using molecular dynamics[J]. Appl. Surf. Sci., 2015, 349: 163
[14] Obot I B, Gasem Z M, Umoren S A.Understanding the mechanism of 2-mercaptobenzimidazole adsorption on Fe(110), Cu (111)and Al (111) surfaces: DFT and molecular dynamics simulations approaches[J]. Int. J. Electrochem. Sci., 2014, 9: 2367
[15] Wang W H, Li Z, Sun Q, et al.Insights into the nature of the coupling interactions between uracil corrosion inhibitors and copper: A DFT and molecular dynamics study[J]. Corros. Sci., 2012, 61: 101
[16] Liu J, Liu Z, Liu J, et al.Inhibition performance of a new 3,5-dibromosalicylaldehyde-2-thenoyl hydrazine Schiff base for carbon steel in oilfield water and relevant molecular dynamics simulation[J]. J. Chin. Soc. Corros. Prot., 2014, 34: 101(刘洁, 刘峥, 刘进等. 3,5-二溴水杨醛-2-噻吩甲酰肼席夫碱缓蚀剂在油田水中对碳钢的缓蚀性能及分子动力学模拟[J]. 中国腐蚀与防护学报, 2014, 34: 101)
[17] Zeng J P.Molecular dynamics simulation studies of the non-phosphorus scale and corrosion inhibitors [D]. Nanjing: Nanjing University of Science and Technology, 2013(曾建平. 无磷阻垢缓蚀剂的分子动力学模拟研究 [D]. 南京: 南京理工大学, 2013)
[18] Zhao Y Q, Zhang Z F.Development of the additives for improving the function of zinc electrode[J]. Mater. Rev., 2005, 19(suppl.): 258(赵逸群, 张正富. 改善碱性锌电极性能添加剂的研究进展[J]. 材料导报, 2005, 19(增刊): 258)
[19] Wang H Q.Study on materials of the zinc electrodes [D]. Chongqing: Chongqing University, 2004(王华清. 锌电极材料的研究 [D]. 重庆: 重庆大学, 2004)
[20] Liu J.The study of Gemini surfactants as inhibitors for zinc in zinc-manganese battery [D]. Shijiazhuang: Hebei University of Science & Technology, 2016(刘静. 双子表面活性剂在锌锰电池中缓蚀性能的研究 [D]. 石家庄: 河北科技大学, 2016)
[21] Zheng L C.The study on corrosion inhibition performances of Gemini surfactants [D]. Wuhan: Wuhan Institute of Technology, 2016(郑乐驰. 双子表面活性剂及其防腐性能研究 [D]. 武汉: 武汉工程大学, 2016)
[22] Bu X T, Liang G C.Influence of the composite organic additive on electrochemical properties of zinc electrode in alkaline solution[J]. Chin Battery Ind., 2006, 11: 396(卜雪涛, 梁广川. 有机复配添加剂对锌电极电化学性能的影响[J]. 电池工业, 2006, 11: 396)
[23] Yan Y, Li W H, Cai L K, et al.Electrochemical and quantum chemical study of purines as corrosion inhibitors for mild steel in 1 M HCl solution[J]. Electrochim. Acta, 2008, 53: 5953
[24] Khaled K F.Electrochemical behavior of nickel in nitric acid and its corrosion inhibition using some thiosemicarbazone derivatives[J]. Electrochim. Acta, 2010, 55: 5375
[25] Ren J Q, Zhao J S, Dong Z G, et al. Molecular dynamics study on the mechanism of AFM-based nanoscratching process with water-layer lubrication[J]. Appl. Surf. Sci., 2015, 346: 84
[26] Amjad Z, Hooley J P.Effect of antiscalants on the precipitation of calcium carbonate in aqueous solutions[J]. Tenside Surfactants Deterg., 1994, 31: 12
[27] Drela I, Falewicz P, Kuczkowska S.New rapid test for evaluation of scale inhibitors[J]. Water Res., 1998, 32: 3188
[28] Musa A Y, Jalgham R T T, Mohamad A B. Molecular dynamic and quantum chemical calculations for phthalazine derivatives as corrosion inhibitors of mild steel in 1 M HCl[J]. Corros. Sci., 2012, 56: 176
[29] Khaled K F.Adsorption and inhibitive properties of a new synthesized guanidine derivative on corrosion of copper in 0.5 M H2SO4[J]. Appl. Surf. Sci., 2008, 255: 1811
[30] Xia S W, Qiu M, Yu L M, et al.Molecular dynamics and density functional theory study on relationship between structure of imidazoline derivatives and inhibition performance[J]. Corros. Sci., 2008, 50: 2021
[31] Khaled K F.Corrosion control of copper in nitric acid solutions using some amino acids-A combined experimental and theoretical study[J]. Corros. Sci., 2010, 52: 3225
[32] Liu B, Lian Y H, Li Z, et al.Molecular simulation of drug adsorption and diffusion in Bio-MOFs[J]. Acta Chim. Sin., 2014, 72: 942(刘蓓, 廉源会, 李智等. 生物金属-有机骨架材料中药物吸附及扩散的分子模拟研究[J]. 化学学报, 2014, 72: 942)
[33] Kühnle A.Self-assembly of organic molecules at metal surfaces[J]. Curr. Opin. Colloid Interface Sci., 2009, 14: 157
[34] Xu Z, Yuan S L, Yan H, et al.Adsorption of histidine and histidine-containing peptides on Au(1 1 1): A molecular dynamics study[J]. Colloid. Surf. A-Physicochem. Eng. Asp., 2011, 380: 135
[1] 张晨, 陆原, 赵景茂. CO2/H2S腐蚀体系中咪唑啉季铵盐与3种阳离子表面活性剂间的缓蚀协同效应[J]. 中国腐蚀与防护学报, 2020, 40(3): 237-243.
[2] 吕祥鸿,张晔,闫亚丽,侯娟,李健,王晨. 两种新型曼尼希碱缓蚀剂的性能及吸附行为研究[J]. 中国腐蚀与防护学报, 2020, 40(1): 31-37.
[3] 赵景茂,赵起锋,姜瑞景. 咪唑啉缓蚀剂在CO2/H2S共存体系中的构效关系研究[J]. 中国腐蚀与防护学报, 2017, 37(2): 142-147.
[4] 赵景茂,赵雄,姜瑞景. 在动态H2S/CO2体系中疏水链上的双键对咪唑啉衍生物缓蚀性能的影响[J]. 中国腐蚀与防护学报, 2015, 35(6): 505-509.
[5] 苏铁军, 罗运柏, 李克华, 李凡修, 邓仕英, 习伟. 苯并咪唑-N-曼尼希碱对盐酸中N80钢的缓蚀性能[J]. 中国腐蚀与防护学报, 2015, 35(5): 415-422.
[6] 冯丽娟,赵康文,杨怀玉,唐囡,王福会,上官帖. 混凝土模拟液中咪唑啉衍生物与四乙烯五胺间缓蚀协同效应[J]. 中国腐蚀与防护学报, 2015, 35(4): 297-304.
[7] 王青, 马雪梅, 石海燕, 原珊, 郭建峰, 梁栋, 胡志勇. 苯并咪唑衍生物在1 mol/L HCl溶液中对45#碳钢缓蚀行为的研究[J]. 中国腐蚀与防护学报, 2015, 35(1): 49-54.
[8] 刘洁, 刘峥, 刘进, 谢思维. 3,5-二溴水杨醛-2-噻吩甲酰肼席夫碱缓蚀剂在油田水中对碳钢的缓蚀性能及分子动力学模拟[J]. 中国腐蚀与防护学报, 2014, 34(2): 101-111.
[9] 吴刚,耿玉凤,贾晓林,孙霜青,胡松青. 异恶唑衍生物缓蚀剂缓蚀性能的理论评价[J]. 中国腐蚀与防护学报, 2012, 32(6): 513-519.
[10] 赵景茂,李俊. 含羟基双子表面活性剂在CO2饱和盐水溶液中对Q235钢的缓蚀性能[J]. 中国腐蚀与防护学报, 2012, 32(4): 349-352.
[11] 郭海艳,朱君秋,邵艳群,唐电. 表面活性剂辅助制备钛阳极的电化学性能[J]. 中国腐蚀与防护学报, 2010, 30(6): 449-452.
[12] 胡松青,胡建春,郁金华,石鑫,张军. 苯并咪唑及其衍生物缓蚀性能的定量构效关系研究[J]. 中国腐蚀与防护学报, 2010, 30(5): 354-358.
[13] 徐以兵 何德良 周舟 钟建芳 许 超 崔正丹 曾丽萍. 低阴极沉积电位对铝合金表面硅烷膜层的影响[J]. 中国腐蚀与防护学报, 2009, 29(3): 220-224.
[14] 杨小刚 邵丽艳 张树芳 焦 巍 李言涛 侯保荣. 海水中水溶性壳聚糖及其降解产物对低碳钢缓蚀性能的影响[J]. 中国腐蚀与防护学报, 2008, 28(6期): 325-330.
[15] 杨怀玉; 陈家坚; 曹楚南; 曹殿珍 . H2S水溶液中的腐蚀与缓蚀作用机理的研究Ⅷ咪唑啉衍生物H2S溶液中的吸附作用行为[J]. 中国腐蚀与防护学报, 2003, 23(2): 75-78 .